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The spreading of evaporating drops without a pinned contact line is studied
experimentally and theoretically, measuring the radius R(t) of completely wetting
alkane drops of different volatility on glass. Initially the drop spreads (R increases),
then owing to evaporation reverses direction and recedes with an almost constant
non-zero contact angle θ ∝ β1/3, where β measures the rate of evaporation; eventually
the drop vanishes at a finite-time singularity. Our theory, based on a first-principles
hydrodynamic description, well reproduces the dynamics of R and the value of θ
during retraction.
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1. Introduction

The evaporation of liquid drops, in the form of dew, rain or mist generated by
breaking waves, must be accounted for accurately in the heat and mass balance of
climate models. Evaporation is also important for industrial processes such as spray
drying or ink jet printing. As a result, the evaporation of drop has attracted a great
deal of attention over the past few years (for recent reviews see Cazabat & Guena
2010; Erbil 2012; Larson 2014).

The two situations most studied are (i) the ‘coffee-stain’ problem in which a
drop is deposited on a rough substrate to which its contact line remains anchored
during evaporation (Deegan et al. 1997, 2000) and (ii) drops of completely wetting
liquids deposited on perfectly smooth surfaces (Cachile, Bénichou & Cazabat 2002a;
Cachile et al. 2002b; Poulard et al. 2005; Shahidzadeh-Bonn et al. 2006). The latter
problem, studied here, has attracted a great deal of attention since it is unclear
why a completely wetting liquid exhibits a non-zero contact angle during evaporation
(Elbaum, Lipson & Wettlaufer 1995; Bonn & Meunier 1997). This problem is difficult
because it involves diverging viscous stresses and evaporation rates, which need to be
regularised to predict the motion (Bonn et al. 2009; Eggers & Pismen 2010). In doing
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D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ri
nc

et
on

 U
ni

v,
 o

n 
13

 A
pr

 2
01

8 
at

 1
2:

22
:0

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
2

http://orcid.org/0000-0003-2453-0578
mailto:e.a.m.jambonpuillet@uva.nl
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2018.142&domain=pdf
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.142


818 E. Jambon-Puillet and others

(a)

(b)

(c) (d )

FIGURE 1. (Colour online) Top (a,b) and side (c,d) view of evaporating and spreading
drops on clean glass surfaces. (a) Pentane drop, scale bar 5 mm, dt = 6 s. (b) Heptane
drop, scale bar 2 mm, dt = 10 s. (c) Peptane drop, R= 1.4 mm. (d) Heptane drop, R=
2.6 mm, the images include the drop’s reflection on the solid surface, the red line is a
spherical cap fit.

so, the shape of the drop is a priori unknown and has to be calculated; however,
this requires the prediction of the speed of the moving contact line, which is due to
a complicated interplay between pinning, thermal activation and viscous dissipation
(Snoeijer & Andreotti 2013; Perrin et al. 2016). In addition, numerous secondary
effects can arise from evaporation such as buoyant convection (Shahidzadeh-Bonn
et al. 2006), Kelvin effects: curvature dependence of the equilibrium vapour pressure
(Janeček et al. 2013; Rednikov & Colinet 2013), or non-uniform temperatures. The
latter may lead to Marangoni flows: surface flows driven by surface tension gradients
(Hu & Larson 2006).

Here we study the relative effect of evaporation and spreading systematically by
placing completely wetting drops of alkanes (pentane (C5H12) to nonane (C9H20)),
whose volatility varies by two orders of magnitude, on a clean glass surface (see
figure 1a,b). The perfectly circular drop shape indicates that contact line pinning
is not important. Our drops are sufficiently small, so that convection in the gas
phase is negligible, and the evaporation rate is limited by vapour diffusion into the
surrounding gas phase. Moreover, our drops are very thin, which limits temperature
gradients, especially for alkanes that do not evaporate too fast.

