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Path instability of an air bubble rising in water
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It has been documented since the Renaissance that an air bubble rising in water
will deviate from its straight, steady path to perform a periodic zigzag or spiral
motion once the bubble is above a critical size. Yet, unsteady bubble rise has resisted
quantitative description, and the physical mechanism remains in dispute. Using a
numerical mapping technique, we for the first time find quantitative agreement with
high-precision measurements of the instability. Our linear stability analysis shows that
the straight path of an air bubble in water becomes unstable to a periodic perturbation
(a Hopf bifurcation) above a critical spherical radius of R = 0.926 mm, within 2%
of the experimental value. While it was previously believed that the bubble’s wake
becomes unstable, we now demonstrate a new mechanism, based on the interplay
between flow and bubble deformation.
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The motion of bubbles in water plays a central role for a wide range of natural phenomena,
from the chemical industry to the environment (1). The buoyant rise of a single bubble
serves as a much-studied paradigm, both experimentally (2–4) and theoretically (2, 5–9).
Yet, in spite of these efforts, and in spite of the ready availability of enormous computing
power, it has not been possible to reconcile experiments with numerical simulations of
the full hydrodynamic equations for a deformable air bubble in water. This is true in
particular for the intriguing observation, made already by Leonardo da Vinci (10, 11),
that sufficiently large air bubbles perform a periodic motion, instead of rising along a
straight line.

Indeed, a rising air bubble presents great numerical and theoretical challenges. First,
the small viscosity of water implies the appearance of thin boundary layers (12), which
have to be resolved accurately in order to capture the interplay between buoyancy and
dissipation, which sets the speed of rise. Second, the ability of the exterior fluid to glide
over the bubble surface without friction (the effect of the gas can safely be neglected)
means that viscous effects arise only on account of flow line curvature, whose subtle
effect has to be captured accurately. Third, and most significantly, the bubble deforms in
response to the forces exerted by the fluid, and in turn, the shape of the bubble changes
the character of the flow.

The vanishing resistance to shear on the bubble surface also means that experiments
are extremely sensitive to contamination by surfactants (1–3, 13), which partially mimic
the no-slip boundary conditions of a solid particle. As a result, experimental rise velocities
as well as critical bubble sizes have proved inconsistent (14). We base our comparison
on the seminal experiments of Duineveld (3, 13), using “hyper clean” water and whose
data for the terminal bubble speed Vt is shown as circles in Fig. 1A. The solid line is the
result of our numerical simulations we describe now.

Numerical Simulations

Our simulations use the Navier-Stokes equations (12) for two incompressible (∇·vi = 0)
fluids, water, and air (i = l,g):

∂vi
∂t

+ (vi ·∇) vi = −
∇p
ρi

+
µi

ρi
4vi −

(
g +

dV
dt

)
ez , [1]

with standard values for density ρ and viscosity µ, g is the acceleration of gravity; (z, r, θ )
is a cylindrical coordinate system, v = (w, u, v) is the velocity, and p is the pressure. We
use a noninertial frame of reference, in which the top of the bubble is stationary; V is
the vertical speed of the top of the bubble in the laboratory frame, which is constant for
steady rise, but accelerating in the unsteady regime.

The free surface is parameterized as r = f (s, θ , t) and z = h(s, θ , t), where s
is the meridional arclength (0 ≤ s ≤ 1); f and h are computed from the fluid
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velocity using the kinematic boundary condition. Liquid and
gas velocities are continuous across the bubble surface, where
boundary conditions are (�l − �g) · n = γ κn, � = −pI +
µ

(
∇v + ∇vT

)
the stress tensor; here, γ is the air–water surface

tension, and κ (twice) is the mean curvature. An equation for
V is obtained by requiring that on the top s = 1 of the bubble,
w = 0, f = 0, and the height at the top is held constant at h = R.
The entire fluid domain is enclosed in a large sphere of radius
Rout � R; SI Appendix for details of the boundary conditions on
the outer sphere.

