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Influence of the surface viscous 
stress on the pinch‑off of free 
surfaces loaded with nearly‑inviscid 
surfactants
A. Ponce‑Torres1, M. Rubio1, M. A. Herrada2, J. Eggers3 & J. M. Montanero1*

We analyze the breakup of a pendant water droplet loaded with SDS. The free surface minimum 
radius measured in the experiments is compared with that obtained from a numerical solution of the 
Navier–Stokes equations for different values of the shear and dilatational surface viscosities. This 
comparison shows the small but measurable effect of the surface viscous stresses for sufficiently 
small spatiotemporal distances from the breakup point, and allows to establish upper bounds for the 
values of the shear and dilatational viscosities. We study numerically the distribution of Marangoni 
and viscous stresses over the free surface as a function of the time to the pinching, and describe how 
surface viscous stresses grow in the pinching region as the free surface approaches its breakup. When 
Marangoni and surface viscous stresses are taken into account, the surfactant is not swept away from 
the thread neck in the time interval analyzed. Surface viscous stresses eventually balance the driving 
capillary pressure in the pinching region for small enough values of the time to pinching. Based on this 
result, we propose a scaling law to account for the effect of the surface viscosities on the last stage of 
temporal evolution of the neck radius.

Soluble surfactants play a fundamental role in many microfluidic  applications1. For instance, it is well-known that 
surfactants can stabilize both foams and emulsions due to Marangoni convection  effects2–4. The surface viscos-
ity of surfactant monolayers is also believed to play a significant role in such stabilization. In fact, the drainage 
time during the coalescence of two bubbles/droplets can considerably increase due to the monolayer  viscosity5. 
However, there are serious doubts about whether small-molecule surfactants commonly used in microfluidic 
applications exhibit measurable surface viscosities. For instance, Zell et al.6 reported that the surface shear vis-
cosity of Sodium Dodecyl Sulfate (SDS) was below the sensitivity limit of their experimental technique ( ∼ 10

−8 
Pa s m). This raises doubts about the role played by surface shear rheology in the stability of foams and emulsions 
treated with soluble surfactants.

The disparity among the reported values of shear and dilatational viscosities of both soluble and insoluble 
surfactants reflects the complexity of measuring such properties. The lack of precise information about these 
values, as well as the mathematical complexity of the calculation of the surface viscous stresses, has motivated 
that most of the experimental and theoretical works in microfluidics do not take into account those stresses. 
However, one can reasonably expect surface viscosity to considerably affect the dynamics of interfaces for suf-
ficiently small spatiotemporal scales even for nearly-inviscid  surfactants7. A paradigmatic example of this is the 
pinch-off of an interface covered with  surfactant7, where both the surface-to-volume ratio and surface velocity 
can diverge for times and distances sufficiently close to this singularity.

In the pinching of a Newtonian liquid free surface, the system spontaneously approaches a finite-time sin-
gularity, which offers a unique opportunity to observe the behavior of fluids with arbitrarily small length and 
time scales. This property and its universal character (insensitivity to both initial and boundary conditions) turn 
this problem into an ideal candidate to question our knowledge of fundamental aspects of fluid dynamics. Both 
 theoretical8–12 and  experimental7,13–15 studies on the free surface pinch-off have traditionally considered the 
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dependence of the free surface minimum radius, Rmin , with respect to the time to the pinching, τ , as an indica-
tor of the relevant forces arising next to the pinching spatiotemporal coordinate. For small viscous effects, the 
thinning of the liquid thread passes through an inertio-capillary regime characterized by the power law

where σ and ρ are the liquid surface tension and density,  respectively9,16. The dimensionless prefactor A can 
exhibit a complex, nonmonotonic behavior over many orders of magnitude in τ . In fact, its asymptotic value 
A ≃ 0.717 is never reached because there are very long-lived transients, and then viscous effects take  over17.

The addition of surfactant confers a certain degree of complexity on Newtonian liquids, which may lead to 
unexpected behaviors during the pinch-off of their free surfaces. For instance, Marangoni stress can produce 
microthread cascades during the breakup of interfaces loaded with  surfactants18. It is still a subject of debate 
whether surfactants are convected away from the pinching region. In that case, the system would follow the 
self-similar dynamics of clean interfaces at times sufficiently close to the  breakup7,13,19–25. The persistence of a 
surfactant monolayer in the pinching of an interface potentially entails the appearance of several effects. The 
first and probably more obvious is the so-called solutocapillarity, i.e., the local reduction of the surface tension 
due to the presence of surface-active  molecules24,26. The other effect that has been accounted for is the Maran-
goni stress induced by the surface tension gradient due to uneven distribution of surfactant along the free 
 surface12,18–20,22,27–32. However, some other effects might be considered in the vicinity of the pinching region as 
well. Among them, the shear and dilatational surface viscosities have already been shown to affect considerably 
the breakup of pendant drops covered with insoluble (viscous)  surfactants7.

