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We study numerically the nonlinear stationary states of a droplet covered with an
insoluble surfactant in a uniaxial extensional flow. We calculate both the eigenfunctions
to reveal the instability mechanism and the time-dependent states resulting from it, which
provides a coherent picture of the phenomenon. The transition is of the saddle-node type,
both with and without surfactant. The flow becomes unstable under stationary linear
perturbations. Surfactant considerably reduces the interval of stable capillary numbers.
Inertia increases the droplet deformation and decreases the critical capillary number. In the
presence of the surfactant monolayer, neither the droplet deformation nor the stability is
significantly affected by the droplet viscosity. The transient state resulting from instability
is fundamentally different for drops with and without surfactant. Tip streaming occurs
only in the presence of surfactants. The critical eigenmode leading to tip streaming is
qualitatively the same as that yielding the central pinching mode for a clean interface,
which indicates that the small local scale characterizing tip streaming is set during the
nonlinear droplet deformation. The viscous surface stress does not significantly affect the
droplet deformation and the critical capillary number. However, the damping rate of the
dominant mode considerably decreases for viscous surfactants. Interestingly, shear viscous
surface stress considerably alters the tip streaming arising in the supercritical regime, even
for very small surface viscosities. The viscous surface stresses alter the balance of normal
interfacial stresses and affect the surfactant transport over the stretched interface.
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1. Introduction

1.1. Surfactants and surface viscosity
Complex interfaces are those whose mechanics cannot be described solely in terms
of the interfacial tension. Capsules, vesicles, polymer blends and lipid bilayers are
examples of fluid particles delimited by those interfaces. These fluidic entities arise both
in numerous natural processes and in multiple biological and industrial applications.
Therefore, understanding the factors involved in the dynamics of complex interfaces is
of paramount importance at the fundamental level and at the practical one.

Surfactants produce many beneficial effects. For instance, they maintain desired wetting
conditions and stabilize emulsions and foams by hindering the coalescence of droplets and
bubbles. The major mechanical consequence of the presence of surface-active molecules
is probably the local reduction of the capillary pressure (the so-called soluto-capillarity
effect). However, when a surfactant monolayer is adsorbed onto an interface, both
Marangoni and viscous surface stresses may play a significant role too. Marangoni stress
arises due to the interfacial tension (surfactant concentration) gradient, while viscous
surface stress is associated with the variation of the surface velocity. While Marangoni
stress tends to eliminate inhomogeneities of surfactant concentration, viscous surface
stress opposes surface velocity gradient.

The viscous surface stress obeys different constitutive relationships depending on
the surfactant molecule nature (Fuller & Vermant 2012). In fact, adsorbed surfactant
monolayers at fluid surfaces usually exhibit rheological properties (Choi et al. 2011;
Langevin 2014). For a Newtonian interface (Scriven 1960; Langevin 2014), the viscous
surface stress can be calculated from the Boussinesq–Scriven constitutive equation in
terms of the shear and dilatational surface viscosities, which depend on the surfactant
surface concentration (Manikantan & Squires 2017; Luo, Shang & Bai 2019).

Surface viscosity is not frequently accounted for in microfluidics, probably due to
the considerable uncertainty about the values taken by this property (Zell et al. 2014;
Ponce-Torres et al. 2020). However, it can significantly affect the dynamics of interfaces
even for values much smaller than the bulk ones. For instance, it is believed that shear
surface viscosity can stabilize foams and emulsions by increasing the drainage time
during the coalescence of two bubbles/droplets (Fischer & Erni 2007; Ozan & Jakobsen
2019). This effect is similar to that produced by Marangoni stresses, which may mask
the role played by surface viscosity in many experiments. Therefore, elucidating the
influence of surface viscosity on the dynamics of surfactant-covered interfaces is of great
relevance from both fundamental and practical points of view. It is worth mentioning
that surface viscosity may become relevant because of its contribution to the balance
of fluid momentum and its effect on the surfactant distribution over the interface, which
determines the capillary pressure profile and Marangoni stress (Ponce-Torres et al. 2017,
2020).

1.2. Surfactant-free droplets in linear flows
The deformation and stability of a small drop immersed in a viscous flow is a paradigmatic
problem that can be used to evaluate the role of different factors involved in interfacial
dynamics. If the droplet size is much smaller than the scale of variation of the imposed
flow, then the droplet deforms and bursts due to the local velocity gradient at the droplet
location, thus the outer flow can be regarded as linear. Hyperbolic, simple shear and
extensional (straining) flows are examples of this type of fluid motion. While a simple
shear flow can be easily produced experimentally (Bentley & Leal 1986), a uniaxial
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Surfactant-loaded drop in an extensional flow

extensional flow facilitates the theoretical analysis owing to the existence of a symmetry
axis (Rallison 1984; Stone 1994). Inertia is almost always neglected in both the droplet and
the outer bath (creeping or Stokes flow). In many cases, the inner phase is a bubble much
less viscous than the bath. Taylor was one of the first to analyse the dynamics of a clean
droplet in a linear flow both theoretically (Taylor 1932, 1964) and experimentally (Taylor
1934), showing how the droplet can develop conical ends before its breakup. Subsequent
studies have examined the deformation and instability of bubbles and drops in both shear
and extensional flows (see, for example, Rallison 1984; Stone 1994).

The deformation and breakup of surfactant-free bubbles and drops in an axisymmetric
extensional flow under different approximations have been studied in the seminal works
of Taylor (1964), Buckmaster (1972), Acrivos and collaborators (Barthls-Biesel & Acrivos
1973; Youngren & Acrivos 1976; Acrivos & Lo 1978; Rallison & Acrivos 1978; Brady &
Acrivos 1982), Hinch (1980), Sherwood (1984), Li, Barthes-Biesel & Helmy (1988) and
Stone & Leal (1989), and, more recently, by Howell & Siegel (2004) and Favelukis (2016).
Both analytical slender-body solutions and numerical simulations show how the droplet
deformation increases with the capillary number (the strain rate in terms of the inverse
of the visco-capillary time) until this parameter reaches a critical value beyond which the
steady flow ceases to be stable, and the droplet breaks up (Stone 1994). Courrech du Pont
& Eggers (2020) and Eggers (2021) have recently shown that the drop tip always remains
rounded, but its curvature increases exponentially with the square of the flow strength.
The shape of the tip is described by a similarity solution, which is independent of the
outer flow and system geometry, in agreement with earlier results of Eggers & Courrech
du Pont (2009).

The stability analysis allows one to determine which solutions are stable (Taylor 1964;
Acrivos & Lo 1978; Hinch 1980) and the conditions for the onset of bursting or fluid
ejection (Barthls-Biesel & Acrivos 1973). Rallison & Acrivos (1978) considered the
creeping motion condition in both the droplet and the outer bath, and showed that
steady shapes could be obtained only for capillary numbers below a certain threshold.
Hinch & Acrivos (1979) described the mechanism for the instability: the increased inner
pressure pushes the drop ends outwards, increasing the drop length. Due to the volume
conservation, the drop has to become narrower, which means that the interior lubrication
pressure has to increase even more, thus promoting instability. After instability, the drop
can either be torn apart and break up or develop into a quasi-stationary state in which fluid
is drained gradually through a thin thread (tip streaming).

The evolution of the shape of a slender inviscid drop can be calculated approximately
by using polynomials with time-dependent coefficients (Hinch 1980). Brady & Acrivos
(1982) considered the droplet inertia and concluded that its stabilizing effect is so
weak that it can be ignored for all practical purposes. The governing equations have
been extended to analyse non-axisymmetric flows resulting from the combination of
two-dimensional and extensional flows (Howell & Siegel 2004). The end-pinching breakup
mechanism has also been numerically studied in the context of droplets deformed by an
extensional flow (Stone & Leal 1989).

One of the most interesting phenomena arising when a droplet is submerged in an
extensional flow is tip streaming (Anna 2016; Montanero & Gañán-Calvo 2020), i.e.
the ejection of a very thin fluid thread from the tip of the stretched droplet. Zhang
(2004) claimed that the steady recirculating stream arising in a droplet attached to a
capillary submerged in an extensional flow evolves toward tip streaming when the capillary
number exceeds a critical value. This seems to indicate that steady tip streaming can
be obtained by purely hydrodynamic means not only in confined geometries (Suryo &
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Basaran 2006; Gañán-Calvo et al. 2007; Evangelio, Campo-Cortés & Gordillo 2016) but
also in the presence of an unbounded outer flow. However, these results were obtained
with uncontrolled approximations, which should be checked compared to full numerical
simulations.

1.3. Surfactant-covered droplets in linear flows
The presence of an insoluble surfactant monolayer significantly affects the deformation
and stability of droplets subject to both non-axisymmetric shear flows (Li & Pozrikidis
1997; Bazhlekov, Anderson & Meijer 2006; Lee & Pozrikidis 2006; Feigl et al. 2007;
Mandal, Das & Chakraborty 2017) and axisymmetric extensional flows (Stone & Leal
1990; Pawar & Stebe 1996; Eggleton, Pawar & Stebe 1999; Eggleton, Tsai & Stebe 2001;
Booty & Siegel 2005; Feigl et al. 2007; Vlahovska, Lawzdziewicz & Loewenberg 2009;
Liu et al. 2018). In the two cases, the surfactant is swept towards the droplet end, where the
interfacial tension decreases. This convective effect competes with depletion of surfactant
due to interfacial dilatation in that region. At high capillary numbers, the first effect
becomes more important than the last one, and the local curvature at the apex increases
for the capillary pressure to balance normal stresses. As a consequence, the deformation
in the presence of surfactant is larger than that of a drop with a constant interfacial
tension equal to the initial equilibrium value (Stone & Leal 1990; Li & Pozrikidis
1997; Feigl et al. 2007), and the critical capillary number decreases. The interface is
immobilized by the surfactant monolayer (Lee & Pozrikidis 2006; Bazhlekov et al. 2006)
because Marangoni convection counteracts the external flow (Milliken, Stone & Leal 1993;
Vlahovska et al. 2009). Liu et al. (2018) conducted numerical simulations to analyse the
droplet deformation in the presence of a three-dimensional shear flow. For surfactant-laden
droplets, the critical capillary number decreases as the Reynolds number increases, as
occurs with clean droplets.