The key idea of the numerics is to map the physical domain
such that the free surface becomes a fixed rectangle (15), obviating
the need to track the interface. The liquid domain can be
described in closed form as a mapping

r = f (s, θ , t) + (Rout sin(π s)− f (s, θ , t)) η,
z = h(s, θ , t) + (Rout cos(π s)− h(s, θ , t)) η, [2]

such that η = 0 is the free surface and η = 1 is the outer
sphere; inner mapping: SI Appendix. The entire problem of
writing wl , ul , vl , pl and V as a function of s, η, θ , and t can now
be discretized using standard methods; points are concentrated
near the bubble surface to resolve boundary layers. Eq. 2
implies that analytical expressions for the derivatives become
extremely complicated, but they are calculated automatically
using MATLAB’s “Symbolic Math Toolbox” package and saved
using the “matlabFunction” routine.

Base State. We solved the nonlinear equations for steady,
axisymmetric bubble shapes using a Newton scheme. In Fig. 1A,
the speed of riseVt (solid line) is seen to be in excellent agreement
with the experiment, except for the smallest bubbles; similar
agreement was achieved comparing to the data of Sanada et al.
(4). The entire numerical data set takes less than a day to compute
on a personal workstation. The dashed line is Moore’s asymptotic
theory for small bubbles (5), which approximates the bubble
shape as an ellipsoid. While there is perfect agreement forR . 0.4
mm, the theory gradually falls below the result of the simulations.
Indeed (Fig. 1A), with increasingR, the bubble shape increasingly

loses its up–down symmetry: it becomes flat on the top and
rounded at the bottom.

The structure of the flow around the bubble is seen in Fig. 1
C and D; on the left, flow lines follow the bubble surface
closely, similar to the solution of the potential flow problem;
only for R near 1 mm does a small recirculating region appear
at the rear of the bubble. This agrees with time-dependent
numerical simulations (9), which for very small Morton numbers
(Mo = gµ4/(ργ 3) = 2.63·10−11 in our case) find no standing
eddy near the transition toward time-dependent motion. In case
of vanishing tangential stress, vorticity is generated on the surface
in proportion to the curvature (12), which is concentrated around
the equator and is then shed downstream (Fig. 1 C and D,
Right). The theoretical calculation of the speed of rise is based on
the dissipation in the potential flow solution, with a correction
coming from the thin boundary layer in which vorticity is
concentrated (5). Increased surface vorticity reduces the flow
speed on the surface, making velocity gradients weaker, reducing
dissipation, so that the bubble rises more quickly (1).

Linear Stability. With 9b(z, r) being any one of the dependent
variables describing the bubble’s steady, axisymmetric rise, we
study stability to general three-dimensional (3D), time dependent
perturbations:

9(z, r, θ ; t) = 9b(z, r) + ε δ9(z, r)e−iωt+imθ , [3]

where m = 0,±1,±2, . . . . Inserting Eq. 3 into the equations of
motion and linearizing in ε, for each m and fixed unperturbed
bubble radius R, we obtain an eigenvalue problem, with eigen-
value ω = ωr + iωi and eigenfunction δ9(z, r). For a given m,
we are interested in the value of R for which ωi first becomes
positive, corresponding to exponential growth; modes m = ±1
are the most unstable, so we focus on them for the remainder.

Eigenvalues and eigenfunctions are found from solving the
generalized eigenvalue problem

J (p,q)
b δ9(q) = iωQ(p,q)

b δ9(q); [4]
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Fig. 1. (A) The rise speed Vt as function of the undeformed bubble radius R; the symbols are the data of (3), the solid line shows the simulation with � = 998.3
kg/m3, � = 1.014 mPa/s, 
 = 72.8 mN/m; the red dashed line is the theory of (5); bubble shapes as insets. (B) Real and imaginary parts of the frequency 2�!
near the transition; first eigenvalue (largest imaginary part): black and red solid lines, second eigenvalue: dashed lines; !i = 0: vertical dashed lines. (C and D)
The flow field at Rc = 0.926 mm and R = 1 mm. On the left, red flow lines and blue arrows to represent the flow velocity. In (D), recirculating flow lines at the
rear are shown in green. On the right, azimuthal vorticity contours.
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Fig. 2. Periodic perturbations during zigzag motion, the amplitude of the
linear perturbation having been chosen arbitrarily. (A) Tilt angle �, maximum
curvature, and maximum axial velocity, as function of time. Solid lines: right
side of the drop, dashed lines: left side. (B) Snapshots of the perturbations
to curvature, pressure, and bubble shape are plotted on the bubble surface.
The unperturbed bubble is shown in black, and the perturbation is plotted in
red in the normal direction on each point on the surface.