SDS is one of the most commonly used surfactants in microfluidic experiments. The adsorption/desorption 
times of SDS are several orders of magnitude larger than the characteristic time of the breakup of free surfaces 
enclosing low-viscosity liquids. This allows one to regard SDS as an insoluble surfactant, which considerably 
simplifies the problem. Under the insolubility condition, bulk diffusion and adsorption/desorption processes can 
be ruled out. Due to its small molecular size, the SDS monolayer is assumed to exhibit a Newtonian  behavior33. 
In addition, the sphere-to-rod transition of SDS micelles (and its associated viscoelastic behavior) does not take 
place unless some specific salt is added to the  solution34. Therefore, viscoelastic effects are not expected to come 
up even for concentrations larger than the cmc.

Surface viscosities of small-size surfactant molecules, such as SDS, are believed not to affect the breakage of a 
pendant drop due to their small values. However, and as mentioned above, the surface-to-volume ratio diverges 
in the vicinity of the pinching region and, therefore, surface viscous effects can eventually dominate both inertia 
and viscous dissipation in the bulk of that region. In addition, the surface tension is bounded between the values 
corresponding to the clean free surface and the maximum packaging limit, while surface velocity can diverge 
at the pinch-off singularity. This suggests that surface viscous stresses (which are proportional to the surface 
velocity gradient) can become comparable with, or even greater than, Marangoni stress (which is proportional to 
surface tension gradient) in the pinching region for times sufficiently close to the breakup. One can hypothesize 
that surface viscous stresses can eventually have a measurable influence on the evolution of the free surface even 
for very low-viscosity surfactants. This work aims to test this hypothesis. The comparison between numerical 
simulations and experimental data will allow us to determine upper bounds for both the shear and dilatational 
viscosities of SDS. We will propose a scaling law which reflects the balance between the driving capillary force 
and the resistant surface viscous stresses in the last stage of the free surface breakup.

Results and discussion
In this work, experiments were conducted with unprecedented spatiotemporal resolution to determine the free 
surface minimum radius as a fuction of the time to the pinching. The experimental results were compared with 
a numerical solution of the full Navier–Stokes equations which includes the effects of the shear and dilatational 
viscosities. The experimental procedure, theoretical model, and numerical method are described in “Methods” 
section.

Figure 1 shows images of the pinch-off of a drop of deionized water (DIW), DIW+SDS 0.8cmc, and DIW+SDS 
2cmc. A microthread forms next to the pinching point when the surfactant is added. The breakup of that micro-
thread produces a tiny subsatellite droplet 1–2 µm in diameter. This droplet is significantly smaller than that 
observed in previous experiments with 5-cSt silicone oil in the absence of surfactant, which seems to confirm 
that the silicone oil subsatellite droplet was formed by viscoelastic  effects35.

Figure 2 shows the free surface minimum radius, Rmin , as a function of the time to the pinching, τ , for experi-
ments conducted with two feeding capillary radii R0 (see “Methods” section). The agreement among the results 
obtained for the same liquid shows both the high reproducibility of the experiments and the universal character 
(independency from R0 ) of Rmin(τ ) for the analyzed time interval. In fact, the differences between the results 
obtained with R0 = 115 and 205 µm are smaller than the effect attributed to the surface viscosities, as will be 
described below. The results for DIW follow the scaling law (1) with A ≃ 0.55.

As can be seen in Fig. 3, there is a remarkable agreement between the experiments and numerical simulations 
for the pure DIW case for times to the pinching as small as ∼ 300 ns, which constitutes a stringent validation of 
both experiments and simulations. When SDS is dissolved in water, it creates a monolayer which substantially 
alters the pinch-off dynamics. The function Rmin(τ ) takes smaller values than in the pure DIW case over the entire 
process due to the reduction of the surface tension. More interestingly, if only solutocapillarity and Marangoni 
convection are considered in the numerical simulations (blue solid lines), there is a measurable deviation with 
respect to the experimental results for Rmin(τ ) � 5 µm. Specifically, the free surface in the experiment evolves 

(1)Rmin = A

(
σ

ρ

)1/3

τ 2/3,
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towards its pinching slower than in the numerical simulation. We added surface viscous stresses (see “Methods” 
section) to the simulation to reproduce the entire range of experimental data. To this end, we set to zero one of 
the surface viscosities and modulated the other. In this way, one can establish upper bounds of both the surface 
shear µS∗

1  and dilatational µS∗
2  viscosity at the cmc (see “Methods” section).

The experimental results can be reproduced for µS∗
1 = 5× 10−10 Pa s m and µS∗

2 = 0 (Fig. 3-left). This upper 
bound of the surface shear viscosity is consistent with the results obtained by Zell et al.6, who concluded that the 
surface shear viscosity of SDS in DIW must take values below 10−8 Pa s m (the sensitivity limit of their technique). 
The experimental results can also be reproduced for µS∗

1 = 0 and µS∗
2 = 3.5× 10−9 Pa s m (Fig. 3-right). There 

are significant deviations when other values of µS∗
2  found in the literature are  considered36. The optimum value 

of the shear viscosity is one order of magnitude smaller than that of the dilatational viscosity, which suggests that 
shear viscous stresses have a greater effect on the pinching than dilatational ones for the same value of the cor-
responding surface viscosities. In fact, when the surface shear viscosity takes the value of the dilatational viscosity 
( µS∗

1 = 3.5× 10−9 Pa s m, µS∗
2 = 0 ) the numerical curve (cyan solid line in Fig. 3-left) significantly deviates 

from the experimental one. The relative importance of the shear and dilatational viscosities can be explained in 
terms of the equivalence between the corresponding terms in the 1D approximation, as will be discussed below. 
Similar conclusions can be drawn from the experiments with DIW+SDS 2cmc (see Supplementary Information).