In his pioneering work, De Bruijn (1993) described the tip streaming occurring in a
surfactant-laden droplet submerged in a simple shear flow. In this case, the reduction of the
interfacial tension in the drop pole resulted in the ejection of a fluid thread much smaller
than the drop size. This was one of the first mechanisms used to produce tip streaming in
both droplets (De Bruijn 1993; Eggleton et al. 2001) and bubbles (Booty & Siegel 2005)
in a clear and reproducible way. De Bruijn (1993) concluded that surfactants trigger tip
streaming, which then disappears as surfactants are convected away from the tip. In fact,
there is a widespread belief that surfactant is a necessary element to produce tip streaming
in unbounded extensional flows. Tip streaming has been described from simulations of
such systems (Eggleton et al. 2001; Booty & Siegel 2005; Bazhlekov et al. 2006; Wang,
Siegel & Booty 2014).

The deformation and stability of a droplet covered with an insoluble surfactant in an
extensional flow have been studied theoretically on several occasions. Milliken et al.
(1993) showed that Marangoni stresses cause the drop to behave as if it were more
viscous, and the surfactant monolayer facilitates the formation of pointed ends over the
drop stretching. Pawar & Stebe (1996) examined the effect of both surface saturation
and non-ideal interactions among the surfactant molecules. When surface diffusion is
negligible, the interface can be essentially split into mobile regions near the drop equator
and motionless caps near the drop poles (Eggleton et al. 1999). The transfer of soluble
surfactant molecules between the interface and the bulk reduces the surfactant effects
mentioned above (Milliken & Leal 1994). All the above-mentioned studies were conducted
for zero Reynolds number. Liu et al. (2018) analysed confinement and inertia effects.
The surfactant monolayer destabilizes the droplet, i.e. it reduces the critical value of the
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Surfactant-loaded drop in an extensional flow

capillary number for all the confinements analysed. On the contrary, that value increases
with the Reynolds number for both clean and surfactant-laden interfaces.

The simulations of Eggleton et al. (2001) showed how the reduction of the interfacial
tension in the droplet apex due to the surfactant accumulation results in tip streaming,
as occurs in a simple shear flow (De Bruijn 1993). The size of the ejected thread
increases with the initial surfactant surface concentration. Wang et al. (2014) studied
the tip streaming numerically in a droplet covered with a soluble surfactant, placed in
a uniaxial extension flow. They showed that the adsorption of a small amount of surfactant
onto the interface produces tip streaming. The size of the emitted droplet decreases as the
Biot number (the ratio of the flow time scale to that for surfactant desorption) increases.
Wrobel et al. (2018) extended the analysis by combining the extensional flow at infinity
with flow focusing provided by two annular baffles. Eggleton & Stebe (1998) considered
the adsorption-desorption-limited case.

1.4. Surfactant-covered droplets in linear flows: the surface viscosity
The influence of interfacial rheology on the dynamics of drops submerged in linear
flows has been considered in several works. Flumerfelt (1980) conducted a first-order
perturbation analysis of the deformation and orientation of drops in shear and extensional
flows involving the shear and dilatational surface viscosities. He showed that these
dynamical interfacial properties play a critical role in the droplet dynamics and may
explain the discrepancies between experimental droplet deformations and theoretical
predictions. Numerical results have shown that surface viscosity can suppress the
interfacial motion and reduce the magnitude of the deformation of the drop in a simple
shear flow (Pozrikidis 1994). Gounley et al. (2016) found that shear (dilatational) surface
viscosity stabilizes (destabilizes) the drops under shear flow. Both shear and dilatational
surface viscosities reduce the degree of non-uniformity of the surfactant concentration
over the drop surface by inhibiting local convection and dilution of surfactant, respectively
(Luo et al. 2019). Narsimhan (2019) developed a perturbation theory to describe the
behaviour of droplets in both shear and extensional flows. Similar to what occurs in simple
shear flow, the shear (dilatational) surface viscosity stabilizes (destabilizes) the drops
under uniaxial extensional flow (Singh & Narsimhan 2020). It should be noted that these
studies, which account for viscous surface stresses, assume uniform interfacial tension,
and therefore they neglect both soluto-capillarity and Marangoni convection.

1.5. The goal of this paper
A coherent picture of both the instability of a drop, and the subsequent nonlinear
evolution, is still missing for both clean and surfactant-laden drops. For that reason, we
will conduct numerical simulations to calculate the steady droplet deformation under
subcritical conditions and the breakup process for capillary numbers larger than the
critical one. We will consider the full hydrodynamic model, which includes inertia in
both the inner and outer phases, soluto-capillarity and Marangoni convection due to
inhomogeneities in the surfactant distribution, as well as pressure-dependent shear and
dilatational surface viscosities. Therefore, our description does not invoke approximations
considered in previous works, such as the limit of small droplet deformation (Flumerfelt
1980; Vlahovska, Loewenberg & Blawzdziewicz 2005; Vlahovska et al. 2009; Narsimhan
2019; Singh & Narsimhan 2020).

The inclusion of gradients of surfactant concentration and surface tension will
allow us to study the interplay among soluto-capillarity, Marangoni stress and viscous
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surface stress. This study could not be carried out in previous works (Pozrikidis
1994; Gounley et al. 2016; Narsimhan 2019; Singh & Narsimhan 2020), in which the
inhomogeneity in surfactant concentration and surface tension was neglected. Besides,
we will take into account nonlinear effects in both the surface equation of state (surface
saturation and non-ideal interactions among the surfactant molecules) and the dependence
of the surface viscosities on the surfactant concentration.

Our analysis extends that of Vlahovska et al. (2005, 2009), who calculated the
deformation of a surfactant-covered droplet in an extensional flow up to third order in
the capillary number, neglecting the surfactant viscosity. The numerical simulations in the
present work include several effects not accounted for by Milliken et al. (1993): inertia,
nonlinear effects in the surface equation of state, and surfactant viscosity. Our model
is similar to that solved by Luo et al. (2019) for a droplet in a simple shear flow. They
also included inertia, although the Reynolds number was set to a small value to eliminate
its effects. They considered a nonlinear dependency of the shear and dilatational surface
viscosities on the surfactant density but a linearized Langmuir equation of state.

We will calculate the steady solutions and determine their stability by conducting
a global linear stability analysis. Direct (time-dependent) numerical simulations will
be conducted for unstable configurations to investigate the droplet breakup mode. The
calculation of the eigenmodes, combined with direct numerical simulations, provides a
consistent and comprehensive picture of the droplet dynamics. This twofold approach has
not been carried out in previous studies. Attention will be paid to the influence of the
surface viscosity on both the droplet stability and the breaking mode. Viscous surface
stress is expected to change the shape of the tip of the ejected fluid thread by altering the
balance of surface stresses and the distribution of surfactant over the interface.

2. Governing equations

Consider a droplet of radius a, density ρi and viscosity μi placed in the centre of a
linear uniaxial extensional flow of a liquid of density ρo and viscosity μo (figure 1). The
interface is loaded with an insoluble surfactant. The interfacial tension σ and surfactant
surface concentration (surface coverage) Γ at equilibrium are σeq and Γeq, respectively.
The variation of the interfacial tension with the surfactant surface concentration is
approximated by the Langmuir equation of state (Tricot 1997)

σ = σ0 + Γ∞RgT ln (1 − Γ/Γ∞) , (2.1)

where σ0 is the interfacial tension of the clean surface, Γ∞ is the maximum packing
density, Rg is the gas constant and T is the temperature. The viscous surface stress is given
by the Boussinesq–Scriven law in terms of the shear and dilatational surface viscosities
μS

s and μS
d (Scriven 1960; Langevin 2014). Some studies (Kim et al. 2013; Samaniuk &

Mermant 2014) have shown that the surface viscosity depends exponentially on the surface
pressure Π = σ0 − σ for some typical surfactants. In our study (Manikantan & Squires
2017),

μS
s = μS

s,eq exp((Π − Πeq)/Πc), (2.2)

where μS
s,eq and Πeq are the values taking by the corresponding quantities at equilibrium,

while Πc is the surface pressure scale over which the surface viscosities change. For many
insoluble surfactants, Πc is only a few milliNewtons per metre (Manikantan & Squires
2017). Positive/negative values of this last quantity correspond to Π -thickening/thinning
surfactants. In this work, we will assume that the ratio λS = μS

d/μ
S
s takes a constant
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Surfactant-loaded drop in an extensional flow
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Figure 1. Sketch of the fluid domain. The dashed line indicates the computational domain.

value, independent of the surface pressure. Therefore, all the above comments on the shear
surface viscosity also apply to the dilatational one.

The droplet is placed in a flow given by the equations

u(o) = −Gr/2, w(o) = G z, (2.3)

where u(o) and w(o) are the radial and axial components of the outer velocity field, and G
is the intensity of the extensional flow.

Hereafter, all the variables are made dimensionless with the characteristic length a,
velocity σeq/μ0, time μ0a/σeq and stress σeq/a (Stone & Leal 1989; Milliken et al. 1993).
The dimensionless axisymmetric incompressible Navier–Stokes equations for the velocity
v(k)(r, z; t) and pressure p(k)(r, z; t) fields are

[ru(k)]r + rw(k)
z = 0, (2.4)

Re ρδik(u(k)
t + u(k)u(k)

r + w(k)u(k)
z ) = −p(k)

r + μδik [u(k)
rr + (u(k)/r)r + u(k)

zz ], (2.5)

Re ρδik(w(k)
t + u(k)w(k)

r + w(k)w(k)
z ) = −p(k)

z + μδik [w(k)
rr + w(k)

r /r + w(k)
zz ], (2.6)

where t is the time, r (z) is the radial (axial) coordinate, u(k) (w(k)) is the radial (axial)
velocity component, Re = ρoσeqa/μ2

o is the Reynolds number, ρ = ρi/ρo and λ = μi/μo
are the density and viscosity ratios, respectively, and δij is the Kronecker delta. In the
above equations and henceforth, the superscripts k = i and k = o refer to the inner and
outer phases, respectively, while the subscripts t, r and z denote the partial derivatives
with respect to the corresponding variables. The action of the gravitational field has been
neglected due to the smallness of the fluid configuration.