Previous studies have found that the contact angle of such a completely wetting but
evaporating drop can be non-zero (Bourges-Monnier & Shanahan 1995; Cachile et al.
2002a,b; Poulard et al. 2005; Shahidzadeh-Bonn et al. 2006; Lee et al. 2008). The
interpretation of such a non-zero contact angle for a completely wetting liquid, which
we denote by θev, is difficult, since it represents a fundamentally non-equilibrium
situation. The presence of stress and evaporative singularities at the contact line,
which need to be regularised on a microscopic scale, make the problem inherently
multi-scale. A crude regularisation as proposed by Poulard et al. (2005) allows us
to understand the formation of such an angle but its exact expression has remained
a subject of debate (Eggers & Pismen 2010; Morris 2014). The recent paper by
Saxton et al. (2016) only considers partially wetting liquids (while ignoring pinning
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FIGURE 2. (Colour online) Mass of the drop versus radius cubed; straight lines indicate a
constant contact angle. Pentane (C5): green diamonds; hexane (C6): black squares; heptane
(C7): blue circles; octane (C8): red triangles.

of the contact line). The time dependence of the drop radius is also intriguing. Since
the fluid is wetting it starts to spread, but at some point, the evaporation starts to
dominate, the drop retracts and R eventually vanishes at a time t0.

In this article, using the framework proposed by Eggers & Pismen (2010), later
developed by Morris (2014) we propose a simple parameter free model to describe
the spreading dynamics and contact angle of evaporating drops of completely wetting
liquids and make a direct comparison with experiments.

2. Experimental set-up
Experiments were performed at room temperature T ≈ 21 ◦C by gently depositing

a drop on a float glass surface using a microsyringe, and recording either its weight
or shape using a precision balance and a drop shape analyser (Kruss Easydrop, see
figure 1c,d). The alkanes used were ultra pure, from Sigma-Aldrich, the substrate
were glass microscope slides (Menzel Gläser, 1 mm thick), cleaned with either
sulfochromic acid or piranha solution. The experiments were repeated between 4
and 9 times for each alkane and found to be reproducible to within the error bars
presented here. The equilibrium vapour pressure Psat of the different alkanes varies
over two orders of magnitude, while keeping almost the same density ρ, surface
tension γ and viscosity η. The volume of the drops was approximately 1 µl. The
largest radius these drops attained was about 2.5 mm, somewhat larger than the
capillary length (1.6–1.8 mm). Although gravity was not completely negligible for
these drops, the spherical cap profile remained a good approximation and we used
it for simplicity (see appendix A and figure 1c,d). The drop volume V and apparent
contact angle θ were then calculated from its measured height h and radius R.
Because some drops are extremely thin, although R is measured precisely, h is only
a few pixels large which results in substantial experimental uncertainties on V and θ .

3. Result and discussion
Figure 2 shows the mass m of various alkane drops as a function of their radius

cubed as they evaporate, giving a straight line. For a thin drop, θ = 4m/(πρR3), so
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FIGURE 3. (Colour online) Spreading and evaporation of a 0.32 µl heptane drop with a
best fit of (3.2) as the dot-dashed line (prefactor = 0.36, t0= 22.6), and our model as the
red solid curve. Inset: same data on a linear scale.

that the slope in figure 2 directly corresponds to the contact angle, which is seen
to depend strongly on the chain length of the alkane, despite their similar interfacial
properties. The macroscopic contact angle is thus controlled by evaporation rather than
the wetting properties; due to their low surface tension in equilibrium the contact
angle of all alkanes on the substrate is zero.

Turning to the drop dynamics, the simplest assumption is that to leading order
the drop dynamics is unaffected by evaporation, which enters through the total mass
balance only. Thus drop motion is described by Tanner’s law (Bonn et al. 2009):
R∼V3/10(γ t/η)1/10, but the total mass flux is proportional to the drop radius (Deegan
et al. 2000):

V̇ =−4βR, (3.1)

with β the evaporation parameter. Solving the resulting differential equation for V , and
substituting back into Tanner’s law to find R, we find

R∝ [t11/10
0 − t11/10

]
3/7t1/10. (3.2)

Figure 3 shows (3.2) as the dot-dashed line, with both a prefactor and t0
as adjustable parameters. Clearly, this simple theory is unable to describe the
drop dynamics satisfactorily, demonstrating that evaporation must be included
into the description of the contact line dynamics itself, rather than including it
phenomenologically.

To do better, one needs to solve the viscous flow problem in the drop coupled to
the evaporation which is limited by the diffusion of the vapour. For thin isothermal
drops, the flow is simplified through the lubrication approximation and the flow
profile is parabolic. The evolution of the drop shape is given by mass conservation
(in axisymmetric coordinates),

∂h
∂t
+

1
r
∂

∂r

(
h3r
3η
∂p
∂r

)
=−jev, jev =−

D
ρ

∂ρv

∂z
, (3.3)
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Spreading dynamics and contact angle of completely wetting volatile drops 821

p is the pressure driving the flow and jev the local volume flux induced by the
diffusion limited evaporation (ρv is the vapour density and D is the diffusion
coefficient of the vapour in air).