When surface viscosities are accounted for, a competition arises between the Marangoni stress, M ≡ t ·∇
Sσ̂ , 

and the tangential projection of the surface viscous stress,

(2)SV ≡ t ·

[
∇

S
· {OhS1[∇

S
v
S
+ (∇S

v
S)⊤]} −∇

S(OhS1∇
S
· v

S)

]
,

Figure 1.  (From top to bottom) Pinch-off of a drop of DIW, DIW+SDS 0.8cmc, and DIW+SDS 2cmc. The 
labels indicate the time to the pinching with an error of ± 100 ns. The arrows point to the subsatellite droplets.

Figure 2.  Rmin(τ ) for the breakup of a pendant drop of DIW and DIW+SDS 0.8cmc. The black and blue 
symbols are the experimental data for DIW and DIW+SDS 0.8cmc, respectively. The different symbols 
correspond to experiments visualized with different magnifications and recording speeds. The open and solid 
symbols correspond to experiments conducted with a cylindrical feeding capillary R0 = 115 and 205 µm in 
radius, respectively. The solid line is the power law (1) with A ≃ 0.55.
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where SV and DV are the (dimensionless) contributions associated with the shear and dilatational surface viscosi-
ties, respectively, and OhS1,2 = µS

1,2(ρσ0R
3
0)

−1/2 are the superficial Ohnesorge numbers defined in terms of the 
surface shear and dilatational viscosities, µS

1 and µS
2 , the liquid density ρ and equilibrium surface tension σ0 (see 

“Methods” section). Figure 4 shows the axial distribution of the tangential stresses, surfactant surface concentra-
tion, and free surface radius at a given instant of the droplet evolution. We analyze the solution for µS∗

1 = 0 and 

(3)DV ≡ t ·
[
∇

S(OhS2∇
S
· v

S)
]
,

Figure 3.  Rmin(τ ) for the breakup of a pendant drop of DIW and DIW+SDS 0.8cmc. The black and blue 
symbols are the experimental data for DIW and DIW+SDS 0.8cmc, respectively. The different symbols 
correspond to experiments visualized with different magnifications. The black solid line and magenta dashed 
line correspond to the simulation and the power law Rmin(τ ) ∼ τ 2/3 for DIW, respectively. (Left) The colored 
solid lines correspond to simulations of DIW+SDS 0.8cmc for µS∗

2
= 0 and µS∗

1
= 0 (blue), 5× 10−10 (red), 

and 3.5× 10−9 Pa s m (cyan). (Right) The colored solid lines correspond to simulations of DIW+SDS 0.8cmc 
for µS∗

1
= 0 and µS∗

2
= 0 (blue), 3.5× 10−9 (red), 10−8 (cyan), and 10−7 Pa s m (green). All the numerical 

results were calculated for B = 3.396× 10−3 , Oh = 0.01510 , Ŵ̂cmc = 1.002 , and PeS = 7.730× 104 (see 
“Methods” section). In the left-hand graph, the colored solid lines correspond to OhS∗2 = 0 and OhS∗1 = 0 (blue), 
6.563× 10−5 (red), and 4.594× 10−4 (cyan). In the right-hand graph, the colored solid lines correspond to 
Oh

S∗
1 = 0 and OhS∗2 = 0 (blue), 4.594× 10−4 (red), 1.313× 10−3 (cyan), and 1.313× 10−2 (green).

Figure 4.  Axial distribution of the Marangoni stress (M) and tangential dilatational viscous stress (DV) (a), 
surfactant surface concentration (b), and free surface radius (c) for DIW+SDS 0.8cmc. The solid lines are the 
results for {µS∗

1
= 0 , µS∗

2
= 3.5× 10−9 Pa s m} , while the dotted lines correspond to µS∗

1
= µS∗

2
= 0 (in the 

right-hand graphs, Rmin = 0.3 µm for µS∗
1

= µS∗
2

= 0 ). The results were calculated for B = 3.396× 10−3 , 
Oh = 0.01510 , Ŵ̂cmc = 1.002 , PeS = 7.730× 104 , OhS∗1 = 0 , and OhS∗2 = 4.594× 10−4 (solid lines) and 0 
(dotted lines) (see “Methods” section).
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the optimum value of the dilatational surface viscosity determined from Fig. 3-right, µS∗
2 = 3.5× 10−9 Pa s m 

(the same comparison is presented in the Suplemental Information but for µS∗
1 = µS∗

2 = 0 and the optimum 
value of the shear surface viscosity determined from Fig. 3-left, µS∗

1 = 5× 10−10 Pa s m). The instants were 
selected so that Rmin took approximately the same value in the simulations with and without surface viscosities. 
For Rmin = 0.9836 µm, the shear viscous stress is much smaller than the Marangoni stress over the entire free 
surface. As the minimum radius decreases, the relative importance of the shear viscosity increases. In fact, the 
maximum value of the shear viscous stress becomes comparable to that of the Marangoni stress for Rmin = 0.3 
µm. Small differences in the surfactant distribution arise for Rmin � 0.3 µ m. The presence of shear viscosity 
slightly reduces the magnitude of the Marangoni stress.

