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Thermal rupture of a free liquid sheet

G. Kitavtsev1,†, M. A. Fontelos2 and J. Eggers1

1School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
2Instituto de Ciencias Matemáticas, (ICMAT, CSIC-UAM-UCM-UC3M),

C/ Serrano 123, 28006 Madrid, Spain

(Received 8 September 2017; revised 4 December 2017; accepted 10 January 2018)

We consider a free liquid sheet, taking into account the dependence of surface
tension on the temperature or concentration of some pollutant. The sheet dynamics
are described within a long-wavelength description. In the presence of viscosity, local
thinning of the sheet is driven by a strong temperature gradient across the pinch
region, resembling a shock. As a result, for long times the sheet thins exponentially,
leading to breakup. We describe the quasi-one-dimensional thickness, velocity and
temperature profiles in the pinch region in terms of similarity solutions, which possess
a universal structure. Our analytical description agrees quantitatively with numerical
simulations.

Key words: interfacial flows (free surface), microfluidics, slender-body theory

1. Introduction
The breakup of liquid sheets plays a crucial role in the generation of industrial

sprays (Eggers & Villermaux 2008) or natural processes such as sea spray (Wu 1981).
The industrial production of sprays proceeds typically via the formation of sheets,
which break up to form ribbons. Ribbons are susceptible to the Rayleigh–Plateau
instability, and quickly break up into drops. In nature, sheets are often formed by
bubbles rising to the surface of a pool (Boulton-Stone & Blake 1993; Spiel 1998;
Lhuissier & Villermaux 2011). Once broken, the sheet decays into a mist of droplets
(Lhuissier & Villermaux 2011; Feng et al. 2014), and collapse of the void left by
the bubble produces a jet (Duchemin et al. 2002).

It is therefore of crucial importance to understand the mechanisms leading to the
breakup of sheets. In contrast to jets and liquid threads (Eggers & Villermaux 2008),
there is no obvious linear mechanism for sheet breakup, unless there is strong shear,
and the mechanism is that of the Kelvin–Helmholtz instability (Tammisola et al.
2011). As a result, some authors have invoked the presence of attractive van der
Waals forces (Vrij 1966) to explain spontaneous rupture (Thoroddsen et al. 2012).
However, the average thickness of a sheet at the point of breakup has been measured
(Spiel 1998; Lhuissier & Villermaux 2011) to lie between 100 nm and 100 µm,
depending on the purity of the liquid. Van der Waals forces, on the other hand,
only have a range of tens of nanometres (Seemann, Herminghaus & Jacobs 2001;
Champougny et al. 2017), and cannot play a significant role except perhaps for the
very last stages of breakup.

† Email address for correspondence: georgy.kitavtsev@gmail.com
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Instead, it has been suggested (Tilley & Bowen 2005; Lhuissier & Villermaux
2011; Bowen & Tilley 2013; Néel & Villermaux 2018) that gradients of temperature
could promote breakup, because they produce Marangoni forces (Craster & Matar
2009), which lead to flow. This cannot be a linear mechanism, since for reasons of
thermodynamic stability Marangoni flow will always act to reduce gradients; molecular
diffusion will also alleviate (temperature) gradients. In addition, the extensional flow
expected near a potential pinch point will stretch fluid particles, once more tending
to reduce gradients. Thus a sufficiently strong initial variation of the temperature (or
some other contaminant) is needed. Lhuissier & Villermaux (2011) have shown that
strong thermal convection is present in the sheet caused by rising bubbles, whose
associated temperature variations could be the cause for breakup. More recently, Néel
& Villermaux (2018) initiated breakup by either contaminating the sheet with a drop
of another liquid, or by local heating, thus showing directly that such perturbations
can lead to rupture of a liquid sheet.