At the macroscopic scale, the pressure is simply the Laplace pressure and the
vapour concentration is given by Laplace’s equation ∇2ρv= 0 with boundary condition
ρv = ρsat, the saturation vapour density at the drop surface and ρv = ρ∞ far from
the drop (ρ∞ = 0 for alkanes). Approximating the thin drop as a disc allows us to
compute the vapour field ρv, the volume flux jev = 2β/(π

√
R2 − r2) (Jackson 1975)

and the evaporation parameter β=D(ρsat−ρ∞)/ρ (Cazabat & Guena 2010). However,
this macroscopic description suffers from the usual viscous stress divergence at the
contact line, also present without evaporation (Bonn et al. 2009; Eggers & Fontelos
2015). In addition, jev is also singular at r = R (the divergence persists for spherical
caps with low contact angle (Deegan et al. 2000)). To deal with the problem one has
to introduce microscopic effects to regularise the singularities.

A first attempt was made by Poulard et al. (2005) using scaling arguments. They
introduce the distance from the contact line where van der Waals forces balance
capillary forces and assume that the evaporation rate saturates below this scale. The
resulting model being based on scaling arguments, Poulard et al. (2005) did not
perform a direct comparison with experiments. Nonetheless, their model predicts
power laws for R(t) during the retraction stage that agree with the ones observed
experimentally.

More recently, Eggers & Pismen (2010) introduced van der Waals forces self-
consistently in the coupled problem through a disjoining pressure term Π =

A/(6πh3) = γ a2/h3 (A is the Hamaker constant, and a is a microscopic length). A
consequence is that far from the drop, (attractive) van der Waals interactions compete
with evaporation to condensate a microscopic prewetting film whose thickness hf is
given by a balance of evaporative to disjoining pressure h3

f = γ a2/(ρRsT ln(ρ∞/ρsat))

with Rs the specific gas constant. In addition, Eggers & Pismen (2010) included the
Kelvin effect which takes the local curvature of the drop into account. They showed
that taking these effects into account regularises the evaporative singularity as it
inhibits evaporation. Equation (3.3) then becomes:

∂h
∂t
+
γ

ηr
∂

∂r

[
h3r
3
∂

∂r

(
∂2h
∂r2
+

1
r
∂h
∂r
+

a2

h3

)]
=−jev,

jev =
β

r
∂

∂r

[∫
∞

0
K(r, r′)

∂

∂r′

(
hf

h

)3

dr′
]
.

 (3.4)

The kernel is given by

K(r, r′)=
2
π

{
r[K(r′/r)− E(r′/r)], r′ < r

r′[K(r/r′)− E(r/r′)], r′ > r,
(3.5)

where K and E are the complete elliptic integrals.
In the quasi-static limit, which means that when considering evaporation, the time

derivative in (3.4) is neglected, Morris (2014) shows that the contact region can
be described analytically in the case of vanishing L . This allows for the exact
computation of the cutoff length introduced by hand by Poulard et al. (2005) and
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the determination of the evaporative angle (Morris 2014, see appendix B for the
derivation of the closed form solution presented below). The result is

θev = k
(

ηβ

γ a1/2R1/2

)1/3

, (3.6)

where k can be assumed constant and is given by

k= 1.47758
21/6

π1/3
W
(

4
L 3/2

)1/6

,

L =
22/3ρ

4/3
sat (ηβ)

16/9

π4/9a26/9R2/9γ 4/9(RsTρ (ρsat − ρ∞))4/3
,

 (3.7)

were W denotes the Lambert W function (see appendix B and table 2 for values of
L and k).

Motion is such that the apparent contact angle θ is driven toward θev according to
the Cox–Voinov law (Eggers & Fontelos 2015):

Ṙ=
γ

9Bη

[(
4V
πR3

)3

− θ 3
ev

]
, (3.8)

where B is the usual logarithmic molecular cutoff also present without evaporation
(see appendix B).

Equations (3.1), (3.6), (3.8) derived here are the same as the scaling analysis
proposed in Poulard et al. (2005); however, because of the nature of their analysis,
they were unable to calculate the prefactors and the discussion remained qualitative.
Here we have done the full analysis; the evaporative cutoff is calculated by including
the effect of disjoining pressure self-consistently (Morris 2014).