As mentioned in the Introduction, there is still a certain controversy about whether surfactants are convected 
away from the pinching  region7,13,19–25. Our results show that, when Marangoni and surface viscous stresses are 
taken into account, the surfactant is not swept away from the thread neck in the time interval analyzed ( ̂Ŵ � 0.8 
in this region). These stresses operate in a different way but collaborate to keep the surfactant in the vicinity of 
the pinching point. Marangoni stress tries to restore the initial uniform surfactant concentration, while surface 
viscosity opposes to the variation of the surface velocity, and, therefore, to the extensional flow responsible for 
the surfactant depletion that would occur in the absence of Marangoni and viscous stresses. While the gradient 
of surfactant concentration remains bounded in the pinching region, the gradient of surface velocity continues 
to increase there (Fig. 5a). This may explain why surface viscous stresses grow faster than Marangoni stress over 
the time interval analyzed. Similar conclusions can be drawn from the numerical simulation conducted for 
{µS∗

1 = 5× 10−10 , µS∗
2 = 0 Pa s m} (see Supplementary Information).

Interestingly, the free surface shape for µS∗
1 = µS∗

2 = 0 is practically the same as that with the adjusted value 
of µS∗

2  . This indicates that surface viscosity simply delays the time evolution of that shape. In fact, the values of 
the minimum radius obtained with and without surface viscosity significantly differ from each other when they 
are calculated at the same time to the pinching. For instance, Rmin = 0.32 and 0.57 µm at τ ≃ 0.35 µs for {µS∗

1 = 0 
Pa s m, µS∗

2 = 3.5× 10−9
} and µS∗

1 = µS∗
2 = 0 , respectively. However, the free surface shapes are practically the 

same if they are compared when the same value Rmin = 0.32 µm of the minimum radius is reached. In addition, 
the surfactant density distribution is not considerably affected by the surface viscosity. We can conclude that the 
surface viscosities of the SDS monolayer hardly alter the satellite droplet diameter and the amount of surfactant 
trapped in it. In this sense, solutocapillarity and Marangoni convection are the major factors associated with the 
 surfactant12. These results differ from those obtained for a much more viscous  surfactant7.

The dilatational viscous stress exhibits a noticeable maximum near the free surface neck. The full width at 
half maximum, �z , measured in terms of the minimum radius, Rmin , sharply increases as the droplet approaches 
its breakup (Fig. 5b), which shows the growing importance of the dilatational viscous stress with time. Figure 5c 
shows the velocity vS (see “Methods” section) along the free surface as the droplet approaches its breakup for the 
case {µS∗

1 = 0 , µS∗
2 = 3.5× 10−9 Pa s m} . As can be observed, the maximum of vS(z) exhibits a non-monotonic 

behavior with respect to the time to the pinching, and is located at the free surface neck. The difference between 
the maximum and minimum values of vS(z) increases with time, and so does the average dilatational stress in 
the pinching region. The overturning of the free surface is observed for Rmin � 0.3 µm. For this reason, vS(z) 
becomes a multivalued function on the right side of the free surface neck.

We now study how the scaling of the minimum radius depends on the surfactant viscosities. In general, we 
have Rmin = f (τ ,µS

1,2) . Assume that we can write this equation in the form Rmin = RsH(τ/τs) , where Rs and τs 

Figure 5.  (a) Maximum values of the surfactant gradient, max(|∇SŴ̂ |) (solid symbols), and the surface velocity 
gradient, max(|∇S

· v
S |) (open symbols). (b) Full width at half maximum, �z , of the dilatational viscous stress 

as a function of the minimum radius Rmin . (c) Surface velocity vS(z) (upper graph) and free surface radius 
R(z) (lower graph). The dashed vertical lines indicate the position of the free surface neck. In all the cases, 
the results were calculated for DIW+SDS 0.8cmc with {µS∗

1
= 0 , µS∗

2
= 3.5× 10−9 Pa s m} . The values of the 

dimensionless parameters are B = 3.396× 10−3 , Oh = 0.01510 , Ŵ̂cmc = 1.002 , PeS = 7.730× 104 , OhS∗1 = 0 , 
and OhS∗2 = 4.594× 10−4 (see “Methods” section).
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are the length and time scales associated with the surface viscosities, respectively. We suppose that these scales 
depend on the viscosities as

The cross-over function H(ξ) behaves as H(ξ) ∼ ξ 2/3 for ξ ≫ 1 (inviscid limit) and H(ξ) ∼ ξγ for ξ ≪ 1 (viscous 
regime), with a crossover at ξ ∼ 1 . Therefore, Rmin = AB−2/3(µS