The interface equations are solved using the intrinsic surface coordinate s. The
kinematic compatibility condition reads

ft + v(k) · ∇f = 0, (2.7)

where f (rs, t) = 0 determines the interface position rs. This position can also be defined in
terms of the function F(z, t), which represents the distance of an interface element to the
symmetry axis z. The equilibrium of normal and tangential stresses at the interface yields

‖τ (k)
n ‖ = τ S

n , ‖τ (k)
t ‖ = τ S

t , (2.8a,b)

where ‖A(k)‖ denotes the difference A(i) − A(o) between the values taken by the quantity
A on the two sides of the interface, and τ

(k)
n and τ

(k)
t represent the bulk stresses normal
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and tangential to the interface, respectively. For a Newtonian inertialess interface (Scriven
1960), and using intrinsic surface coordinates, the normal and tangential surface stresses
τ S

n and τ S
t read (see Appendix A) (Martínez-Calvo & Sevilla 2018)

τ S
n = κσ̂ + Bsκ̄

[
−F

(vt

F

)′ + κ̄vn

]
+ λSBsκ

[
(Fvt)

′

F
+ κvn

]
, (2.9)

τ S
t = σ̂ ′ +

[
Bs(1 + λS)

(
(Fvt)

′

F
+ κvn

)]′
+ 2

(
BsK − B′

s
F′

F

)
vt − 2κ1(Bsvn)

′, (2.10)

where σ̂ = σ/σeq is the ratio of the local interfacial tension to its equilibrium value,
Bs = μS

s /(μoa) is the Boussinesq number, κ = κ1 + κ2 is (twice) the mean curvature of
the interface, κ1 and κ2 are the curvatures along the meridians and parallels in the normal
direction, respectively, κ̄ = κ1 − κ2, K = κ1κ2, vn and vt are the normal and tangential
components of the velocity on the interface, and the prime denotes the derivative with
respect to the intrinsic surface coordinate. Equations (2.9) and (2.10) reduce to those
derived by Martínez-Calvo (2020) in cylindrical coordinates.

The surfactant surface concentration is calculated by integrating the conservation
equation

Γ̂t + ∇S · (Γ̂ vS) + Γ̂ (∇S · n) n · v = 1
PeS ∇S2Γ̂, (2.11)

where Γ̂ = Γ/Γ∞ is the surface coverage defined as the ratio of the surfactant surface
concentration Γ to the maximum packing density Γ∞, n is the unit outward normal
vector, PeS = aσeq/(μoDS) is the surface Péclet number and DS is the surface diffusion
coefficient. This coefficient must also depend on the surface concentration, consistently
with the surface viscosities. However, we follow previous works and neglect this effect
because it has no significant influence on our results, given the large value taken by the
surface Péclet number in our simulations.

The variation of the interfacial tension with the surface coverage is approximated by the
Langmuir equation of state (2.1), whose dimensionless form is

σ̂ = 1 + Ma ln

(
1 − Γ̂

1 − Γ̂eq

)
, (2.12)

where Ma = Γ∞RgT/σeq is the Marangoni (elasticity) number and Γ̂eq = Γeq/Γ∞. The
values of Γ̂eq and Ma must be chosen so that the interfacial tension does not become
negative at any point of the interface in the course of the simulation. Taking into account
the exponential dependence (2.2) and the equation of state (2.12), the Boussinesq number
can be calculated as

Bs = Bs,eq

(
1 − Γ̂eq

1 − Γ̂

)Ma/Π̂c

, (2.13)

where Bs,eq is its value at equilibrium and Π̂c = Πc/σeq. For Ma � Π̂c, the Boussinesq
number (i.e. the surface viscosity) becomes constant. Since Π̂c takes values much smaller
than unity for many surfactants (Manikantan & Squires 2017), this simplification is valid
only for very small values of Ma.
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Surfactant-loaded drop in an extensional flow

Parameter Physical meaning Values

ρ inner density/outer density 1
Re outer inertia/outer viscosity 0, 1, 10
λ inner viscosity/outer viscosity 10−3, 10−2, 0.1
C outer viscosity/interfacial tension —

PeS surfactant surface convection/diffusion 103

Ma surfactant strength 0.2
Γ̂eq initial surfactant concentration 0.125, 0.25, 0.5

Bs,eq surfactant shear viscosity/outer viscosity 0–1
λS dilatational/shear surface viscosity 0, 1, 103

Π̂c dependence of surface viscosity on concentration 0.1

Table 1. Dimensionless parameters, their physical meanings and the values considered in the simulations.
The numbers in bold type correspond to most of the simulations.

The conservation of the droplet and surfactant mass yields∫ â

0
F2 dz = 2

3
,

∫ âs

0
Γ̂ F ds = 2 Γ̂eq, (2.14a,b)

respectively, where â and âs are the (dimensionless) half-lengths of the cross-sectional
shape and the interface, respectively. Equations (2.14a,b) must be considered to close the
steady problem and to set the initial conditions for the transient numerical simulations.
The droplet mass must remain constant during the droplet breakup due to the liquid
incompressibility and kinematic boundary conditions. Analogously, (2.11) ensures the
conservation of the surfactant mass over time in the transient problem. However, and
to reduce the numerical errors, we also enforce (2.14a,b) at any instant of the transient
simulations.

The r and z axes delimiting the computational domain are symmetry axes (figure 1). We
impose the velocity field u(o) = −Cr/2 and w(o) = Cz at the two other boundaries of the
computational domain (figure 1), where C = Gaμo/σeq is the capillary number. Transient
simulations of the droplet breakup start from the steady solution for a capillary number
just below the critical one, which allows us to reduce the computing time considerably.

As can be seen, the problem is formulated in terms of the set of dimensionless numbers
{ρ, Re; λ, C; PeS, Ma, Γ̂eq; Bs,eq, λS, Π̂c} (table 1). In the absence of surfactant, the
parameter space reduces to {ρ, Re; λ, C}. Besides, the problem is formulated only in terms
of λ and C when inertia is neglected. It is worth mentioning that the capillary number C
indicates the dimensionless characteristic velocity, Ga/(σeq/μo), of the outer fluid. The
Reynolds number is defined in terms of material properties and the droplet radius, which
allows us to fix its value in an experimental run in which the strain rate (the capillary
number) is increased.

To calculate the linear global modes of the steady solutions, we assume the temporal
dependence

U = U0 + δU e−iωt (|δU| � |U|),
(rs, zs) = (rs0, zs0) + (δrs, δzs) e−iωt (|δrs| � rs, |δzs| � zs),

}
(2.15)

where U represents any unknowns of the problem, and U0 and δU stand for
the corresponding base flow (steady) solution and the spatial dependence of the
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Figure 2. Details of the grid used in the simulations.

eigenmode, respectively. In addition, (rs, zs) denotes the interface position, (rs0, zs0)
denotes the interface position in the base flow, (δrs, δzs) denotes the perturbation, and ω =
ωr + iωi is the eigenfrequency characterizing the perturbation evolution. If the growth
rate ωi of the dominant mode (i.e. that with the largest ωi) is positive, then the base flow
is asymptotically unstable under small-amplitude perturbations (Theofilis 2011). In this
work, we will determine the critical value of the capillary number C for which the base
flow becomes asymptotically unstable as a function of the rest of the governing parameters.

3. Numerical method

We used the numerical method proposed by Herrada & Montanero (2016) to solve
the theoretical model described in the previous section. Here, we summarize the main
characteristics of this method. The inner and outer fluid domains are mapped onto two
quadrangular domains through a non-singular mapping. A quasi-elliptic transformation
(Dimakopoulos & Tsamopoulos 2003) is applied in the outer bath. All the derivatives
appearing in the governing equations are expressed in terms of t and the spatial coordinates
resulting from the mapping. These equations are discretized in the (mapped) radial
direction with n(i)

χ and n(o)
χ Chebyshev spectral collocation points (Khorrami, Malik & Ash

1989) in the inner and outer regions, respectively. We use fourth-order finite differences
with n(i)

ξ and n(o)
ξ equally spaced points to discretize the (mapped) axial direction in the

inner and outer regions, respectively. As can be seen in figure 2, the grid points are equally
spaced along the interface. In simulations for very small values of the viscosity ratio
λ, the curvature of the droplet tip increases considerably. In those particular cases, we
accumulated the grid points in the vicinity of the interface tip. We introduced a stretching
function so that the distance decreases linearly with the distance to the droplet apex. The
distance between two consecutive points near the apex is around seven times smaller than
the distance near the equator.

In the transient numerical simulations, second-order backward finite differences are
used to discretize the time domain. The time step is adapted in the course of the simulation
according to the formula �t = �t0/vtip, where �t0 is the time step at the initial instant,
and vtip is the droplet tip velocity. The time-dependent mapping of the physical domain
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Surfactant-loaded drop in an extensional flow

0 50 100 150

0

0.1

0.2

0.3

0.4

0.5

vtip

t
Figure 3. Velocity vtip of the droplet tip as a function of time t for four spatial and temporal discretizations:
{n(i)

χ = 18, n(i)
ξ = 501, n(o)

χ = 31, n(o)
ξ = 1003, �t0 = 0.02} (green diamonds), {n(i)

χ = 21, n(i)
ξ = 701, n(o)

χ =
41, n(o)

ξ = 1403, �t0 = 0.02} (black circles), {n(i)
χ = 21, n(i)

ξ = 701, n(o)
χ = 41, n(o)

ξ = 1403, �t0 = 0.01} (blue

squares) and {n(i)
χ = 25, n(i)

ξ = 801, n(o)
χ = 45, n(o)

ξ = 1603, �t0 = 0.02} (red triangles). The values of the

governing parameters are {Re = 0, λ = 0.1, C = 0.1; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; Bs,eq = 0}.

does not allow the algorithm to surpass the interface pinch-off, therefore the evolution of
the emitted droplet cannot be analysed.