We have simulated the complete equations of motion (3.4), (3.5) with parameters
that lie in the quasi-static regime and compared it to the model (3.1), (3.6), (3.8) in
figure 4 (lengths are rescaled with the initial drop radius R0 and time with R0η/γ ).
The model shows a very good agreement with the simulation with a fitted value kfit=

1.9 close to the one predicted by (3.7) k= 1.69 (see appendix B).
Now, comparing the model to experimental data, we first measure the evaporation

parameter β independently by fitting (3.1) to the data. V̇ being noisy for very
thin droplets, the uncertainty on β is substantial and we adjust the value used in
the model within this uncertainty. We then estimate a ≈ 4

◦

A using Lifshitz theory
(Israelachvili 2011), B in (3.8) is calculated from (B 6) and varies between 5.38
and 6.03 (table 2). The range being narrow we use the mean value 5.6 for all our
experimental comparisons. Similarly we calculate the parameter k in (3.6) from (3.7).
It varies between 1.42 and 1.69 (table 2) and we use an intermediate value of 1.62
for all our experiments.

Figures 3 and 5 compare R(t) from the model with the experimental data for
various alkanes. We find excellent agreement for slowly evaporating alkanes: heptane
to nonane, without any free parameters, cf. figure 5(a). In addition, within the
experimental accuracy, the macroscopic contact angle θ(t) is also well described by
these equations, and approaches a constant steady-state value at late times (inset
figure 5a). For pentane and hexane, for which evaporation is very rapid, the drop
hardly spreads and the contact line recedes quickly (figure 5b). During the short
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0 20 40 60 80
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1.0
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t

FIGURE 4. Dimensionless radius as a function of the dimensionless time for an
evaporating drop, with V0= 1, β = 5× 10−3, a= 10−3 and hf = 10−4. The solid line is the
simulation and the dashed line is theory with k fitted to kfit = 1.9, a value close to the
one predicted by the model k= 1.69 (B≈ 2.1 with these parameters).
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FIGURE 5. (Colour online) Dimensionless radius of spreading and evaporating alkane
drops. Inset: measured contact angle for the same data set, the uncertainties are not
reported here for clarity (see figure 6). (a) Blue circles: heptane; red triangles: octane;
black diamonds: nonane. (b) Pink open squares: pentane; green open triangles: hexane.

spreading time, θ decreases significantly (inset of figure 5b); this means that ∂h/∂t is
not small, and the quasi-static assumption used in the model is not valid. Moreover,
the cooling due to evaporation increases with the evaporation rate β and neglecting
the temperature gradient and resulting Marangoni flows becomes incorrect (see
appendix A for a critical discussion of the model’s assumptions). As a result, the
model is only able to reproduce this dynamics qualitatively, as it overestimates the
spreading motion at short times.

As for the contact angle, the breakdown of the quasi-static and isothermal
assumptions means that the measured angle does not necessarily converge to θev
given by (3.6). Nevertheless, the experimental contact angle θ reaches a steady-state
value close to θev. We plot this value as a function of β for the different alkanes in
figure 6. Within the experimental uncertainties (that become significant when the drop
is very thin) one retrieves the 1/3rd power law predicted by (3.6) with the correct
prefactor.
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10–710–9 10–810–10

101

100

1

3

FIGURE 6. (Colour online) Contact angle at late times θ as a function of the evaporation
parameter β. The dashed line is equation (3.6), neglecting the small variations in the
parameters for alkanes: θev(rad)= 46.88β1/3.

4. Conclusion
In summary, we studied the dynamics of perfectly wetting, volatile fluids on a solid

substrate for a wide range of evaporation rates. Taking into account the spreading
dynamics and using a consistent description of evaporation near the contact line,
we were able to obtain a quantitative agreement between our parameter free model
and experiments during both spreading and retraction phases for slowly evaporating
alkanes. For very volatile liquids, the agreement is only qualitative as temperature
gradients and dynamic effects, neglected in the model, become significant.
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Appendix A.
We make a number of approximations in our model to keep it tractable: we assume

gravity and inertia to be negligible, the system to be isothermal (and thus without
any Marangoni flows), the drop movement to be quasi-static and the transport of
vapour to be purely diffusive (neglecting convection and kinetic effects). We will now
discuss the validity of these assumptions using the dimensionless groups as proposed
in Larson (2014).