1,2)
α−2β/3τ 2/3 in the inviscid limit. Assuming 

that Rmin ∼ τ 2/3 in that limit, we conclude that α = 2β/3.
The value of the exponent β can be guessed from the balance of forces. Both Marangoni and surface viscous 

stresses delay the free surface pinch-off (Fig. 3) acting against the driving capillary force. For sufficiently small 
values of Rmin , the effect of surface viscous stresses become comparable and even larger than that caused by 
Marangoni stress (Fig. 4). The value of Rmin below which this occurs decreases as the surface viscosities decrease. 
For instance, Marangoni and surface viscous stresses produce similar effects for Rmin � 2 µm and Rmin � 0.15 
µm in the cases {µS∗

1 = 0 , µS∗
2 = 10−7 Pa s m} and {µS∗

1 = 0 , µS∗
2 = 3.5× 10−9 Pa s m} , respectively. Therefore, 

we expect surface viscous stresses to be commensurate with the driving capillary pressure in the pinch-off region 
for those intervals of Rmin . In fact, the interfacial Ohnesorge numbers defined in terms of Rmin take values at 
least of order of unity in those intervals.

The balance between the capillary pressure and the surface viscous stresses in Eq. (8) yields 
σ0/Rs ∼ µS∗

1,2/(Rsτs) , where we have taken into account that the variation of surface velocity scales as (Rs/τs)/Rs 
due to the continuity equation. The above balance allows us to conclude that β = 1 , and therefore α = 2/3 . 
According to our analysis,

in the viscous regime.
In the 1D (slenderness)  approximation37, the axial forces per unit volume due to the shear and dilatational 

surface viscosities are (9µS
1Rwz)z/2R

2 and (µS
2Rwz)z/2R

238, respectively, where R is the free surface radius, w is 
the z-component of the velocity, and the subscript z indicates the derivative with respect to the coordinate z. As 
can be seen, the terms corresponding to the shear and dilatational viscosities differ only by a factor 9. Therefore, 
the asymptotic behavior of Rmin(τ ) for {µS∗

1 = a , µS∗
2 = 0} (a is an arbitrary constant) is expected to be the same 

as that for {µS∗
1 = 0 , µS∗

2 = 9a} . As will be seen below, this allows us to group the simulation results for µS∗
1 �= 0 

and µS∗
2 �= 0.

Using the equivalence 9µS
1 ↔ µS

2 , we find the values of the exponents β and γ leading to the collapse of all the 
numerical data for Rmin → 0 . Following the optimization method described by Montanero and Gañán-Calvo39, 
the best collapse is obtained for β = 1.1 and γ = 1.4 . Figure 6 shows the results scaled with the exponents β = 1 
and α = 2/3 calculated in the previous analysis. As explained above, we have grouped the results for nonzero 
shear and dilatational viscosities using the factor 9 suggested by the 1D model. The simulations show the tran-
sition from the inertio-capillary regime Rmin ∼ τ 2/3 to the asymptotic behavior given by power law γ = 3/2.

The axial distributions of the capillary pressure and the dilatational viscous stress are shown in Fig. 7 for the 
cases {µS∗

1 = 0 , µS∗
2 = 10−7 Pa s m} and {µS∗

1 = 0 , µS∗
2 = 3.5× 10−9 Pa s m} . As can be observed, the dilatational 

viscous stress becomes comparable with the driving capillary pressure for Rmin � 2 µm and Rmin � 0.15 µm in the 
cases µS∗

2 = 10−7 Pa s m and µS∗
2 = 3.5× 10−9 Pa s m, respectively. This explains the good agreement between 

the numerical simulations and the scaling proposed above for the minimum radius.
To summarize, we studied both numerically and experimentally the breakup of a pendant water droplet loaded 

with SDS. We measured a delay of the droplet breakup with respect to that predicted when only solutocapillarity 

(4)Rs = A(µS∗
1,2)

α , τs = B(µS∗
1,2)

β .

(5)
Rmin

(µS∗
1,2)

2/3
∼

(
τ

µS∗
1,2

)γ

Figure 6.  Dimensionless minimum radius Rmin/R0 as a function of the dimensionless time to the breakup, τ/t0 , 
for the breakup of a pendant drop of DIW+SDS 0.8cmc. The labels indicate the values of the nonzero shear/
dilatational viscosity in each case. The results were calculated for B = 3.396× 10−3 , Oh=0.0151, Ŵ̂cmc = 1.0016 , 
and PeS = 7.73× 104 (see “Methods” section).
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and Marangoni stress are accounted for. This delay is attributed to the role played by surface viscosities. When 
Marangoni and surface viscous stresses are accounted for, then surface convection does not sweep away the sur-
factant from the thread neck, at least in the time interval analyzed. The results show that surface viscous stresses 
have little influence on both the free surface position and the surfactant distribution along the free surface. 
Therefore, the size of the satellite droplet and the amount of surfactant accumulated in it are hardly affected by 
the surface viscosities. These results differ from those obtained for a much more viscous  surfactant7. As the free 
surface approaches its breakup, an inertio-capillary regime gives rise to that in which surface viscous stresses 
become commensurate with the driving capillary pressure. We have proposed a scaling law to account for the 
effect of surface viscosities on Rmin(τ ) in this last regime.