analytical expressions for the Jacobians J (p,q)
b and Q(p,q)

b are
once more calculated in MATLAB; Eq. 4 is solved in MATLAB.
One shows (7) that if 9 is identified as vz , vr , and imvθ , Eq. 4
depends on m2 only, and matrices are real. Thus, eigenvalues and
eigenfunctions appear in complex conjugate pairsω = ±ωr+iωi
and are the same for m = ±1.

In Fig. 1B,ωi,ωr are shown for R between 0.9 mm and 1 mm.
The first eigenvalue to become unstable (with ωi turning positive
at Rc = 0.926 mm, vertical dashed line) is shown with solid lines,
agreeing very well with the critical bubble radius of R = 0.91 mm
reported in ref. 3. This occurs at a finite value of f = 2πωr ≈ 6.3
Hz (a Hopf bifurcation), consistent with the experimental value
of f = 6.4 Hz at R = 1.15 mm (13). The next smaller imaginary
part only passes through zero at R = 0.94 mm, with vanishing
real part, causing no oscillation. Previous studies (7, 8, 16), which
make the assumption of a fixed ellipsoidal shape, have found the
opposite order of eigenvalues. Hence for a correct description
of the instability, the interplay between shape deformations and
flow needs to be considered.

Mechanism of Instability

Time-dependent solutions can be constructed as linear combina-
tions of modes a1/2δ9e−iωr t±iθ , a3/4δ9

∗eiωr t±iθ in Eq. 3, such
that the result is real. At the Hopf bifurcation (R = Rc), only a sin-
gle mode is unstable. Choosing a1 = a4 real and a2 = a3 = 0, we
obtain δ9 = 2a1 (δ9r cos(θ − ωr t)− δ9i sin(θ − ωr t)) eωit ,
corresponding to a bubble turning clockwise, where δ9 =
δ9r + iδ9i. If on the other hand, a1 = a2 real and a3 = a4 = 0,
δ9 = 4a1 cos θ [δψr cos(ωr t) + δψi sin(ωr t)] eωit , describing
a zigzag motion in one plane. Thus, which motion is observed
experimentally depends on the initial conditions or is selected by
nonlinear effects. For simplicity, we will assume zigzag motion
in the following.

In Fig. 2, we characterize the periodic instability by the
interplay of flow and surface perturbations, similar to arguments
proposed in ref. 9. This motion is slow compared to the time
scale on which the bubble is rising, as characterized by the
Strouhal number St = 2f R/Vt = 0.032 being small. As seen in
Fig. 2 A, Top the bubble undergoes a periodic tilt, with one side
pointing up being correlated with a higher curvature on the same
side (second panel). Greater curvature implies greater surface
vorticity, increasing the rise velocity (third panel from Top). The
differences in rise velocity then (with some phase shift) translate
into a tilt, the side with the greater curvature pointing up.

In Fig. 2B, the distribution of curvature, pressure, and
deformation over the surface of the bubble are shown in greater
detail. The Top row shows the curvature, a large value of which
makes the surface more “slippery,” so that the fluid moves faster.
Then, by the Bernoulli theorem, the pressure is lower where the
fluid moves faster, as seen in the second row, and the imbalance
in pressure pushes back the bubble to its original position, as seen
in the last row. This also reverses the distribution of curvature,
and the process repeats itself.

In conclusion, we have found a mechanism for the periodic
motion of a rising bubble, qualitatively different from the
behavior of a solid particle. This opens the door to the study of
small contaminations, present in most practical settings, which
emulate a particle somewhere in between a solid and a gas.

Data, Materials, and Software Availability. Data for figures is available at
https://zenodo.org/record/7342806. All study data are included in the article
and/or SI Appendix.
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