A.1. Diffusive vapour transport
Because the experiments are carried out in a box to limit air flows around the
drop, the only source of convection in our experiment is the natural convection
due to the buoyancy of the alkane vapour in the air. The Grashof number Gr,
which balances buoyancy with viscous forces, controls the strength of this natural
convection. Assuming the gas to be ideal and the vapour concentration to be the
saturation concentration, we have

Gr=
(ρsat − ρ∞)gR3

ρairν
2
air

, (A 1)

where ρair is the air density and νair the air kinematic viscosity.
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Alkane R0 h0 V0 β D
ρsat

ρ
Gr 1T MaU

∂h
∂t

∣∣∣∣
t=0

(mm) (mm) (µl) (10−9 m2 s−1) (10−9 m2 s−1) (K) (mm s−1)

Pentane 1.27 0.24 0.61 29.9± 9.6 27.1 146 12.1 3335 −0.68
Hexane 1.68 0.21 0.94 9.07± 3.2 8.50 120 2.6 1139 −0.34
Heptane 2.37 0.13 1.13 3.75± 1.3 2.67 119 0.5 109 −0.06
Octane 2.12 0.12 0.85 1.34± 0.5 0.80 30 0.2 87 −0.10
Nonane 2.12 0.09 0.65 0.34± 0.2 0.17 8 0.04 24 −0.03

TABLE 1. Parameters used to assess the validity of our assumptions; the experimental
values corresponds to the experiment presented in figure 5, D values at T = 22◦ come
from Berezhnoi & Semenov (1997), Beverley, Clint & Fletcher (1999), Psat values from
Carruth & Kobayashi (1973) and Beverley et al. (1999).

Kelly-Zion et al. (2011) studied the effect of natural convection in evaporating
sessile drops with pinned contact line. They found the empirical relationship

V̇ =−4βR(1+ 0.310Gr0.216), (A 2)

which differs significantly from the purely diffusive case if 0.310Gr0.216> 1. We show
in table 1 the Grashof number corresponding to our experiments (using R0 for the drop
radius). According to Kelly-Zion et al. (2011), the maximum convective contribution
we can expect (as R decreases after the spreading phase) ranges between 0.5 and 0.9
times the diffusive contribution, which is neither dominant nor negligible. Nonetheless
our V̇ = f (R) data are fairly linear, but with a coefficient β somewhat higher than
Dρsat/ρ, the value expected in the purely diffusive case (see table 1, ρ∞ = 0 for
alkanes). Although this is difficult to quantify given our experimental uncertainties,
there might be a little bit of convection in some of our experiments. Though this is
not the reason why the model fails to describe the dynamics for short alkanes. For
hexane and pentane the discrepancies are small and replacing (3.1) by (A 2) does not
improve the model significantly. Thus we keep the pure diffusion approximation in
our model, but we use the measured β directly instead of using the predicted value
Dρsat/ρ.

If the diffusion of the vapour in the ambient gas is very fast, for instance under
reduced pressure or if the ambient gas is pure vapour, then the evaporation can
become affected by kinetic effects: the transfer of molecules from the liquid to
the vapour at the interface (given by the Hertz–Knudsen relation). This effect
reduces the concentration of vapour at the liquid–vapour interface and thus the
overall evaporation rate. However, scaling arguments (Cazabat & Guena 2010; Larson
2014) and numerical simulations (Semenov et al. 2012) have shown that this effect
is negligible for common liquids in ambient air, except for microscopic droplets.
Moreover, pure diffusion predicts our measured evaporation rate satisfactorily so we
neglect interfacial kinetic effects.

A.2. Temperature effects
The possible temperature gradients in the drop come from the heat loss due to latent
heat of evaporation whose average rate is ρV̇1Hvap/πR2, with 1Hvap the heat of
vaporisation per unit mass. This flux must be balanced by steady-state heat conduction
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from the substrate of the order of kl1T/h with kl the liquid thermal conductivity.
Equating the two allows us to evaluate the temperature difference between the top
and bottom of the drop:

1T ∼
4ρβ1Hvaph

πklR
. (A 3)

For alkanes 1Hvap≈ 3.5× 105 J kg−1 and kl≈ 0.13 W m−1 K−1, 1T is thus directly
proportional to β times the drop aspect ratio h/R. As the drop aspect ratio is larger for
drops which evaporates faster, we immediately see they have the largest temperature
gradient.