In the presence of surfactant, both the simulations and experiments show the formation of a quasi-cylindrical 
filament near the pinching point for τ � 0.1 µs (see Figs. 1, 3c). This filament is the precursor of the subsatellite 
droplet formed later on in the experiments. For τ � 0.1 µs, a bead seems to protrude from the filament in the 
experiments, which gives rise to the formation of the subsatellite droplet. The temporal resolution of the image 
acquisition system does not enable describing this process to determine the instant at which the filament bulges. 
In the simulations, we did not observe the filament protrusion preceding the formation of the subsatellite droplet. 
Therefore, discrepancies between the simulations and experiments associated with the growth of subsatellite 
droplets can arise for τ � 0.1 µs. The surface viscosities are estimated by fitting the numerical solution to the 
experiments for τ � 1 µs. Therefore, this fitting is not expected to be affected by those discrepancies. However, 
Figs. 4, 5, 6 and 7 show numerical results for times to the pinching down to 0.1–0.2 µs. There can be differences 
between the experiments and simulations for those times. These differences can be attributed not only to the 
spatial resolution of the numerical method, but also to possible physical effects not accounted for in the governing 
equations and brought to light by the extremely small spatial and temporal scales, such as surface-active impuri-
ties in the free  surface40, non-linear contributions to the dependency of the surface viscosities on the surfactant 
concentration, and interfacial rheology.

The pinching of an interface is a singular phenomenon that allows us to test theoretical models under extreme 
conditions. The vanishing spatiotemporal scales reached by the system as the interface approaches its breakup 
unveil physical effects hidden in phenomena occurring on much larger scales. This work is an example of this. 
Surface viscous stresses become relevant in the vicinity of the pinching region long before thermal fluctuations 
become  significant41,42, even for practically inviscid surfactants, such as SDS. In this sense, the surfactant-laden 
pendant droplet can be seen as a very sensitive surfactometer to determine the values of the surface viscosities, 
which constitutes a difficult  problem43. A series of experiments for different surfactant concentrations and nee-
dle radii may lead to accurate measurements of µS

1(Ŵ) and µS
2(Ŵ) characterizing the behavior of low-viscosity 

surfactants.

Figure 7.  Axial distribution of the capillary stress Pc = σ̂ κ (blue lines) and normal dilatational viscous stress 
D̂V = Oh

S
2(∇

S
· v

S)κ (red lines) for DIW+SDS 0.8cmc and three instants as indicated by the value of Rmin . The 
left-hand and right-hand graphs correspond to {µS∗

1
= 0 , µS∗

2
= 10−7 Pa s m} and {µS∗

1
= 0 , µS∗

2
= 3.5× 10−9 

Pa s m} , respectively. The results were calculated for B = 3.396× 10−3 , Oh = 0.01510 , Ŵ̂cmc = 1.002 , 
PeS = 7.730× 104 , OhS∗1 = 0 , and OhS∗2 = 1.313× 10−2 (left-hand graphs) and 4.594× 10−4 (right-hand 
graphs) (see “Methods” section).
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Methods
Theoretical model. The theoretical model is that considered by Ponce-Torres et al.7. Consider a liquid drop 
of density ρ and viscosity µ hanging on a vertical capillary (needle) of radius R0 due to the action of the (equi-
librium) surface tension σ0 (Fig. 8a). In this section, all the variables are made dimensionless with the needle 
radius R0 , the inertio-capillary time t0 = (ρR3

0/σ0)
1/2 , the inertio-capillary velocity v0 = R0/t0 , and the capillary 

pressure σ0/R0 . The velocity v(r, t) and reduced pressure p(r, t) fields are calculated from the continuity and 
Navier–Stokes equations

respectively, where T = Oh[∇v + (∇v)T ] is the viscous stress tensor, and Oh = µ(ρσ0R0)
−1/2 is the volumetric 

Ohnesorge number. These equations are integrated over the liquid domain of (dimensionless) volume V consid-
ering the non-slip boundary condition at the solid surface, the anchorage condition at the needle edge, and the 
kinematic compatibility condition at the free surface.

Neglecting the dynamic effects of the surrounding gas, the balance of normal stresses at the free surface 
 yields44

where B = ρgR2
0/σ0 is the Bond number, g the gravitational acceleration, n the unit outward normal vector, 

σ̂ ≡ σ/σ0 is the ratio of the local value σ of the surface tension to its equilibrium value σ0 , OhS1,2 = µS
1,2(ρσ0R

3
0)

−1/2 
are the superficial Ohnesorge numbers defined in terms of the surface shear and dilatational viscosities µS

1 and µS
2 , 

respectively, ∇S the tangential intrinsic gradient along the free surface, vS(z, t) the (two-dimensional) tangential 
velocity to the free surface, κ = κ1 + κ2 (twice) the mean curvature of the free surface, κ1 and κ2 the curvatures 
along the meridians and parallels in the inward normal direction, respectively, and (∇S

v
S)11 and (∇S

v
S)22 the 

diagonal elements of ∇S
v
S along the meridians and the parallels, respectively.

