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When a fluid interface is subjected to a strong viscous flow, it tends
to develop near-conical ends with pointed tips so sharp, their radius
of curvature is undetectable. In microfluidic applications, tips can
be made to eject fine jets, from which micron-sized drops can be
produced. Here we show theoretically that the opening angle of the
conical interface varies on a logarithmic scale as function of the dis-
tance from the tip, owing to non-local coupling between the tip and
the external flow. Using this insight we are able to show that the tip
curvature grows like the exponential of the square of the strength
of the external flow, and to calculate the universal shape of the in-
terface near the tip. Our experiments confirm the scaling of the tip
curvature as well as of the interface’s universal shape. Our analytical
technique, based on an integral over the surface, may also have far
wider applications, for example treating problems with electric fields,
such as electrosprays.
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In many problems of science and engineering, or in daily1

life, one is confronted with fluid interfaces subject to strong2

external flows. For example, consider a bubble rising in a3

viscous fluid (1) (such as in a shampoo bottle), emulsions of4

drops or bubbles being stirred (2, 3), a viscous layer being5

withdrawn from near an interface (4), or two fluids meeting in6

a microfluidic channel (5).7

In Fig. 1 we show three typical situations: at the top, a8

viscous liquid (light) flows out through a circular hole at the9

bottom of the picture, deforming the interface between liquid10

and air - a flow geometry known as selective withdrawal (6–11

8). The interface is focused into a near-conical shape, which12

ends in a tip so small, it can no longer be resolved by optical13

means. Therefore, in the inset we show profiles obtained from14

a numerical simulation: as the tip is plotted with increasing15

resolution (decreasing a), the observed opening angle increases.16

This is a reflection of the logarithmic variation of the interface17

slope, which is the key feature of the solution described below.18

In the middle we see a drop of liquid, whose viscosity is19

much smaller than that of the outer liquid, being drawn apart20

by an extensional flow. Once more, very sharp tips are formed21

at the ends of the drop, and the ends appear conical. At the22

bottom, a conical interface is produced when a stream of oil is23

forced by water in a microfluidic assembly (5, 9, 10). However,24

now a liquid thread escapes from the tip (a phenomenon25

called tipstreaming (11)), whose subsequent decay is a means26

of producing micron-sized droplets in a highly reproducible27

fashion (12) of interest for chemical analysis and in soft matter28

research.29

Similar conical structures, known as Taylor cones, appear30

when a liquid is placed in a strong electric field (13–15). How-31

ever, the Taylor cone is generally unstable, and a tiny jet32

is emitted from its tip (11, 16–18), akin to the tipstreaming33

phenomenon described above. This has led to a vast number34

of applications in spraying and materials processing (19, 20),35
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Fig. 1. Top: A liquid-air interface is deformed into a sharp tip as the fluid below
escapes through a hole at the bottom (8); `c is the capillary length. The dimensionless
source strength (flow rate q) is χ = qη/(`2

cγ) = 6.31, where η the dynamic
viscosity, and γ the surface tension. The local capillary number (details below) is
Catip = 1.64. The inset shows closeups of the tip found from a numerical simulation
of the experiment: as one zooms in, the opening angle increases. Middle: A low-
viscosity drop in an extensional flow generated by four rollers (2), with capillary number
Ca = GRdη/γ = 0.7, and unperturbed drop radius Rd = 0.25cm, where G is
the extension rate of the flow. Bottom: A stream of oil is being forced into a sharp tip
by water flowing in the reverse direction at a junction of small channels (12). A jet a
few microns thick is ejected from the tip (see inset). The scale bar represents 75µm.
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but the fundamentals of how a Taylor cone leads to secondary36