This simple estimate assumes good substrate conduction relative to the droplet.
Although kl is ten times smaller than the glass thermal conductivity, because
our substrates are quite thick compared to our drops (1 mm) their effect on the
temperature field might not be completely negligible. Moreover, our drops have low
contact angles such that the evaporation rate (and thus local heat loss) is much
stronger at their edge. Equation (A 3) is thus only a rough estimate as both of these
effect generates much more complex temperature fields and can even reverse the
temperature gradient (Dunn et al. 2009; Larson 2014).

These temperature gradients induce a Marangoni flow (and to a lesser extent
buoyancy-driven flows) whose speed is of the order of −(dγ /dT)1Th/(Rη). The
ratio of this speed to the mean speed from evaporation R/t0 defines an alternative
Marangoni number

MaU =−
dγ
dT
1Tht0

ηR2
. (A 4)

We evaluate both 1T and MaU for our drops in table 1 using the initial values h0, R0
for the drop shape and our measured value of β (for alkanes dγ /dT ≈−10−4 N m−1).
The temperature difference is very large for pentane drops, still significant for hexane
drops and much lower for the other alkanes. The Marangoni numbers is thus much
higher for pentane and hexane. As pointed by Larson (2014), even with good substrate
conduction and hemispherical drops this analysis is qualitative, for instance the full
numerical analysis in Savino & Fico (2004) gives values 30 times lower. So even
though MaU > 1 for heptane, octane and nonane drops, the good agreement with our
theory suggests negligible Marangoni flows. Indeed, with the additional effects due
to the substrate and low contact angle, a factor 100 between our crude assumption
and reality is plausible. For pentane and hexane drops however, the Marangoni flows
are probably dominant. Computing the usual Marangoni number Ma=MaU(R2/αlt0),
with αl ∼ 10−7 m2 s−1 the thermal diffusivity, yields similar results; Ma ∼ 103–104

for pentane and hexane, well above the planar Bénard–Marangoni instability threshold
(Mac ∼ 102) which suggests convection rolls in the drop.

Thus our neglect of the Marangoni stress in the lubrication analysis partly explains
the discrepancy between model and experiment for the spreading dynamics and
evaporative angle.

A.3. Quasi-steadiness
To evaluate the quasi-static assumption we calculate characteristic time scales of our
drops and compare them to the evaporation duration t0. The characteristic time for
heat equilibration inside the drop is theat ∼ h2

0/αl. Because the initial drop height h0
decreases with the chain length (see table 1), so does theat, which varies between
0.08 . theat (s) . 0.5. The drying time t0, however increases with the chain length
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5 . t0 (s) . 200. Since t0 � theat, we can neglect the time dependence of the
temperature in the drop. Similarly the characteristic time for the velocity inside
the drop to reach a steady state is tmom ∼ h2

0ρ/η. It also decreases with the chain
length of the alkane and varies between 0.01 . tmom (s) . 0.15. Again, since the
drying time t0 is much larger, the quasi-static approach is in general valid. However,
the most unfavourable cases are pentane and hexane. For these fast evaporating
alkane the spreading motion is very fast, and the reversal of the contact line occurs
at tRmax ∼ 0.5 s. During the spreading motion the system has not yet had time to reach
a steady state. If we evaluate ∂h/∂t experimentally from the first two recorded frames
(when the drop is completely detached from the pipette) we find a significantly higher
value for pentane and hexane (see table 1) which consequently may not be negligible.

A.4. Inertia and gravity
Because ours drops are very thin, we use the lubrication approximation which neglects
inertia. The lubrication approximation is valid when the Reynolds number is much
smaller than the (large) aspect ratio, i.e. when ρṘh2/(ηR)� 1. For all our drops this
is verified as 10−7 <ρṘh2/(ηR) < 10−1, the worst case being the initial fast spreading
of pentane.

The volume of our drops is very small (∼1 µl); however because they are very
thin they can have radii of the order of the capillary length `c =

√
γ /(ρg) so that

it is not very clear whether gravity is completely negligible. To test for its influence,
we compared the spherical cap profile to the numerical solution of the Young–Laplace
equation. For our pentane and hexane drops, there is no appreciable difference, while
for heptane, octane and nonane there is a subtle flattening which is however too small
to be detected experimentally, explaining the good spherical cap fit seen in figure 1(d).
To check if this small difference impairs our measurement, we have compared the
contact angles and volumes obtained with the spherical cap assumption to the one
obtained with the small slope approximation of the Young–Laplace equation (Allen
2003)

θss =
h
R

BoI1(Bo)
I0(Bo)− 1

=
V

πR3

Bo2I1(Bo)
BoI0(Bo)− 2I1(Bo)

, (A 5)

where Bo= R/`c and In represent the modified Bessel function of the first kind. For
pentane and hexane the two methods provided the same results, while for heptane,
octane and nonane θ is approximately 10 % higher with the small slope approximation.
These differences are quite small, much smaller than the experimental uncertainties,
thus confirming that the spherical cap assumption is a good approximation for our
drops.