In addition, the balance of tangential stresses leads to

(6)∇ · v = 0,

(7)
∂v

∂t
+ v ·∇v = −∇p+∇ · T,

(8)−p+ B z + n · T · n = [σ̂ + (OhS2 −OhS1)∇
S
· v

S
]κ + 2OhS1[κ1(∇

S
v
S)11 + κ2(∇

S
v
S)22],

Figure 8.  (a) Image of a pendant drop in the experiments right before its breakup. (b) Experimental setup: 
feeding capillary (A), ultra-high speed video camera (B), optical lenses (C), triaxial translation stage (D), laser 
(E), optical trigger (F), optical lenses (G), white backlight (H), and anti-vibration isolation system (I). (c) Spatio-
temporal hypervolume analyzed in the experiment: image width w = 94 µm, height h = 78 µm, depth of field 
d = 0.48 µm and time �t = 36 µs elapsed during the experiment. (d) Experimental values of the surface tension 
σ versus the surface surfactant concentration Ŵ for SDS in DIW (symbols)48. The line corresponds to the fit (13) 
to those values.
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where t is the unit vector tangential to the free surface meridians, and

is the surface stress tensor.
The surface viscosities are expected to depend on the surfactant surface concentration. For the sake of simplic-

ity, we assume the linear relationships µS
1,2 = µS∗

1,2Ŵ̂/Ŵ̂cmc , where µS∗
1,2 are the surfactant viscosities at the cmc. 

In addition, Ŵ̂ ≡ Ŵ/Ŵ0 and Ŵ̂cmc ≡ Ŵcmc/Ŵ0 , where Ŵ and Ŵcmc are the surfactant surface concentration and its 
value at the cmc, respectively, both in terms of the equilibrium value Ŵ0 . Therefore,

where OhS∗1,2 = µS∗
1,2(ρσ0R

3
0)

−1/2 are the superficial Ohnesorge numbers at the cmc.
To calculate the surfactant surface concentration, we take into account that the droplet breakup time is much 

smaller than the characteristic adsorption–desorption times, and, therefore, surfactant solubility can be neglected 
over the breakup process. In this case, one must consider the equation governing the surfactant transport on 
the free surface:

where PeS=R2
0/(t0D

S) and DS are the surface Peclet number and diffusion coefficient, respectively. The equation 
of state σ̂ (Ŵ̂) is obtained from experimental data as explained below. The free surface becomes saturated for 
Ŵ̂ ≃ Ŵ̂cmc . To reproduce this effect in the simulations, if Ŵ̂ exceeds Ŵ̂cmc at some point and time, we set Ŵ̂ = Ŵ̂cmc 
at that point and time.

Numerical simulation. The theoretical model is numerically solved by mapping the time-dependent 
liquid region onto a fixed numerical domain through a coordinate transformation. The transformed spatial 
domains were discretized using 11 Chebyshev spectral collocation points in the transformed radial direction 
and 5001 equally spaced collocation points in the transformed axial direction. The axial direction was dis-
cretized using fourth-order finite differences. Second-order backward finite differences were used to discre-
tize the time  domain45. The time step was adapted in the course of the simulation according to the formula 
�t = 0.025Rmin/v0 . To deal with the free surface overturning taking place right before the droplet breakup, a 
quasi-elliptic  transformation46 was applied to generate the mesh. To trigger the pendant drop breakup process, 
a very small force was applied to a stable shape with a volume just below the critical one. This perturbation was 
expected to affect neither the pendant drop dynamics close to the free-surface pinch-off nor the formation of the 
satellite droplet. The time-dependent mapping of the physical domain does not allow the algorithm to surpass 
the free surface pinch-off, and therefore the evolution of the satellite droplet cannot be analyzed. The breakup 
time in the simulation was calculated from the linear extrapolation of the last Nb = 10 values of Rmin(t).

We verified that the results are practically the same for the time interval analyzed in this study when the 
total number of grid points is doubled (see Supplementary Information). We checked that the value of Nb does 
not significantly affect the curve Rmin(τ ) over the time interval considered in our analysis (see Supplementary 
Information).

Experimental method. The experimental method is similar to that used by Rubio et  al.47 to study the 
extensional flow of very weakly viscoelastic polymer solutions. In the experimental setup (Fig. 8b), a cylindrical 
feeding capillary (A) R0 = 115 µ m in outer radius was placed vertically. To analyze the role of the capillary size, 
we also conducted experiments with R0 = 205 µ m. A pendant droplet was formed by injecting the liquid at a 
constant flow rate with a syringe pump (Harvard Apparatus PHD 4400) connected to a stepping motor. We used 
a high-precision orientation system and a translation stage to ensure the correct position and alignment of the 
feeding capillary. Digital images of the drop were taken using an ultra-high-speed video camera (kirana-5M) 
(B) equipped with optical lenses (an Optem HR 50X magnification zoom-objective and a NAVITAR 12X set of 
lenses) (C) (Fig. 8c). As explained below, the images were acquired either at 5× 106 fps with a magnification 
101.7 nm/pixel or at 5× 105 fps with a magnification 156 nm/pixel. The camera could be displaced both hori-
zontally and vertically using a triaxial translation stage (D) with one of its horizontal axes (axis x) motorized 
(THORLABS Z825B) and controlled by the computer, which allowed as to set the droplet-to-camera distance 
with an error smaller than 29 nm. The camera was illuminated with a laser (SI-LUX 640, specialised imaging) 
(E) synchronized with the camera, which reduced the effective exposure time down to 100 ns. The camera was 
triggered by an optical trigger (SI-OT3, specialised imaging) (F) equipped with optical lenses (G) and illu-
minated with cold white backlight (H). All these elements were mounted on an optical table with a pneumatic 
anti-vibration isolation system (I) to damp the vibrations coming from the building.