structures has not been understood properly.37

Almost a century ago, G.I. Taylor set up a research program38

to understand the production and stirring of emulsions (2, 21),39

by considering drops subjected to simple external forcing,40

as seen in Fig. 1. After stirring, very small drops of about41

1/100 the size of the original drop can be observed (2), which42

can be attributed to the ejection of small threads, similar43

to those shown at the bottom of the figure. Taylor later44

developed a theory for the shape of slender drops of small or45

negligible viscosity (22), which predicted conical ends with46

tips of vanishing size, violating the assumption of smoothness,47

on which continuum theory is based (23).48

Later refinements of Taylor’s theory (24) show that it breaks49

down near the tips. Other theoretical proposals for drop50

shapes also exhibit singular tips (24, 25). Our later numerical51

calculations (26) suggest a finite curvature at the tips, which52

grows exponentially with the square of the external flow speed.53

It remains to understand this issue of singular tips theoretically,54

and to calculate the true shape near the ends. This task has55

hitherto proven impossible, since it represents a fully non-56

linear, three-dimensional free-surface problem, for which few57

analytical methods of solution exist. In particular, a slender-58

body or lubrication type approach fails here, since the end is59

not a slender shape.60

The axisymmetric geometry we consider is particularly61

significant, since it represents “optimal” focusing of the flow.62

In the two-dimensional analogue of the same problem, the63

interface shape is a cusp (27, 28), whose tip traces out a line64

in three dimensions. Since this involves focusing along a whole65

line, it is much less efficient than focusing on a single point,66

as in the present problem. As a result, the curvature only67

increases exponentially with the flow strength in the quasi68

two-dimensional case, instead of the exponential of the square.69

Our analytical calculation of the curvature of an axisymmetric70

tip establishes theoretically that steady flows with surface71

tension are always smooth, although rounding may occur on72

very small scales only.73

The idea of our analysis is that the region near the tip is74

on a scale very different from the bulk of the flow. Thus if75

we introduce the distance ζ = (z − ztip)κm from the tip (see76

Fig. 1, middle), made dimensionless with (twice) the mean77

curvature of the tip κm, the radius h(z) of an axisymmetric78
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interface can be written in the form 79

h(z) = κ−1
m H(ζ), [1] 80

where H(ζ) should be a universal similarity solution, inde- 81

pendent of the geometry or of the external flow. In (26) we 82

provided numerical evidence for Eq. (1), comparing H(ζ) cal- 83

culated from a drop in extensional flow, and from a selective 84

withdrawal configuration. Below we calculate the similarity 85

function H(ζ) analytically for large ζ, which corresponds to 86

the limit of large κm at a small but constant distance from 87

the tip. We then use this to calculate the scaling of the tip 88

curvature as function of the local flow strength. 89

Asymptotic analysis near the tip. To calculate the profile and 90

the flow near the ends, we consider the simplest case of axisym- 91

metric viscous (Stokes) flow, with vanishing viscosity inside. 92

Even if inertia becomes important on a large scale, this will 93

still be a correct description locally, where the local Reynolds 94

number is small, i.e. viscous forces are much stronger than 95

inertial forces. An axisymmetric cross section is a good approx- 96

imation even if the external flow is not axisymmetric (29, 30), 97

for example in a shear flow. A finite viscosity fluid inside the 98

tip eventually leads to a tipstreaming bifurcation (22, 31), but 99

we will be describing the regime before this occurs, yet tips 100

have become very sharp. 101

Instead of solving the flow equations in the bulk, with 102

boundary conditions applied at the free surface, we use the 103

equivalent boundary integral description (32), which is formu- 104

lated on the free surface alone, and which has proven extremely 105

effective addressing free surface problems numerically with 106

very high resolution (26, 32, 33). However, this technique is 107

very unwieldy as an analytical tool, since the surface to be in- 108

tegrated over is unknown a priory. Here we break new ground 109

by using the boundary integral technique to find analytical 110

solutions, using the fact that the interface slope is changing 111

very slowly. 112

The integral equation to be solved for the velocity v(x1) 113

on the surface S (see Fig. 1, middle, more details in Materials 114

and Methods) is (32) 115

v(x1)
2 = v(ext)(x1)−

∫
S

κ(x2)J ·n dσ2 −
∫
S

v(x2) ·K ·n dσ2.