For even larger drops our model could be adapted to include gravity. The
evaporative flux (eventually modified to include buoyant convection) and the
Cox–Voinov law are still valid in the gravity dominated regime, although with
an adjusted prefactor B (Alizadeh Pahlavan et al. 2015). One could thus use (3.1),
(3.8) with the apparent angle term 4V/(πR3) replaced by (A 5). The corner analysis
done by Morris (2014) to derive the evaporative angle would also still be mostly
valid, one just needs to change the asymptotic matching condition with the main
drop to get the evaporative angle for pancakes.

Appendix B.
With a local analysis of the coupled equations (3.4) in the vicinity of the contact

line and in the quasi-static limit, Morris (2014) predicted the macroscopic contact
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angle of the drop θev in the asymptotic limit L → 0 (Morris (2014, equation (6.3))):

θev = 1.47758

(
2
√

2
π

ηβ

γ a1/2R1/2

)1/3

`
1/4
1 . (B 1)

Here L is the Laplace parameter, which is a dimensionless surface tension controlling
the coupled problem (defined in (3.7)) and {`1, h1} are the dimensionless location
and height at which the capillary and disjoining pressures balance in the wetting film,
respectively. These lengths are given by (see Morris (2014, equation (5.10))):

L `1h4
1 = 1 and `1 =

(
3
2 ln h1

)2/3
. (B 2a,b)

Eliminating `1 from (B 2) we arrive at:

4
L 3/2

=
4

L 3/2h6
1

exp
(

4
L 3/2h6

1

)
, (B 3)

which can be solved in terms of the Lambert W function, and we obtain:

h1 =

(
4

L 3/2W
(
4/L 3/2

))1/6

, `1 =

(
W(4/L 3/2)

4

)2/3

. (B 4a,b)

Replacing (B 4) in (B 1), we obtain the final closed form equation for the evaporative
contact angle: equation (3.7).

We show in table 2 the values obtained for L and k using (3.7) with the measured
value of β and R0. Since R varies during an experiment, L and thus k are not strictly
constant, yet their variations are small so we neglect them. For instance 1.9× 10−3 <

L < 3.0 × 10−3 and 1.60 < k < 1.62 for the octane drop of figure 5 (the minimum
recorded drop radius is 0.3 mm). L ranges between 3×10−4 for nonane and 8×10−2

for pentane, which gives k≈ 1.55 (see table 2).
The prefactor k for the simulations is also obtained with (3.7) using the correspond-

ing value of L which is computed from the linearised prewetting film thickness h3
f =

ρsatγ a2/(RsTρ(ρsat − ρ∞)) used in the simulation (Eggers & Pismen 2010). Using
dimensionless variables (length rescaled with R0 and time with R0η/γ ) we get:

L =
22/3β16/9h4

f

π4/9a50/9R2/9
. (B 5)

Strictly speaking the linearisation is not correct far from the drop when ρ∞ = 0, but
still holds locally close to the contact line (Morris 2014). The prefactor for figure 4,
k= 1.69 is very close to experimental ones shown in table 2 despite the very different
values of the parameters.

Equations (3.6) and (3.7) predict the experimental steady-state contact angle
quantitatively, except for pentane and hexane (see figure 5b), for which a discrepancy
larger than the uncertainties starts to appear. As discussed above some of the model’s
assumption break down for these drops, the isothermal assumption is incorrect and
the quasi-static assumption becomes doubtful. We can also notice that L is much
larger such that the limit L → 0 might not be reached.
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Pentane Hexane Heptane Octane Nonane

a (
◦

A) 4.29 3.96 3.95 3.85 3.78
L 8.0× 10−2 1.8× 10−2 6.5× 10−3 2.0× 10−3 3.0× 10−4

k 1.42 1.51 1.57 1.62 1.69
B 5.38 5.75 5.58 6.03 5.52

TABLE 2. Parameters deduced from the model for figure 5.