In the experiment, a pendant droplet hanging on the feeding capillary was inflated by injecting the liquid 
at 1 ml/h. The triple contact lines anchored to the outer edge of the capillary. The drop reached its maximum 
volume stability limit after around 20 s. We analyzed images of the quasi-static process with the Theoretical 
Image Fitting Analysis (TIFA)49 method to verify that the surface tension right before the droplet breakup was 
the same (within the experimental uncertainty) as that measured at equilibrium. In this way, one can ensure that 

(9)t · T · n = t · τ
S ,

(10)τ
S
= ∇

Sσ̂ +∇
S
· {OhS1[∇

S
v
S
+ (∇S

v
S)⊤]} +∇

S
[(OhS2 −OhS1)∇

S
· v

S
],

(11)OhS1,2 = OhS∗1,2
Ŵ̂

Ŵ̂cmc

,

(12)∂Ŵ̂

∂t
+∇

S
· (Ŵ̂vS)+ Ŵ̂n · (∇S

· n)v =

1

PeS
∇

S2Ŵ̂,
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the surfactant surface concentration corresponded to the prescribed volumetric concentration at equilibrium. 
This conclusion can be anticipated from the fact that the characteristic surfactant adsorption process is much 
smaller than the droplet inflation time.

When the maximum volume stability limit was reached, the droplet broke up spontaneously. We recorded 
180 images at 5× 106 fps of the final stage of the breakup process within a spatial window 94× 78 µm. This 
experiment was repeated several times to assess the degree of reproducibility of the experimental results. The 
flow rate at which the pendant droplet is inflated was reduced down to 0.1 ml/h to verify that this parameter 
did not affect the final stage of the breakup process. Besides, 180 images of a spatial window 144× 120 µm were 
taken at 5× 105 fps to describe the process on a larger scale.

We selected SDS in deionized water (DIW) because it is a solution widely used in experiments and very well 
characterized. The dependence of the surface tension with respect to the surface surfactant concentration Ŵ has 
been determined from direct measurements (Fig. 8d)48. We use the fit

to that experimental data in our simulations. In this equation, σ and Ŵ are measured in mN/m and µmol/m2 , 
respectively. It should be noted that there is no theoretical justification for the above equation of state. It simply 
represents an accurate approximation for the numerical simulations. Other equations may be equally valid for 
our purposes.

Table 1 shows some physical properties of SDS in DIW. The shear µS∗
1  and dilatational µS∗

2  surface viscosities 
of aqueous solutions of SDS at the cmc have been widely measured with different methods over the last decades. 
Zell et al.6 reported the surface shear viscosity to be below 10−8 Pa s m (the sensitivity limit of their technique). 
Other authors have measured values up to five orders of magnitude higher than that upper  bound36,50.

Table 2 shows the values of the superficial Ohnesorge numbers, Boussinesq numbers Bq1,2 = µS
1,2/(µℓc) , 

and surface Peclet number calculated from the values shown in Table 1. The superficial Ohnesorge numbers 
are much smaller than the volumetric one, Oh ≃ 0.02 , which indicates that the superficial viscosities play no 
significant role on a scale given by the feeding capillary radius R0 . The Boussinesq numbers are defined in terms 
of the characteristic length ℓc ≡ 1 µm of the pinching region (see “Results and discussion” section). Due to the 
smallness of this length, superficial viscous stresses may become comparable with the bulk ones, and, therefore, 
may produce a measurable effect on that scale. The value of the Peclet number indicates that surfactant surface 
diffusion is negligible at the beginning of the droplet breakup. The Peclet number defined in terms of ℓc and the 
corresponding capillary time (ρℓ3c/σ0)1/2 takes values of the order of 103–104 . Therefore, one can expect surface 
diffusion to play a secondary role on that scale too.

Received: 28 April 2020; Accepted: 2 September 2020

(13)σ = 103
−17.94Ŵ + 60.76

Ŵ2
− 240.9Ŵ + 841.8

Table 1.  Physical properties of SDS in DIW: superficial viscosities µS∗
1,2 , surfactant surface diffusivity DS , 

adsorption ta and desorption td time, aggregation number Nagg , and micelle radius Rmic.

µS∗
1  (Pa s m)6 < 10−8

µS∗
2  (Pa s m)36 10−7–10−9

D
S ( m2/s)36 8× 10−10

ta (ms)24 100

td (ms)36 169.5

Ŵcmc (µmol m−2) 3.19

Nagg
51 61

Rmic (nm)51 1.72

Table 2.  Dimensionless numbers calculated from the physical properties of SDS in DIW (Table 1): interfacial 
Ohnesorge numbers OhS1,2 , Boussinesq numbers Bq1,2 , and surface Peclet number PeS.

OhS1 < 9.35× 10−4

OhS2 9.35× 10−3–9.35× 10−5

Bq1 < 1.41

Bq2 14.1–0.14

PeS 7.73× 104
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