[2] 116

Velocities are written in units of the capillary speed vc ≡ γ/η, 117

with γ the surface tension and η the dynamic viscosity. In 118

Eq. (2), v(ext)(x1) is an externally imposed velocity, κ the 119

mean curvature, and n the outward normal. The kernel J ·n is 120

the velocity at x1, generated by a point force at x2 in Stokes 121

flow, and K · n is the corresponding stress tensor at x1. 122

Since the flow is axisymmetric, one can perform the az- 123

imuthal integration explicitly (32), and choose the dimen- 124

sionless distance ζ from the tip as the integration variable. 125

Transforming to the logarithmic variable l = ln ζ, we obtain 126

from Eq. (2) 127

v(l1)
2 = vtipez + v(J) −

∫ ln(Lκm)

−∞
v(l2)ζ2k(l1, l2)dl2,[3] 128

v(J)(l1) = −
∫ ln(Lκm)

−∞
ζ2(κ(l2)/κm)j(l1, l2)dl2, [4] 129

where L is a characteristic size of the setup, such as a drop 130

size, and vtip = v
(ext)
z (ztip) is the external velocity at the tip. 131
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Fig. 2. Schematic representation of our treatment of Eq. (6). The self-similar profile
H(ζ) has a slope H′ which changes on a logarithmic scale, see inset. Integrands
like ζ2kzz are peaked at l2 = l1, except jz , which decays like je

z for large l2.

The kernels j and k correspond to J · n and K · n in Eq. (2),132

integrated over θ, and written in units of the tip curvature133

κm.134

The integrands in Eq. (3) and Eq. (4) are now invariant135

under a scale transformation: if the surface were a perfect136

cone of slope s, the integrands would be functions of s and137

∆ = l2 − l1 alone. Thus if all integrals were convergent in the138

limit Lκm →∞, each term in Eq. (3) would be a function of139

s alone, and a cone would result as a (similarity) solution to140

the flow equations. However, as first pointed by Taylor (22),141

and confirmed by Buckmaster (24), such a conical solution142

does not exist. Indeed, we will see that the z-component143

of v(J) in Eq. (4) is in fact divergent for Lκm → ∞, so L144

cannot be eliminated from the problem. Instead, we must145

keep the upper limit in Eq. (4) finite, and cancel the resulting146

contribution against the external velocity vtip, introducing147

an intrinsic coupling between the external flow and the local148

behavior at the tip.149

The key idea of our approach is to suppose that the interface150

has the form (cf. Fig. 2):151

H(ζ) = ζs(ln ζ) ≡ ζs(l), [5]152

where s(l) is a local slope, which varies on a logarithmic scale.153

We will show below that for large l (far from the tip), which154

is the asymptotic behavior which interests us, s(l) ∝ 1/
√
l, i.e.155

the slope becomes small, as shown in the inset of Fig. 2. In156

doing so, we are always in the limit ζ � Lκm, and hence the157

inner solution near the end applies. If we write Eq. (3) in the158

form159

1
2

(
vz
vr

)
=
(
vtip + v

(J)
z −K1 −K3

v
(J)
r −K2 −K4

)
, [6]160

in evaluating the dominant contribution to each term we can161

assume the integral to be over a cone of constant slope (since162

s(l) is varying very slowly), which is a tractable problem.163

Our treatment of Eq. (6) is illustrated in Fig. 2: to find164

vz/r at a point l1 = ln(ζ1), according to Eq. (3) and Eq. (4),165

we have to perform an integral over l2. However, as shown for166

the example of ζ2kzz, integrands are peaked at l2 = l1, and167

hence to leading order the contribution to K1 is proportional168

to vz(l1), multiplied by the area of the peak. The exception is169

the integral over jz, which decays very slowly for large l2.170

Namely, taking a cone of slope s2 as the interface, one finds 171

that for ∆→∞ 172

jz(l1, l2)→ jez ≡ −
s2

2(1− s2
2)