To calculate the base flow and its eigenmodes, we progressively increased the capillary
number, using the solution obtained for the previous case as an initial guess. We do not
calculate the base flow from a dynamical simulation, starting from the previous shape. Our
method solves the set of nonlinear equations to find the stationary solution corresponding
to a subcritical capillary number, which constitutes a major contribution compared to
previous works. To simulate the droplet breakup, we considered as initial condition the
steady solution for a subcritical case close to the stability limit and then increased the
capillary number up to its prescribed value. The end of the transient simulation is the last
time step for which the numerical method converged.

The results presented in this work for λ = 0.1 (liquid droplet) were calculated with
{n(i)

χ = 21, n(i)
ξ = 701, n(o)

χ = 41, n(o)
ξ = 1403}. In the transient simulations, we set �t0 =

0.02. Figure 3 shows the velocity vtip of the droplet tip as a function of time t for four
spatiotemporal discretizations. As can be observed, the results are practically insensitive
to the grid refinement for the discretization used in our simulations.

As mentioned above, bubbles develop sharp tips even for capillary numbers smaller
than unity, which demands a higher spatial resolution along the ξ axis. For this reason,
the steady simulations for λ = 10−3 were conducted for {n(i)

χ = 5, n(i)
ξ = 1301, n(o)

χ = 21,

n(o)
ξ = 2603}. To show the accuracy of these simulations, we compared our numerical

solution for λ = 10−7 in the absence of surfactant with that obtained by Eggers &
Courrech du Pont (2009) for λ = 0 (figure 4). As can be observed, an excellent agreement
is obtained for the mean curvature κtip at the bubble tip even for curvature radii of the
order of 10−3. This is a very stringent test, which indicates that the tip shape (whose
curvature is at least two orders of magnitude smaller in the presence of surface viscosity)
is well-resolved.
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Figure 4. (a) Mean curvature κtip at the bubble tip as a function of the capillary number C for {Re = 0,
λ = 10−7} (symbols). The solid line corresponds to the numerical result of Eggers & Courrech du Pont (2009)
for the inviscid case. (b) Bubble shape for C = 0.33.

0 0.2

0.2

0.4

0.6

0.1 0.3
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D

Figure 5. Droplet deformation D as a function of the capillary number C for {Re = 0, λ = 10−7} in the
absence of surfactant (symbols). The solid line corresponds to the numerical result of Eggers & Courrech
du Pont (2009) for λ = 0. The dotted and dashed lines correspond to the perturbation theory to first and second
order in Ca of Barthls-Biesel & Acrivos (1973).

The droplet steady shape is characterized by the deformation

D = â − b̂

â + b̂
, (3.1)

where â and b̂ are the half-length and half-breadth of the cross-sectional shape,
respectively. Figure 5 shows a comparison between our numerical results and those of
Eggers & Courrech du Pont (2009). The figure also shows the perturbation theory to first
and second order in Ca of Barthls-Biesel & Acrivos (1973).

4. Results

Before presenting the numerical results, we here justify our choice for the values of the
governing parameters. Given the large dimension of the parameter space, we will consider
two values of the bulk viscosity ratio, λ = 10−1 and 10−3, which represent a liquid droplet
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Surfactant-loaded drop in an extensional flow

and a bubble suspended in a viscous liquid bath, respectively. The intermediate value
λ = 10−2 will be considered to analyse the dependence of the interface perturbation on
λ at the marginal stability. We will analyse the effect of inertia by considering ρ = 1
(density-matched liquids) and Re = 1 and 10. We will restrict ourselves to Ma = 0.2,
which corresponds to a strong surfactant (Eggleton et al. 1999, 2001; Wang et al. 2014). In
most cases, we will consider a moderately dense surfactant monolayer characterized by a
surface coverage Γ̂eq = 0.5. We will decrease the surface coverage down to 0.1 to examine
the effect of the amount of surfactant on the droplet stability.

Given the small values taken by the surface diffusion coefficient of most surfactants
(Tricot 1997), the surface Péclet number is set to PeS = 103 in all the simulations. The
shear surface viscosity of moderately viscous surfactants can take values of the order
of 10−6 Pa s m (Ponce-Torres et al. 2017), while this property decreases down to values
as small as 10−10 Pa s m for surfactants commonly used in experiments, such as sodium
dodecyl sulfate (SDS) (Zell et al. 2014; Ponce-Torres et al. 2020). To obtain realistic
values for the Boussinesq number, consider, for instance, a water (μi = 1 mPa s) droplet
a = 1 mm in radius submerged in a liquid bath with viscosity μ0 = 10 mPa s. In this case,
the above-mentioned values of the shear surface viscosity lead to Boussinesq numbers of
the order of 10−1 and 10−5, respectively. We will consider values of this parameter in the
interval 10−6–1. In some cases, we will consider higher values of the surface viscosity to
highlight its effect.

The case Bs,eq = 1 corresponds to a viscous surfactant. In most cases, we will analyse
the effect of the interfacial rheology for equal surface viscosities (λS = 1). To elucidate
the role of those viscosities separately, we will also consider the cases λS = 0 and
103. As mentioned in § 2, most surfactants exhibit a thickening behaviour (the surface
viscosities increase with the surfactant concentration), Πc being only a few milliNewtons
per metre (Manikantan & Squires 2017). For this reason, we will take Π̂c = 0.1 in all our
simulations. Table 1 displays the values of the dimensionless governing parameters in our
simulations.

4.1. Droplet shape and stability
This subsection examines both the steady deformation and stability of droplets submerged
in an extensional flow. The stability is determined from the spectrum of eigenvalues
obtained for a given base flow. For the sake of illustration, figure 6 shows the spectrum of
eigenvalues with ωi > −4.66 for an inertialess (Re = 0) drop close to the stability limit.
The dominant eigenvalue is an imaginary number that becomes positive for C � 0.0986.
At marginal stability, C � 0.0986, both the frequency and damping rate (the growth
rate with the sign reversed) of the dominant eigenvalue vanish. This means that the
flow becomes unstable under stationary linear perturbations, contrary to what happens
in, for example, the jetting mode of flow focusing, in which instability is caused by a
supercritical Hopf bifurcation (Cruz-Mazo et al. 2017; Cabezas et al. 2021). The results
shown in figure 6 are qualitatively the same as those obtained for the rest of the parameter
configurations analysed in this work. The flow becomes unstable under stationary linear
perturbations, preventing the numerical method from converging to the base flow solution
when the capillary number is fixed in the supercritical regime. In other words, the stability
limit corresponds to the capillary number for which the numerical method ceases to
converge to a steady solution, a correspondence implicitly assumed in previous works.

The droplet deformation D monotonically increases with the increasing capillary
number and increases sharply near the saddle node bifurcation (figure 7), which
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Figure 6. Spectrum of eigenvalues with ωi > −4.66 for {Re = 0, λ = 0.1, C = 0.09855; PeS = 103,
Ma = 0.2, Γ̂eq = 0.5; Bs,eq = 0}. The arrow indicates the eigenvalue of the critical mode.
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Figure 7. Droplet deformation D (a), and imaginary part of the dominant eigenvalue ω∗
i (b), as functions of the

capillary number C for {Re = 0, λ = 0.1; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; Bs,eq = 0}. The figure also shows
the results for a clean interface (Γ̂eq = 0). The dotted lines are guides for the eye.

corresponds to a turning point (Taylor 1964; Acrivos & Lo 1978). As can be observed, the
presence of a surfactant monolayer considerably reduces the critical capillary number and
the maximum deformation reached by the droplet. In fact, the critical capillary number for
the configuration considered in figure 7 increases up to 0.171 in the absence of surfactant.
The surfactant added to the interface is driven towards the droplet tip by the outer stream.
The droplet tip weakens due to the resulting reduction of the interfacial tension, and
therefore the droplet breaks up for lower values of the capillary number. As can be
observed in figure 7, the damping rate of the dominant mode for a surfactant-covered
droplet, −ω∗

i , monotonically decreases as the capillary number approaches its critical
value. The curve ω∗

i (C) for a clean interface (Γ̂eq = 0) shows the crossover of two modes.
The drag force exerted by the outer flow produces a recirculation pattern in the

droplet (figure 8). The fluid particles next to the interface are driven towards the apex.
The hydrostatic pressure increases there, and the induced pressure gradient makes the
liquid flow back next to the droplet symmetry axis. This flow pattern resembles those
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Surfactant-loaded drop in an extensional flow
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Figure 8. Streamlines of the base flow and isocontours of the magnitude of the perturbed pressure field
|δp(j)(r, z)| for {Re = 0, λ = 0.1, C = 0.0986; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; Bs,eq = 0}. The colour scale
shows the values of |δp(j)(r, z)| normalized with its maximum value. The red line is the interface location.

produced in other microfluidic configurations such as flow focusing (Cruz-Mazo et al.
2017; Cabezas et al. 2021) and electrospray (Ponce-Torres et al. 2018). However, the
intensity of this recirculation is very small owing to the interface immobilization caused
by the surfactant monolayer. As pointed out by Milliken et al. (1993), Marangoni force
practically counteracts the imposed external flow and the velocity on the surface almost
vanishes, thus the interior fluid is practically motionless, regardless of the viscosity ratio.
In fact, the velocity field inside the droplet of figure 8 is two orders of magnitude smaller
than that of the imposed external flow. To gain insight into the physical mechanisms
responsible for the global instability of this flow, we consider the perturbation δp(j)(r, z)
of the pressure field. Figure 8 shows the isocontours of |δp(j)(r, z)| for the eigenmode
causing the base flow instability. As can be observed, the perturbation of the pressure field
increases sharply right in front of the droplet apex, which indicates that the steady flow
destabilization originates at that point.