As in all moving contact line problems, the viscous stress in the vicinity of the
contact line must be regularised in order to predict the drop radius as a function of
time R(t). This is usually done by introducing a cutoff length, which results in a
logarithmic prefactor B in the equation of motion in the contact line (de Gennes 1985;
Bonn et al. 2009). In the very beginning of our experiment, spreading is dominant
and the drop moves over a prewetting film. We thus use the cutoff length derived for
spreading drops without evaporation (Bonn et al. 2009; Eggers & Fontelos 2015):

B= ln

(
R

1.38e2a

(
ηṘ
γ

)2/3
)

(B 6)

and consider it constant throughout the experiment for simplicity (although it was not
derived for an evaporating receding contact line). Table 2 shows the values of B we
obtain using the initial values of the experimental parameters.

REFERENCES

ALIZADEH PAHLAVAN, A., CUETO-FELGUEROSO, L., MCKINLEY, G. H. & JUANES, R. 2015 Thin
films in partial wetting: internal selection of contact-line dynamics. Phys. Rev. Lett. 115,
034502.

ALLEN, J. S. 2003 An analytical solution for determination of small contact angles from sessile
drops of arbitrary size. J. Colloid Interface Sci. 261 (2), 481–489.

BEREZHNOI, A. N. & SEMENOV, A. V. 1997 Binary Diffusion Coefficients of Liquid Vapors in
Gases. Begell House.

BEVERLEY, K. J., CLINT, J. H. & FLETCHER, P. D. I. 1999 Evaporation rates of pure liquids
measured using a gravimetric technique. Phys. Chem. Chem. Phys. 1, 149–153.

BONN, D., EGGERS, J., INDEKEU, J., MEUNIER, J. & ROLLEY, E. 2009 Wetting and spreading. Rev.
Mod. Phys. 81, 739–805.

BONN, D. & MEUNIER, J. 1997 Comment on ‘evaporation preempts complete wetting’. Europhys.
Lett. 39 (3), 341–342.

BOURGES-MONNIER, C. & SHANAHAN, M. E. R. 1995 Influence of evaporation on contact angle.
Langmuir 11 (7), 2820–2829.

CACHILE, M., BÉNICHOU, O. & CAZABAT, A. M. 2002a Evaporating droplets of completely wetting
liquids. Langmuir 18 (21), 7985–7990.

CACHILE, M., BÉNICHOU, O., POULARD, C. & CAZABAT, A. M. 2002b Evaporating droplets.
Langmuir 18 (21), 8070–8078.

CARRUTH, G. F. & KOBAYASHI, R. 1973 Vapor pressure of normal paraffins ethane through n-decane
from their triple points to about 10 mm mercury. J. Chem. Engng Data 18 (2), 115–126.

CAZABAT, A. M. & GUENA, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matt. 6,
2591–2612.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ri
nc

et
on

 U
ni

v,
 o

n 
13

 A
pr

 2
01

8 
at

 1
2:

22
:0

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

14
2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.142


830 E. Jambon-Puillet and others

DEEGAN, R. D., BAKAJIN, O., DUPONT, T. F., HUBER, G., NAGEL, S. R. & WITTEN, T. A.
1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653),
827–829.

DEEGAN, R. D., BAKAJIN, O., DUPONT, T. F., HUBER, G., NAGEL, S. R. & WITTEN, T. A. 2000
Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756–765.

DUNN, G. J., WILSON, S. K., DUFFY, B. R. & SEFIANE, K. 2009 Evaporation of a thin droplet
on a thin substrate with a high thermal resistance. Phys. Fluids 21 (5), 052101.

EGGERS, J. & FONTELOS, M. A. 2015 Singularities: Formation, Structure, and Propagation.
Cambridge University Press.

EGGERS, J. & PISMEN, L. M. 2010 Nonlocal description of evaporating drops. Phys. Fluids 22 (11),
112101.

ELBAUM, M., LIPSON, S. G. & WETTLAUFER, J. S. 1995 Evaporation preempts complete wetting.
Europhys. Lett. 29 (6), 457–462.

ERBIL, H. Y. 2012 Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv.
Colloid Interface Sci. 170 (1–2), 67–86.

DE GENNES, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863.
HU, H. & LARSON, R. G. 2006 Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B

110 (14), 7090–7094.
ISRAELACHVILI, J. N. 2011 Intermolecular and Surface Forces. Academic Press.
JACKSON, J. D. 1975 Classical Electrodynamics. Wiley.
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