4 (1 + s2
2)3/2 ≈ −

s2
2
4 , [7] 173

where jez is shown as the red line in the plot of jz in Fig. 2. 174

In the same limit of small slopes, ζ2κ/κm ≈ 1/s2; thus the 175

integrand of v(J)
z in Eq. (4) is ζ2(κ/κm)jz ≈ −s2/4. On 176

the other hand, for ∆ → −∞, jz(l1, l2) vanishes rapidly (cf. 177

Fig. 2), and we obtain 178

v(J)
z ≈ 1

4

∫ ln(Lκm)

l1

s(l2)dl2. [8] 179

Clearly since s ∝ 1/
√
l2, this integral makes a contribution 180

∝
√

ln(Lκm) from its upper limit. Once this has been removed 181

by balancing it against vtip in Eq. (6), we anticipate that 182

vz ∝
√
l1 from the lower limit. 183

Now we compute the other integrals in the same spirit as 184

integrals over cones, but using the fact that the remaining 185

kernels are localized about ∆ ≈ 0, and decay for large ∆. 186

Thus since j(l1, l2) = j(s1,∆) for a conical interface, we can 187

approximate 188

v(J)
r ≈ (ζ1κ(l1)/κm)

∫ ∞
−∞

jr(s1,∆)d∆ = 0, 189

which is confirmed by an expansion of jr(s1,∆) for small s1. 190

The kernels k(l1, l2) ≈ k(s1,∆) can be treated in the same 191

way. Beginning with z-component of Eq. (6), 192

K1 ≡
∫ Lκm

−∞
ζ2kzzvz(l2)dl2 ≈ vz(l1)

∫ ∞
−∞

ζ2kzz(s1,∆)d∆, 193

where we have used, as illustrated in Fig. 2, that ζ2kzz is 194

strongly peaked, so that vz(l2) varies little over width of the 195

peak. The remaining integral (the area of the peak) can be 196

shown to be 1/2 to leading order in an expansion for small s1 197

(see Materials and Methods); thus K1 ≈ vz(l1)/2. In the same 198

vein, 199

K3 ≡
∫ Lκm

−∞
ζ2kzrvr(l2)dl2 ≈ vr(l1)

∫ ∞
−∞

ζ2kzr(s1,∆)d∆. 200

Now the integral is ≈ s1/2 to leading order, which becomes 201

small, and K3 can be neglected compared to K1. 202

Coming to the r-component of Eq. (6), to a first approxi- 203

mation we have 204

K4 ≡
∫ Lκm

−∞
ζ2krrvr(l2)dl2 ≈ vr(l1)

∫ ∞
−∞

ζ2krr(s1,∆)d∆. 205

To leading order, the value of the last integral is −1/2, so that 206

K4 ≈ −vr/2; but this cancels vr/2 on the left, and we have to 207

go to the next order, which yields K4 ≈ vr(l1)(−1/2 + s2
1/4). 208

The remaining component is 209

K2 ≡
∫ Lκm

−∞
ζ2krzvz(l2)dl2 ≈ vz(l1)

∫ ∞
−∞

ζ2krz(s1,∆)d∆, 210

but the integral is again zero to leading order, and even the next 211

order vanishes. To capture the leading nonzero contribution, 212

we expand vz(l2) = vz(l1) + v′z(l1)∆ + . . . , using that krz 213
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Fig. 3. Comparison between the similarity solution H(ζ) as predicted by theory
(black solid line), and six different experimental data sets for different values of κm`c,

rescaled according to Eq. (1) (colored lines); `c =
√
γ/(ρg) = 1.49mm is the

capillary length. The main panel shows all six experimental data sets on a logarithmic
scale, the inset only the first three sets on a linear scale. The dashed line is the
asymptotic behavior Eq. (9) with l0 = 2.55. For the first three experimental profiles,
κm has been measured directly, (colored dots in Fig. 4), for the profiles with the
highest tip curvatures, κm has been calculated from a numerical simulation (colored
pluses in Fig. 4).