Figure 9 shows the interface displacement due to the growth of the critical eigenmode at
the quasi-marginally stable state for different surfactant concentrations. This displacement
corresponds to the interface deformation at the initial (linear) phase of the droplet breakup.
As will be shown in § 4.3, the instability described by this eigenmode leads to tip streaming
beyond the linear regime in the presence of surfactant. Interestingly, the perturbation
affects most of the interface, not only the droplet tip, which indicates that the small scale
characterizing the tip streaming is fixed in the nonlinear phase of the droplet deformation.
In fact, the interface perturbation in the linear regime is qualitatively the same as that of
a droplet in the absence of surfactant (Γ̂eq = 0), which breaks up following the central
pinching mode, as will be shown in § 4.3. The perturbation also affects a considerable
portion of the interface when the viscosity ratio is reduced down to λ = 10−2 (figure 10),
although it becomes more localized around the droplet tip. This behaviour is different
from that observed in selective withdrawal, where the eigenmode is highly localized even
for larger viscosity ratios (Eggers & Courrech du Pont 2010). This difference may be the
result of the volume constraint in our problem.

We selected in figure 11 a viscosity ratio two orders of magnitude smaller than that
considered in figure 7, which corresponds approximately to replacing a water droplet
with an air bubble, both submerged in the same liquid bath. As can be observed, the
deformation, damping rate and critical capillary number are hardly changed. This shows
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Figure 9. Droplet shape in the base flow (shaded area) and interface displacement due to the eigenmode,
(rs, zs) = (rs0, zs0) + φ (Re[δrs], Re[δzs]) (dashed lines) (see (2.15)), for Γ̂eq = 0 and C = 0.171, Γ̂eq = 0.1
and C = 0.13, Γ̂eq = 0.25 and C = 0.106, and Γ̂eq = 0.5 and C = 0.09855. The values of the rest of governing
parameters are {Re = 0, λ = 0.1, PeS = 103, Ma = 0.2, Bs,eq = 0}. The value of the arbitrary constant φ in the
linear analysis has been chosen to appreciate the interface deformation.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

r

z

Figure 10. Droplet shape in the base flow (shaded area) and interface displacement due to the eigenmode,
(rs, zs) = (rs0, zs0) + φ (Re[δrs], Re[δzs]) (dashed line) (see (2.15)), for λ = 10−2 and C = 0.2505 in the
absence of surfactant. The value of the arbitrary constant φ in the linear analysis has been chosen to appreciate
the interface deformation.

that the instability mechanism for a surfactant-laden drop is completely different from
that without surfactant since in the latter case, instability is controlled by the value of λ
alone. The fact that the damping rate is hardly affected by the viscosity ratio indicates that
viscous dissipation in the droplet bulk barely contributes to the damping of the droplet
oscillations. This occurs due to the interface immobilization caused by the Marangoni
stress, as explained above. The comparison with the clean interface case (Γ̂eq = 0) shows
how the interval of stable capillary numbers significantly reduces due to the presence of
the surfactant monolayer. As occurs for λ = 0.1, the curve ω∗

i (C) for a clean interface
shows the crossover of two aperiodic modes, as indicated by the solid symbols in figure
11(b). We could not determine the stability limit for λ = 10−3 and Γ̂eq = 0 due to spatial
discretization errors caused by the pointed shape of the droplet tip in that case.

A dense and strong surfactant monolayer (Γ̂eq = 0.5, Ma = 0.2) greatly destabilizes
the droplet, considerably reducing the critical capillary number. The comparison between
figures 7 and 11 shows that in the presence of the surfactant monolayer, the shape and
stability of the droplet are hardly affected by the viscosity ratio for the reduced interval
of stable capillary numbers. In the absence of surfactant, the critical capillary number
increases up to C = 0.171 for λ = 0.1 and C � 0.32 for λ = 10−3, there is more flow
inside the droplet, and the interior viscosity becomes relevant.
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Figure 11. Droplet deformation D (a), and imaginary part of the dominant eigenvalue, ω∗
i (b), as functions of

the capillary number C for {Re = 0, λ = 10−3; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; Bs,eq = 0}. The figure also
shows the results for a clean interface (Γ̂eq = 0). The dotted lines are guides for the eye.

The effect of the droplet and fluid bath inertia on both the droplet deformation and
stability is analysed in figure 12. For Re = 1, the deformation and critical capillary number
are hardly affected by inertia. However, the deformation significantly increases, and the
critical capillary number considerably decreases, for Re = 10. The destabilizing effect
of inertia has also been observed in an extensional outer flow with non-zero Reynolds
number (Acrivos & Lo 1978) and for a droplet covered with an inviscid surfactant in the
presence of a three-dimensional shear flow (Liu et al. 2018). However, it is the opposite
effect to that found by Brady & Acrivos (1982) when the drop inertia is taken into account.
Interestingly, the eigenmode responsible for the instability is aperiodic (ωr = 0) even for
large inertia. This contrasts with what occurs in other microfluidic extensional flows such
as the jetting mode of flow focusing (Cruz-Mazo et al. 2017; Cabezas et al. 2021) and
electrospray (Ponce-Torres et al. 2018), in which the loss of stability is caused by an
oscillatory mode (ωr /= 0, supercritical Hopf bifurcation). The curve ωi(C) for Re = 10
shows the crossover of different modes. The solid circles correspond to a stable (damped)
oscillatory eigenmode, which becomes the dominant one for 0.03 � C � 0.07.

Vlahovska et al. (2009) calculated analytically the steady deformation of a droplet
covered with an inviscid surfactant up to third order in C. In this solution, the Marangoni
convection counteracts the external flow and completely suppresses the flow inside the
droplet, no matter how small the Marangoni number is. As a consequence, the droplet
deformation for Ma > 0 does not depend on the viscosity ratio λ. Figure 13 compares
the droplet deformation D obtained in our simulation for zero surface viscosity and the
first-order and third-order perturbation theory of Vlahovska et al. (2009). As can be
observed, the third-order approximation significantly improves the linear theory, although
it considerably underestimates the droplet deformation next to the critical capillary
number.

4.2. Droplet shape and stability. Influence of surface viscosity
In this subsection, we examine the influence of the surface viscosity on the droplet
deformation D and the imaginary part of the dominant eigenvalue, ω∗

i . As can be observed
in figure 14, the viscous surface stress does not significantly affect the droplet deformation
even for the viscous surfactant (Bs,eq = 1). The competition between the capillary and
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Figure 12. Droplet deformation D and imaginary part of the dominant eigenvalue ω∗
i as functions of the

capillary number C for different values of the Reynolds number number, Re = 0, 1 and 10. The values of
the rest of the governing parameters are {ρ = 1, λ = 0.1; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; Bs,eq = 0}. The
solid circles correspond to damped oscillatory perturbations. The vertical dotted lines indicate the values of the
critical capillary number.

0 0.05 0.10

0.2

0.4 λ = 10–1

λ = 10–3

C

D

Figure 13. Droplet deformation D as a function of the capillary number C for λ = 0.1 and 10−3. The values
of the rest of the governing parameters are {Re = 0; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; Bs,eq = 0}. The symbols
are the simulation results, while the solid and dashed lines are the first-order and third-order perturbation theory
of Vlahovska et al. (2009).

viscous surface stresses can be measured in terms of the product C Bs,eq = G μS
s,eq/σeq.

This product takes values smaller than 10−1 in all the cases considered. Normal stresses
control the droplet shape, which essentially determines the critical capillary number. This
partially explains why this critical value is practically the same for all the values of the
Boussinesq number. More importantly, Marangoni stress suppresses the interface motion,
which renders the surface viscosity stress negligible.

The damping rate of the dominant mode is significantly influenced by surface viscosity
only for Bs,eq = 1 (viscous surfactant). It is somewhat counter-intuitive that the damping
rate decreases as the surface viscosity increases. In fact, one would expect a dissipative
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Surfactant-loaded drop in an extensional flow
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Figure 14. Droplet deformation D, and imaginary part of the dominant eigenvalue ω∗
i , as functions of the

capillary number C for different values of the Boussinesq number Bs,eq = 0, 0.01 and 1. The values of the rest
of the governing parameters are {Re = 0, λ = 0.1; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; λS = 1, Π̂c = 0.1}. The
dotted lines are guides for the eye.

factor, such as viscous surface stresses, to stabilize the system under small-amplitude
perturbations, increasing the rate at which those perturbations are damped. This result
resembles what occurs in other capillary systems, such as flowing rivulets (Herrada et al.
2015), where the same basic flow can become unstable under infinitesimal perturbations
when viscosity exceeds a certain critical value. The decrease of the damping rate as the
surface viscosity increases may be explained as follows. Surface viscosity contributes
to the interface immobilization, reducing the fluid speed over that surface and therefore
inside the droplet. The decrease of the flow in the droplet reduces the viscous damping
of the perturbation. To show the interface immobilization due to surface viscosity, we run
simulations for Bs,eq = 0 and 10, and uniform surfactant concentration, i.e. in the absence
of soluto-capillarity and Marangoni stress. Once this stress has been removed, surface
viscosity becomes noticeable and suppresses the interface motion (figure 15). While for
Bs,eq = 0 the interface velocity is of the order of the outer velocity (vt ∼ C), it practically
vanishes in the case Bs,eq = 10. The damping rates for Bs,eq = 0 and 10 are −0.656 and
−0.138, respectively.

As mentioned above, the viscous surface stress is much smaller than the capillary
pressure because the product C Bs,eq takes values much lower than unity. However, surface
viscosity could still significantly affect the droplet shape by changing the surfactant
distribution over the interface and therefore the capillary pressure profile. However, this is
not the case, as demonstrated in figure 16, where the distributions of interfacial tension,
surfactant density and tangential surface velocity at the critical point are shown both in
the absence of surface viscosity and for the viscous case, Bs,eq = 1. The figure also shows
the corresponding droplet shapes. The surface velocity takes very small values between
the stagnation points located at z = 0 and the half-length of the cross-sectional shape
z = â. In fact, those values are two orders of magnitude smaller than the characteristic
outer fluid velocity C, and much smaller than the values reached at the droplet tip
during tip streaming in the supercritical case (see § 4.3). As a consequence, the viscous
surface stress takes small values and hardly modifies the distribution of surfactant over
the interface. For that reason, the interfacial tension profile and therefore the droplet
shape are essentially the same as those obtained in the inviscid case at the corresponding
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Figure 15. Surface velocity vt on the interface for Bs,eq = 0 and 10. The values of the rest of the governing
parameters are {Re = 0, λ = 0.1, C = 0.04; λS = 1, Γ̂eq = 0.5}. We imposed the condition Γ̂ = Γ̂eq to
suppress soluto-capillarity and Marangoni stress.

stability limits. The droplet loaded with a viscous surfactant is slightly more stretched
by the outer flow for the same capillary number. Previous results have shown that shear
surface viscosity immobilizes the interface when a droplet is submerged in a simple shear
flow (Pozrikidis 1994; Luo et al. 2019), while dilatational surface viscosity reduces the
surfactant concentration gradient (Luo et al. 2019). As can be seen in figure 16(b,c), these
effects are also observed in our simulations for uniaxial extensional flow, although their
magnitude is small for Bs,eq = 1. The above results allow us to conclude that the effects of
surface viscosity are greatly diminished by Marangoni convection. In the absence of this
convection, surface viscosity may play a significant role in both the droplet deformation
and stability (Narsimhan 2019; Singh & Narsimhan 2020). This condition can be reached
for Bs,eq/(PeS Ma) of at least order unity.

Figure 17 compares the bubble deformation and the damping rate of the dominant mode
for an inviscid and viscous surfactant monolayer. As can be observed, the damping rate is
significantly influenced by the Boussinesq number, which means that the surface viscosity
plays a more important role than the inner one.

We now focus on the role played by the shear and dilatational viscosities separately.
The influence of the shear and dilatational surface viscosities on the droplet stability has
been studied recently by Singh & Narsimhan (2020). They concluded from a perturbation
theory that for capillary and Boussinesq numbers of order unity, dilatational surface
viscosity increases the droplet deformation, while shear surface viscosity produces the
opposite effect. Consequently, the dilatational viscosity is found to have a destabilizing
impact, while the shear viscosity increases the droplet stability. A similar conclusion
was obtained previously for a simple shear flow with both small (Narsimhan 2019) and
arbitrary (Gounley et al. 2016) droplet deformations. These studies did not consider the
variation of the interfacial tension over the interface, therefore neither soluto-capillarity
nor Marangoni convection was taken into account. To determine the combined influence
on the droplet stability of the two effects mentioned above and shear/dilatational viscous
stresses, we conducted simulations for λS = 0, 1 and 103, i.e. when only shear viscosity is
considered, dilatational viscosity is taken into account as well, and dilatational viscosity
becomes dominant, respectively (figure 18). Both viscosities contribute to decreasing the
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Figure 16. Surface tension σ̂ (a), surface coverage Γ̂ (b), tangential surface velocity vt (c), and interface
position F (d), as functions of the axial coordinate z for Bs,eq = 0 and C = 0.09855 (blue lines) and Bs,eq = 1
and C = 0.09835 (black lines). The values of the rest of the governing parameters are {Re = 0, λ = 0.1, PeS =
103, Ma = 0.2, Γ̂eq = 0.5; λS = 1, Π̂c = 0.1}.

rate at which oscillations are damped in the stable regime, but they hardly affect the critical
capillary number. In fact, their effect is much smaller than that observed in the absence
of soluto-capillarity and Marangoni convection (Singh & Narsimhan 2020). We observe a
little stabilizing effect of the dilatational viscosity only for the case λS = 103.

Figure 19 compares the droplet shapes and surfactant distributions of two marginally
stable droplets when the equilibrium surface coverage is reduced while keeping constant
both the Marangoni number and the equilibrium Boussinesq number. For a thickening
behaviour (the surface viscosities increase with the surfactant concentration), this is
equivalent to reducing the amount the surfactant adsorbed onto the interface but increasing
the strength and viscosities of the surfactant monolayer. In this case, the surfactant
molecules accumulate in the droplet tip to a greater extent, leaving practically empty
most of the droplet surface. In this way, the interfacial tension reduction is more localized
in the droplet tip, which helps the droplet to adopt a pointed shape. This deformation
is enhanced by the increase of the critical capillary number, which can be explained
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Figure 17. Droplet deformation D and imaginary part of the dominant eigenvalue ω∗
i as functions of the

capillary number C for different values of the Boussinesq number Bs,eq = 0 and 1. The values of the rest
of the governing parameters are {Re = 0, λ = 10−3; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; λS = 1, Π̂c = 0.1}. The
dotted lines are guides for the eye.
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Figure 18. Droplet deformation D and imaginary part of the dominant eigenvalue ω∗
i as functions of the

capillary number C for λS = 0, 1 and 103. The values of the rest of the governing parameters are {Re = 0,
λ = 0.1; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; Bs,eq = 1, Π̂c = 0.1}. The dotted lines are guides for the eye.

as follows. The droplet breaks up when the amount of surfactant convected to its tip is
sufficiently large for the interfacial tension to fall below a certain value. As the surfactant
surface concentration decreases, the capillary number needed to produce such convection
increases, and so does its critical value. For instance, the critical capillary number for
the configuration considered in figure 19 increases from C = 0.098 to 0.113 when the
surfactant concentration decreases from Γ̂eq = 0.5 to 0.1. One can conclude that larger
droplet deformations can be reached if the surface coverage is reduced while keeping the
Marangoni and Boussinesq numbers constant. In the example mentioned above, the critical
capillary number increases by around 15 % when the surfactant density is decreased
by a factor of five. This indicates that the surfactant density cannot be considered as a
dominant factor in the droplet stability for λ = 0.1 when the Marangoni number and the
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Figure 19. (a,b) Surfactant distribution Γ̂ (a) and droplet shape F (b) for {Γ̂eq = 0.1, C = 0.113} (black) and
{Γ̂eq = 0.5, C = 0.0983} (blue). (c,d) Droplet shape in the base flow (shaded area) and interface displacement
due to the critical eigenmode, (rs, zs) = (rs0, zs0) + φ (Re[δrs], Re[δzs]) (dashed lines). The values of the rest
of the governing parameters are {Re = 0, λ = 0.1; PeS = 103, Ma = 0.2; Bs,eq = 1, λS = 1, Π̂c = 0.1}.

equilibrium Boussinesq number are fixed. In fact, the droplet deformation calculated from
the perturbation theory for inviscid surfactants (Vlahovska et al. 2009) is independent
of the surfactant density. The comparison between the results for Γ̂eq = 0.1, Bs,eq = 0
(figure 9) and Γ̂eq = 0.1, Bs,eq = 1 (figure 19) indicates that surface viscosity makes the
linear interface displacement increase near the droplet tip.

Overall, surface viscosity is overshadowed by interface elasticity and has little effect
on droplet deformation and its stability for the conditions considered in this work. For
instance, we have verified that the velocity and pressure perturbation fields for Bs,eq = 1
are very similar to those of the inviscid case. The influence of the surface viscosity on the
interface perturbation is very small as well. Surface viscosity significantly affects only the
damping rate of the dominant mode.

4.3. Tip streaming
We devote the rest of this paper to analysing the tip streaming arising for supercritical
capillary numbers. To this end, we conducted direct numerical simulations that show the
breakup process leading to the ejection of tiny droplets from the droplet tips. As mentioned
in § 3, the simulations start from the steady solution for a subcritical case close to the
stability limit.

Before considering the effect of a surfactant monolayer on the droplet’s breakup mode,
we present the evolution of a droplet with a clean interface. The capillary number is just
above the critical one. As can be observed in figure 20, the breakup mechanism selected by
the droplet is the so-called centre pinching mode, in which the mother droplet shrinks in its
central part and ultimately produces large daughter droplets. This simulation indicates that
the uniaxial extensional flow demands the presence of surfactant to produce tip streaming,
at least for the parameter conditions considered in this figure. This result differs from that
obtained by Zhang (2004), who claimed that tip streaming could be produced with the
uniaxial extensional flow in the absence of surfactant.
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Figure 20. Shape of an inertialess droplet in the absence of surfactant at different instants for λ = 0.1 and
C = 0.175.
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Figure 21. Droplet shapes for t = 60, 120, 130 and 133.9 (from top to bottom). The colours indicate the
surfactant surface concentration Γ̂ (a,d,g,j), interfacial tension σ̂ (b,e,h,k), and tangential surface velocity
vt (c, f,i,l). The values of the governing parameters are {Re = 0, λ = 0.1, C = 0.1; PeS = 103, Ma = 0.2,
Γ̂eq = 0.5; Bs,eq = 0}.

Figure 21 shows the breakup of a surfactant-loaded droplet in the absence of viscous
surface stresses for a capillary number slightly larger than the critical value C � 0.0986
(figure 7). As observed by Eggleton et al. (2001), tip streaming arises at the poles of
the deformed droplet during the last phase of its breakup. The surfactant convection
caused by the outer flow overcomes the Marangoni convection produced by the gradient
of surfactant concentration. Consequently, the surfactant accumulates in the droplet tip,
which favours the fast ejection of an ultra-thin fluid thread (the diameter of the ejected
droplet at t = 133.9 is 0.03). As can be seen in the left-hand column of figure 21, the
surfactant concentration increases at the droplet equator due to the surface compression
in that region. The surfactant convection does not compensate for this effect because that
parallel is a stagnation line.