is peaked around ∆ = 0. Thus an improved approximation214

becomes215

K2 ≈ v′z(l1)
∫ ∞
−∞

∆ζ2krz(s1,∆)d∆ ≈ −v′z(l1)s1

2216

to leading order.217

This completes the necessary calculations of all the integrals.218

Next we will interpret Eq. (6) as a dynamical system for219

s(l), vz(l) and vr(l).220

Flow equations and scaling. To summarize, Eq. (6) becomes221

to leading order, putting l1 = l ≡ ln ζ,222

vz = vtip + 1
4

∫ ln(Lκm)

l

s(l2)dl2, 0 = sv′z/2− vrs2/4. [9]223

The contribution vtip of the external flow cancels against the224

contribution from the upper limit of the v(J)
z integral, as we225

see below. However, we first calculate s(l) to leading order.226

To close the system Eq. (9), we use that streamlines must be227

parallel to the free surface, and thus vr/vz = H ′ = s + s′ ≈228

s. Differentiating the First of Eq. (9) with respect to l, we229

find v′z = −s/4, and substituting into the second equation230

gives vr = −1/2. This corresponds to the familiar result231

(34, 35) −vc/2 for the rate of collapse of a cylindrical cavity,232

remembering that velocities have been made dimensionless233

with the capillary speed vc. It follows that vz = −1/(2s) from234

the kinematic condition, leading to s′ = −s3/2. Solving, we235

find the asymptotic solution far from the tip (but still in the236

self-similar region) to be237

s = (l − l0)−1/2, vr = −1
2 , vz = − (l − l0)1/2

2 , [10]238

consistent with the previous assumption of small slopes for239

l → ∞. In Fig. 3, Eq. (10) (dashed line) is found to be240

in excellent agreement with H(ζ) as calculated from Eq. (1)241

(solid line), using a full numerical simulation of a drop in242

an extensional flow (26); the constant of integration l0 was 243

adjusted to match with the numerical profile. The major 244

conclusion from Eq. (10) is that the pointed ends seen for 245

example in Fig. 1 only appear conical since s is nearly constant 246

over an observable range of scales, but this opening angle will 247

change when the scale of observation is changed, and one 248

zooms into the tip. 249

The theoretical tip similarity solution H(ζ) (black solid 250

line) is compared in Fig. 3 to six experimental data sets 251

from a selective withdrawal experiment, described in detail 252

in (8) (colored lines). A container 3 cm wide is half filled 253

with silicone oil of viscosity η = 30 Pa s and surface tension 254

γ = 2.13 × 10−2Nm−1. The liquid is evacuated through a 255

circular sink hole of 1 mm diameter in a solid plate, at a 256

constant flow rate of q = 9.97× 10−9 m3/s, but replenished at 257

a rate which is slightly smaller, so that the distance between 258

the hole and the mean liquid level decreases adiabatically, over 259

a period of several hours. 260

As the liquid-air interface comes closer to the sink hole, it 261

is increasingly deformed. We record the distance zt between 262

interface tip and the hole, as well as the shape of the inter- 263

face. The experimental cell is lit from behind, so that light is 264

refracted away by the interface, whose cross section appears 265

black (cf. Fig. 1), top. The measured interface shape (colored 266

lines) has been rescaled according to Eq. (1), with tip curva- 267

tures given in the figure. The crossover between the similarity 268

solution H(ζ) and the outer solution, which is shaped by the 269

sink flow out of the container, takes place at a fixed outer scale 270

z− ztip. Thus to increase the range of the similarity variable ζ 271

over which to compare to the experiment, one has to increase 272

the tip curvature. 273

For the first three profiles of Fig. 3, the tip curvature κm has 274

been measured directly by interpolating the tip region. The 275

teal curve with the highest curvature shows significant noise, 276

as it has been zoomed in to the limit of our resolution. To 277

be able to compare to theory over a larger range, we included 278

three profiles with a much larger tip curvature, focusing on 279

the far field. The tip sizes of these profiles have become so 280

small, that they are below our optical resolution. Instead, 281

we calculate κm from a full numerical simulation of the flow 282

equations, which matches closely the experimental geometry. 283

We can argue on the basis of Fig. 4 below that the numerical 284

estimates of the curvature are very reliable. 285

To compute the tip curvature κm analytically, we insert 286

Eq. (10) into the First of Eq. (9) to find to leading order 287

−
√
l

2 ≈ −Catip + 1
4

∫ ln(Lκm)

l

dl2√
l2
, 288

where the local capillary number Catip = −vtip is the di- 289

mensionless z-velocity at the tip. From this we find Catip ≈ 290√
ln(Lκm)/2, and thus 291

κm ∝ L−1 exp
(
4Ca2

tip
)
, [11] 292

which is the main result of this paper. For Eq. (11) to be 293

valid, Catip needs to be sufficiently large so that there is an 294

appreciable range over which s follows the scaling Eq. (10). 295

Owing to the faster-than-exponential growth of κm, Eq. (11) 296

shows that while the curvature always remains finite, it can 297

easily reach microscopic dimensions even at moderate values 298

of the capillary number. For example, taking the drop in the 299
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Fig. 4. The dimensionless tip curvature κm`c, as function of the square of the local
capillary number Catip, based on the unperturbed velocity at the tip. The solid
line is a numerical simulation (details in (26)), parameters the same as Fig. 1 (top).
The open orange circles are the experimental measurements, applying no adjustable
parameters. The filled circles correspond to the measured curvature of the first three
profiles of Fig. 3, the pluses are the curvatures for the last three profiles, based on the
numerical simulation. The dashed line has a slope of a = 4/ ln 10, corresponding to
the theoretical prediction Eq. (11).

middle of Fig. 1, Eq. (11) would predict a radius of curvature300

of about 10−89 m! This shows that while the tip itself is often301

too small to observe, what is experimentally relevant is the302

slow variation of the slope described by our asymptotic theory303

Eq. (10).304

In Fig. 4 we test Eq. (11) against experiment (circles) and305

simulation (solid line). As the capillary number increases, the306

logarithm of the curvature, plotted as function of the square307

of the capillary number at the tip, quickly converges toward a308

straight line. The dashed line has a slope of 4/ ln 10, which309

is the asymptotic prediction of Eq. (11), and is seen to agree310

very well with both simulation and experiment. It can be311

shown (36) that the slight over prediction of the slope can be312

traced to a slow variation of the prefactor in Eq. (11) on the313

capillary number.314

The orange circles in Fig.4 come from measurements of315

the tip curvature in the selective withdrawal geometry for the316

same parameters as in Fig. 3. The external velocity at the tip317

was calculated from the flow field of a point source inside a318

solid wall, evaluated at zt. The black solid line is the result of319

a numerical simulation performed using the boundary integral320

method (26). The simulation assumes a point source in a solid321

wall, unbounded in the horizontal direction (instead of a finite322

experimental cell), an approximation which works very well,323

except far from the center (26). No adjustable parameters324

were applied to achieve the near-perfect agreement between325

simulation and experiment. The colored solid circles are also326

obtained from direct measurements of the tip curvature, and327

correspond to the first three profiles of Fig. 3. The pluses have328

been picked out from the solid line, and mark the curvatures329

of the last three profiles of Fig. 3.330

Conclusions. In this paper, we have given the first analytical331

description of axisymmetric interface tips, created by a con-332

verging viscous flow. The shape of the interface near the tip333

is universal, independent of flow conditions. The tip curva-334

ture always remains finite, but increases dramatically with335

flow strength. Thus although surface tension always keeps336

the interface smooth, the continuum hypothesis will in many 337

cases fail in practice. Moreover, it follows that the numerical 338

solution of free-surface problems places extreme demands on 339

the spatial resolution. Our analytical solution can be used to 340

provide effective boundary conditions on intermediate scales, 341

to drastically reduce the necessary numerical effort. Numerical 342

calculations agree well with our experiments, which resolve 343

the tip size down to a few microns. 344

Using the theoretical framework established in this paper, 345

we hope to address the important issue of tipstreaming, used to 346

produce colloidal drops (5, 12), and studied numerically in (37, 347

38). The same is true for a much wider class of flows involving 348

electric fields, where the analogous flow is known as the cone- 349

jet mode (11, 39). In (12), it was shown that in a suitable 350