Figure 22 compares the velocity vtip of the droplet tip calculated with two initial
conditions: (i) a spherical droplet with a uniform surfactant distribution, and (ii) the steady
solution for a subcritical case close to the stability limit (also considered in the rest of the
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Figure 22. Velocity vtip of the droplet tip as a function of the droplet deformation D for {ρ = 1, Re = 10,
λ = 0.1, C = 0.084; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; Bs,eq = 0}. The circles and triangles correspond to
simulations starting from a spherical droplet with a uniform surfactant distribution and from the steady solution
for a subcritical case close to the stability limit, respectively.
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Figure 23. Velocity vtip of the droplet tip as a function of the time t (a) and the droplet deformation D (b)
for Bs,eq = 0, 10−5, 10−4 and 10−3. The values of the rest of the governing parameters are {Re = 0, λ = 0.1,
C = 0.1; PeS = 103, Ma = 0.2, Γ̂eq = 0.5; λS = 1, Π̂c = 0.1}. The colours indicate the surfactant surface
concentration Γ̂ .

simulations in this work). The droplet tip moves at practically the same speed regardless
of the initial condition, even though the simulation corresponds to the highest Reynolds
number Re = 10 considered in this work. When the initial droplet shape is spherical, the
tip is dragged by the outer flow, and its velocity takes values similar to those of that flow at
the symmetry axis; i.e. vtip ∼ C. Then the tip slows down and the droplet approaches
quasi-statically its maximum stable deformation D = 0.37. It eventually exceeds this
value, and then the droplet tip accelerates. The marginally stable shape can be regarded
as an intermediate state adopted by the droplet before tip streaming arises. Comparison
with the results shown in figure 23 indicates that the droplet tip remains practically still
for much longer in the inertialess case.
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4.4. Tip streaming: influence of surface viscosity
Surface viscosity opposes the large surface velocity gradient demanded by tip streaming.
On the other hand, the accumulation of surfactant in the droplet tip increases the surface
viscosity in that region. A natural question is whether the surfactant viscosity can inhibit
or suppress the tip streaming phenomenon described in figure 21. To answer this question,
we analyse in figures 23–28 four time-dependent simulation runs conducted for different
values of the surface viscosities.

Figure 23 shows the velocity vtip of the droplet tip as a function of time t in the absence
of viscous surface stresses, for three values of the Boussinesq number Bs,eq. The function
vtip(t) and therefore the tip position are essentially the same in all the cases analysed. The
viscous surface stresses slightly delay the ejection process. The tip velocity becomes of the
order of the characteristic outer fluid velocity C once the ejected fluid thread has formed.

Figure 24 shows snapshots obtained from the four transient simulations. The surface
viscosity affects the growth of the ejected liquid thread from deformations D � 0.6,
increasing the thread diameter during the rest of the liquid emission. Interestingly, the
size of the ejected droplet depends significantly on the Boussinesq number: the higher the
surface viscosity, the larger the droplet formed at the end of the ejected thread. Specifically,
the ejected droplet diameter in figure 24(e) (measured as twice the maximum of the
interface radius at the last simulation instant) is approximately 0.030, 0.039, 0.12, 0.22
and 0.32 for Bs,eq = 0, 10−6, 10−5, 10−4 and 10−3, respectively. These values are plotted
in figure 25. The liquid volume accumulated in the droplet tip increases up to three orders
of magnitude for Bs,eq = 10−3. In fact, this fluid ejection may not be qualified as true
tip streaming. It must be noted that this value of the Boussinesq number corresponds to
relatively small surface viscosity. In fact, Boussinesq numbers of that order of magnitude
can be obtained when a water drop 1 mm in radius is submerged in a liquid bath 10 mPa s
in viscosity, and the interface is loaded with a surfactant of shear viscosity 10−8 Pa s m.

As mentioned above, figure 24(a–d) shows that the droplet evolution is affected by the
surface viscosity for D � 0.6. A similar conclusion can be obtained from the evolution
of the tip curvature (figure 26). This quantity remains practically independent from
the surface viscosity until D � 0.55, and then increases more rapidly with decreasing
surface viscosity. In all the cases, the curvature reaches a maximum whilst the tip is still
accelerating (see figure 23), and then decreases due to the inflation of the ejected droplet.
The tip keeps on accelerating, dragged by the outer flow even after the inflation of the
ejected droplet has begun.

Now we analyse the effect of the dilatational surface viscosity. The droplet shape and
surfactant distribution obtained for λS = 0 and 1 (figure 27a,b) are practically the same,
which indicates that the shear surface viscosity has a much more noticeable influence
on the tip streaming phenomenon than that produced by the dilatational one. In fact, the
droplet behaviour is very similar to that of the inviscid surfactant if only the dilatational
viscosity is accounted for (λS = 103 and Bs,eq = 10−6). In other words, the tip streaming
arising for an inviscid monolayer is suppressed by the shear viscosity. The qualitatively
different roles played by the shear and dilatational viscosity are in contrast to what
occurs in the dynamics of slender threads, where that difference is merely quantitative
(Martínez-Calvo & Sevilla 2018; Wee et al. 2020).

Finally, we examine the effect of the surface stresses due to shear viscosity on the ejected
droplet diameter. We have verified that the droplet diameter hardly changes when the term[

Bs

(
(Fvt)

′

F
+ κvn

)]′
(4.1)
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Figure 24. Droplet shape in the course (a–d) and at the end (e) of the transient simulation for Bs,eq = 0,
10−5, 10−4 and 10−3. The values of the rest of the governing parameters are {Re = 0, λ = 0.1, C = 0.1;
PeS = 103, Ma = 0.2, Γ̂eq = 0.5; λS = 1, Π̂c = 0.1}. The colours in graph (e) indicate the surfactant surface
concentration Γ̂ .
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Figure 25. Droplet diameter d at the end of the transient simulation for Bs,eq = 10−6, 10−5, 10−4 and 10−3.
The values of the rest of the governing parameters are {Re = 0; λ = 0.1, C = 0.1; PeS = 103, Ma = 0.2, Γ̂eq =
0.5; λS = 1, Π̂c = 0.1}.
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Figure 26. Curvature κtip of the droplet tip as a function of the droplet deformation D for Bs,eq = 0, 10−5,
10−4 and 10−3. The values of the rest of the governing parameters are {Re = 0, λ = 0.1, C = 0.1; PeS = 103,
Ma = 0.2, Γ̂eq = 0.5; λS = 1, Π̂c = 0.1}.
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Figure 27. Shape and surfactant distribution at t = 132.3 for λS = 0 and Bs,eq = 10−3 (a), λS = 1 and Bs,eq =
10−3 (b), and λS = 103 and Bs,eq = 10−6 (c). The values of the rest of the governing parameters are {Re = 0,
λ = 0.1; C = 0.1; PeS = 103, Ma = 0.2, Γ̂eq = 0.5, Π̂c = 0.1}. The colours indicate the surfactant surface
concentration Γ̂ .

is ‘turned off’ in (2.10). On the contrary, switching off the terms

Bsκ̄

[
−F

(vt

F

)′ + κ̄vn

]
or 2

(
BsK − B′

s
F′

F

)
vt − 2κ1(Bsvn)

′ (4.2)

in (2.9) or (2.10), respectively, significantly affects the droplet size. When the terms (4.2)
are turned off simultaneously, the resulting tip streaming is very similar to that occurring
in the inviscid case. Therefore, these normal and tangential terms are responsible for the
increase in the droplet diameter due to shear surface viscosity.

Figure 28 allows us to understand why the size of the droplet tip is affected by tangential
stress caused by the shear surface viscosity despite the small value of the Boussinesq
number. The tangential surface stress (2.10) takes very small values over the interface
except at the droplet apex and the two ends of the liquid thread connecting the parent
and ejected droplet. In fact, the magnitude of that stress reaches its maximum value
right in front of the ejected droplet. This stress distribution slightly reduces the surfactant
accumulated in the droplet tip. However, this small reduction leads to a large increase in
the interfacial tension because the concentration in that region is close to the maximum
packing density. The increase of the interfacial tension in the droplet tip makes the
interface curvature decrease in that region. Therefore, viscous surface stress changes the
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Figure 28. Surface tension σ̂ (a), surface coverage Γ̂ (b), surface shear stress τ S
ts (c), surface velocity vt (d),

and interface position F (e), as functions of the axial coordinate z for the Boussinesq numbers at equilibrium
Bs,eq = 0 and 10−3. The values of the rest of the governing parameters are {Re = 0, λ = 0.1, C = 0.1; PeS =
103, Ma = 0.2, Γ̂eq = 0.5; λS = 1, Π̂c = 0.1}.

shape of the droplet tip by altering the balance of surface stresses and the distribution
of surfactant over the interface. This phenomenon resembles what occurs during the
pinch-off of an interface covered with a surfactant monolayer, where surface viscosity
becomes relevant because of its considerable influence on the transport of surfactants over
the interface (Ponce-Torres et al. 2017).
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5. Conclusions

We studied numerically the steady deformation and breakup of a droplet covered with an
insoluble surfactant in a uniaxial extensional flow, focusing our attention on the role of the
surface viscosities in both the subcritical and supercritical regimes. We considered the full
hydrodynamic model, which comprises arbitrary large droplet deformations, a variation
of the interfacial tension over the droplet surface (soluto-capillarity and Marangoni
convection effects), and both the droplet and outer bath inertia.

In all the cases analysed, the frequency and damping rate of the linear mode responsible
for instability vanish at the critical capillary number. This implies that a stationary linear
perturbation destabilizes the flow. The surfactant monolayer considerably reduces the
interval of the capillary number for which a steady droplet deformation can be produced.
Neither the droplet deformation nor the stability is significantly affected by the droplet
viscosity within that interval. In the absence of surfactant, the critical capillary number
increases, and the effect of the droplet viscosity becomes noticeable close to the marginal
stability. In addition, inertia significantly increases the droplet deformation and decreases
the critical capillary number for Reynolds numbers of the order of 10.

Our results consistently show that neither the droplet deformation nor the stability is
significantly affected by the surface viscosities, even for moderately viscous (Bs,eq = 1)
and very viscous (Bs,eq = 10) surfactants. However, viscous surface stresses considerably
reduce the damping rate of the dominant mode. This reduction does not essentially alter
the critical capillary number. We conclude that the soluto-capillarity and Marangoni
convection affect the droplet stability more significantly than the surface viscosities.
Marangoni convection opposes the external flow. The velocity considerably decreases on
the interface and therefore inside the droplet. This essentially explains why both the droplet
and monolayer viscosities play a secondary role in the droplet’s steady deformation and
stability.