microfluidic geometry (see Fig. 1, bottom), the transition to 351

tipstreaming is of second order, i.e. the ejected thread can 352

be arbitrarily thin. Thus we expect the transition between a 353

tipstreaming state and a closed tip to be continuous, which 354

means that previous theories of tipstreaming, based on slender- 355

body theory (40, 41), suffer from the same shortcomings as 356

for a tipped state. By adding an inner fluid to our description, 357

we expect to be able to include the thread into our theory, 358

finally being able to address the tipstreaming problem in a 359

consistent fashion. 360

Materials and Methods 361

The idea of the boundary integral Eq. (2), is to use the linearity 362

of the Stokes equation to write the velocity as a superposition of 363

an externally imposed velocity field v(ext), and the velocity v(J) 364

produced by surface tension. The latter can be seen as coming 365

from a collection of point forces of strength γκn, distributed over 366

the surface S. This makes v(J) a superposition of Stokeslets J, 367

integrated over the free surface S, with γκn as a weight. 368

The kernels in the boundary integral description Eq. (2) are (32) 369

Jij(r) =
1

8π

[
δij

r
+
rirj

r3

]
, Kijk(r) = −

3
4π

rirjrk

r5 , [12] 370

where r = x1 − x2, so that J · f(x2) is the velocity at x1, generated 371

by a point force f at x2, and K · f(x2) is the stress at x1. The 372

factor 1/2 on the left-hand side of Eq. (2) and the second integral 373

over the stress K · n corrects for the jump in viscosity between the 374

two phases. 375

Putting x1 = (y1, 0, x1), x2 = (y2 cos θ, y2 cos θ, x2), and n = 376

(−h′(z), 1), we can perform the integration with respect to the 377

azimuthal angle θ: 378

j = y2

∫ 2π

0
J · ndθ2, [13] 379

and analogously for K, yielding the kernels j and k in Eq. (3) and 380

Eq. (4). They result in well-known expressions (32) involving elliptic 381

integrals in terms of the (logarithmic) coordinates l1, s1 and l2, s2. 382

The entries in Eq. (6) are calculated by performing the integrals 383

over l2 assuming a conical interface with slope s1 = s(l1). This 384

results in integrals over the kernels, such as ζ2kzz(s1,∆) for the 385

case of K1, but as a function of ∆ = l2 − l1 alone. The dominant 386

contribution to the integral comes from a central region of size s1. 387

At higher orders, contributions for ∆ ≥ 1 also need to be taken into 388

account, but can be disregarded here. 389

To capture contributions at scale s, we put ξ = ∆/s and expand 390

the kernel: 391

ζ2kzz = K
(−1)
1 (ξ)s−1 +K

(0)
1 (ξ) + . . . . 392

Here K(−1)
1 (ξ) is an even function, which is expressible in terms 393

of the elliptic integrals E
(

2/
√

4 + ξ2
)

and K
(

2/
√

4 + ξ2
)

(42). 394
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Thus the integral becomes 395∫ ∞
−∞

ζ2kzzd∆ =
∫ ∞
−∞

K
(−1)
1 dξ +O(s2) =

1
2

+O(s2),396

as shown by an explicit calculation. The remaining integrals to397

calculate K2 . . .K4 can be evaluated in a similar fashion, expanding398

the integrand in s at constant ξ.399
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