Our simulations confirm that surfactant is a crucial ingredient to produce tip streaming.
The interface deformation in the linear regime affects the entire drop and is qualitatively
the same as that observed when a clean droplet breaks up following the central pinching
mode. However, the nonlinear evolution is drastically altered by the accumulation of
surfactant molecules in the droplet tip. The small local scale characterizing tip streaming
is fixed in this phase of the droplet bursting.

One of the main conclusions of this work is that shear surface viscosity considerably
changes the shape and size of the droplet tip in the final stage of tip streaming. Interestingly,
this occurs even for very small surface viscosities, such as that of SDS, a surfactant
commonly used in experiments. We have explained this phenomenon in terms of the
influence of the viscous surface stress on both the balance of normal interfacial stresses and
the surfactant transport over the interface when the ejected droplet is formed. Specifically,
the shear viscosity slightly reduces the amount of surfactant in the droplet tip, which
entails a sharp increase in the interfacial tension for the parameter conditions considered
in our simulations. The effect of the dilatational viscosity is much less noticeable.

The present work can be extended in several directions. Probably the most interesting
one is to study the effects on tip streaming of factors not considered in § 4.3, such as
inertia, bulk viscosity ratio, Marangoni number and surfactant concentration. A systematic
analysis of these effects requires an enormous computational effort, given the computing
time consumed by each transient simulation. Our simulations correspond to configurations
with PeS Ma/Bs,eq = a2/(μsDS) 
 1, which explains why the surface viscosity plays a
subdominant role vs Marangoni convection in both the droplet deformation and stability.
One can expect surface viscosity to become relevant as the droplet diameter decreases.
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The analysis of the behaviour of micrometre droplets constitutes another interesting
extension of the present study.

The Langmuir equation of state (2.1) gives an unrealistic sharp reduction of the
interfacial tension for surfactant concentrations close to the maximum packing density
Γ∞. In fact, the interfacial tension becomes negative for (Γ∞ − Γ )/Γ∞ < e−1/Ma∗

, where
Ma∗ = Γ∞RT/σ0 is the Marangoni number defined in terms of the surface tension σ0
of the clean interface. However, experiments show that the surface tension reaches a
plateau as Γ → Γ∞, which is commensurate with σ0. The pointed shape of the droplet
tip for Bs,eq = 0 can be attributed partially to the unrealistic behaviour of the Langmuir
equation in this limit. It may be of particular interest to determine the influence of the
surface tension minimum value on tip streaming for supercritical capillary numbers. This
element may help us to understand the discrepancies between theoretical predictions and
experiments (Eggleton et al. 2001).
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Appendix A. Calculation of viscous surface stresses

In this Appendix, we derive the interfacial stresses produced by the surfactant monolayer
using the interface intrinsic (local) coordinate system. We consider an axisymmetric
column of fluid with axis z and radius h(z). We choose the cylindrical coordinate
system (x1, x2, x3) = (z, θ, r) with scale factors h1 = h3 = 1, h2 = r. The metric tensor is
diagonal with gjj = h2

j and gjj = h−2
j . The determinant is g = gii = r2. The non-vanishing

Cristoffel symbols are Γ 3
22 = −x3 ≡ −r and Γ 2

32 = Γ 2
23 = 1/x3 ≡ 1/r.

As the local coordinates for the surface we choose (u1, u2) = (s, θ), where s is the
arc length. Let z = g(s); it then follows that g′2 + h′2 = 1. We will always denote the
derivative with respect to the arc length by a prime. Now the Cartesian coordinates of
the surface are y = y(z, θ) = (h(z) cos θ, h(z) sin θ, z), and in cylindrical components,
xi(s, θ) = (g(s), θ, h(s)). As a result, the tangent vectors are ti1 = (g′, 0, h′) and ti2 =
(0, 1, 0). Since aαβ = gijtiαt j

β , we find that aαβ is diagonal with a11 = 1 and a22 = h2,
and determinant a = h2, so that a11 = 1 and a22 = 1/h2.

The ε-tensors are εijk = √
gεijk and εαβ = εαβ/

√
a, so that

ni = 1
2εαβεijkt j

αtkβ = (−h′, 0, g′) (A1)

is the normal. The second fundamental form is diagonal with b11 = g′h′′ − h′g′′ and b22 =
−hg′. The eigenvalues of bβ

α = bαγ aγβ are the principal curvatures. Putting

bβ
α =

(g′h′′ − h′g′′ 0

0 −g′

h

)
≡
(−κ2 0

0 −κ1

)
, (A2)
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we have

κ1 = g′

h
, κ2 = h′g′′ − g′h′′ (A3a,b)

and

2H = −κ1 − κ2 = g′h′′ − h′g′′ − g′

h
, K = κ1κ2 = g′(h′g′′ − g′h′′)

h
, (A4a,b)

where H and K are the mean and Gaussian curvatures, respectively.
Let n be the normal that points from inside the fluid to the outer phase. Let F be the force

on the interface (Scriven 1960; Aris 1962), so F = −n · σ . Assuming negligible inertia of
the interface, the covariant version for the force F is of the form

− Fi = tiαTα
t + niTn = ti1T1

t + niTn, (A5)

using the fact that Fi can have tangential components only in the ti1-direction. Thus, using

t = (1, 0, h′)/
√

1 + h2
z = ti1, we obtain

n · σ · n = Tn, n · σ · t = T1
t , (A6a,b)

where (Aris 1962)

Tn = N1 + N2 + N3 ≡ 2Hσ + 2H(μs
1 + μs

2)t
j
λa
λμWj,μ + 2μs

1t j
λε
λαεβμbαβWj,μ (A7)

and

T1
t = T1 + T2 + T3 + T4 + T5 + T6

≡ a1βσ,β + a1β
(
(μs

1 + μs
2)a
λμt j
λWj,μ

)
,β

+ 2μs
1Ka1β t j

βWj − μs
1ε

1β
(
ελμ(t j

μWj),λ

)
,β

− 2μs
1ε

1λbλβεβμ(n jWj),μ − μs
1,βεαλεβμtiα

(
t j
λWj,μ + t j

μWj,λ

)
. (A8)

Here μs
1 and μs

2 are the shear and dilatational surface viscosities, respectively (called ε and
κ by Scriven (1960)), and σ is the surface tension. We have generalized the expressions to
allow surface viscosities to depend on space. As a result, there are extra terms in Tαβ

,β , so
T2 is modified, and there is an additional term T6.

The velocity in cylindrical coordinates is Wi = (vz, 0, vr) and Wj,μ = ∂Wj/∂uμ − Γ l
jk

Wltkμ, resulting in Wj,1 = (v′
z, 0, v′

r), Wj,2 = (0, Γ 3
22W3t22, 0) = (0, hvr, 0). Beginning with

the normal balance, N1 = 2Hσ is the usual surface tension term. Now

t j
λa
λμWj,μ = t j

1Wj,1 + t j
2

h2 Wj,2 = g′v′
z + h′v′

r + vr

h
, (A9)

so

N2 = 2H(μs
1 + μs

2)
[
g′v′

z + h′v′
r + vr

h

]
. (A10)

Further, to calculate N3, note that

ελαεβμbαβ =
(−b22/a 0

0 −b11/a

)
=
(

κ1 0
0

κ2

h2

)
(A11)
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and

t j
1Wj,1 = g′v′

z + h′v′
r, t j

2Wj,2 = hvr, (A12a,b)

so that

N3 = 2μs
1

[
κ1(g′v′

z + h′v′
r) + κ2

h
vr

]
. (A13)

The terms from the tangential balance are

T1 = a1βσ,β = σ ′ (A14)

and

T2 = a11
[
(μs

1 + μs
2)
(

aλμt j
λWj,μ

)]
,1

=
[
(μs

1 + μs
2)
(

a11t j
1Wj,1 + a22t j

2Wj,2

)]′
=
[
(μs

1 + μs
2)
(

g′v′
z + h′v′

r + vr

h

)]′
. (A15)

Further,

T3 = 2μ1Ka11t j
1Wj = 2μ1Ka11t j

1Wj = 2μ1K(g′vz + h′vr). (A16)

The curl vanishes, and we have T4 = 0. Next, we have n j = nj, so

vn = n jWj = −h′vz + g′vr. (A17)

We have

ε1λεβμbλβ = ε12ε21b22 = g′

h
, (A18)

so

T5 = −2μs
1

g′

h
v′

n. (A19)

Finally, the new term is

T6 = −(μs
1)

′ε1λε1μ
(

t j
λWj,μ + t j

μWj,λ

)
= −2(μs

1)
′ t j

2
h2 Wj,2 = −2(μs

1)
′ vr

h
. (A20)

Taking into account the above results, the boundary condition for the normal component
is

− n · σ · n = κσ + μs
1κ̄
[
−g′v′

z − h′v′
r + vr

h

]
+ μs

2κ
[
g′v′

z + h′v′
r + vr

h

]
, (A21)

where κ = κ1 + κ2 and κ̄ = κ1 − κ2.
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We have
vn = −h′vz + g′vr, vt = g′vz + h′vr (A22a,b)

for the normal and tangential velocities, respectively, so

vz = g′vt − h′vn, vr = h′vt + g′vn. (A23a,b)

From this, it follows that
v′

t = g′v′
z + h′v′

r − κ2vn, (A24)

so that

−n · σ · n = κσ + μs
1κ̄

[
−h

(vt

h

)′ + κ̄vn

]
+ μs

2κ

[
(hvt)

′

h
+ κvn

]
. (A25)

For the tangential component, we have

n · σ · t = σ ′ +
[
μs

1

(
(hvt)

′

h
+ κvn

)]′
+ 2

(
μs

1K − (μs
1)

′ h′

h

)
vt − 2κ1(μ

s
1vn)

′

+
[
μs

2

(
(hvt)

′

h
+ κvn

)]′
. (A26)

The dimensionless forms of (A25) and (A26) are (2.9) and (2.10), respectively.
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