In the absence of viscosity, it was found numerically that sheets can break up in
finite time (Matsuuchi 1976; Pugh & Shelley 1998), if there is a sufficiently strong
initial flow inside the sheet. This was confirmed analytically by Burton & Taborek
(2007), who found a similarity solution leading to finite-time breakup. Their solution
is slender, so a long-wavelength approximation can be used, and the final stages of
breakup are described by a local mechanism. However, it is found numerically (Bowen
& Tilley 2013) and supported by theoretical arguments (Eggers & Fontelos 2015) that
an arbitrarily small amount of viscosity inhibits this singularity, and the sheet returns
ultimately to its original equilibrium thickness. Namely, on the basis of the inviscid
scaling found by Burton & Taborek (2007), the viscous term becomes of the same
order as the surface tension term when the minimum sheet thickness is of the order
of the viscous length scale,

`ν = ν
2ρ/γ , (1.1)

which even for a low-viscosity liquid such as water only reaches approximately
10 nm. For the analogous case of jet breakup, see Eggers & Villermaux (2008), and
for liquid sheets with viscosity, see the recent study by Fontelos, Kitavtsev & Taranets
(2017), showing asymptotic convergence to the equilibrium flat state. Bowen & Tilley
(2013) have thus asked the question whether, in the nonlinear regime, temperature
gradients could remain effective in driving the sheet towards vanishing thickness. If
there is no viscosity, yet temperature (and thus surface tension) gradients are taken
into account, the Burton & Taborek (2007) singularity is recovered, and surface
tension gradients play a subdominant role. This is consistent with the above argument
that a pinching solution will only stretch, and thus alleviate, thermal gradients.
However, paradoxically, numerical evidence (Bowen & Tilley 2013) suggests that, if
both finite viscosity and surface tension gradients are taken into account, breakup can
occur, by a mechanism different from those considered previously. However, Bowen
& Tilley (2013) were unable to find a consistent similarity description, and numerical
evidence is inconclusive as to whether there is a finite-time or infinite-time singularity.
Néel & Villermaux (2018) provide an explanation, confirmed by experiment, for the
formation of a sharp temperature jump within the thin pinch-off region, which has
been observed by Bowen & Tilley (2013) to persist during the later self-similar
evolution of the sheet.

In this paper, we address the late stages of pinch-off in the presence of both
finite viscosity and surface tension gradients. For simplicity, here we only consider
variations of the temperature. The resulting equations are the same as those for a
surfactant in the limit of high solubility (Jensen & Grotberg 1993; Matar 2002). In the
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x
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FIGURE 1. (Colour online) Typical initial profiles of the height, velocity and temperature
for a free liquid sheet described by the system (2.2). In particular, these profiles represent
the initial data for the simulation presented in figure 2.

next section, we describe the equations coming from a long-wavelength assumption:
the sheet thickness is much smaller than a typical variation in the lateral direction.
This is consistent with the small aspect ratio of typical sheets: while the thickness
may be of the order of micrometres, temperature varies over a fraction of the lateral
extension of the sheet, which is typically a millimetre. In addition, we will see
that close to breakup the aspect ratio becomes vanishingly small, so the slenderness
assumption is valid near breakup as well.

We choose a one-dimensional description, based on the idea that, if instability
is triggered by a random variation of the temperature, there will be one direction
along the sheet in which gradients are greatest. This assumption of a one-dimensional
description is also supported by recent measurements of the film thickness using
interferometry (Néel & Villermaux 2018). It is observed that Marangoni stresses
lead to a strong increase in gradient of either temperature or another contaminant,
which grows principally in one direction. The one-dimensional geometry of the sheet
is presented in figure 1, using the initial conditions considered by us. In figure 2
we show a typical numerical simulation of the equations of motion (2.2) to be
considered below, which leads to rupture. Everything is reported in dimensionless
variables, explained in detail in § 2. For water, the dimensionless parameters chosen in
figure 2 correspond to a sheet of approximately 6.9 µm width and 220 nm thickness,
with a surface tension variation of 1 % across the sheet.

Starting from smooth initial profiles for the sheet thickness h(x, t), velocity u(x, t)
and temperature θ(x, t), the shape of the sheet evolves towards a thin film on the left,
connected to a macroscopic droplet right (see figure 2a). A zoom of the pinch region
(figure 2b) shows that the sheet thickness goes to zero in a localized fashion near the
point where the sheet and the drop meet. In the same region, the velocity has a sharp
and increasing maximum (figure 2c), while the temperature develops an increasingly
sharp jump (figure 2d).

In the third section, we construct an analytical solution in which the sheet thickness
goes to zero exponentially. The macroscopic outer part consists of an exponentially
thinning film on one side, and a static ‘drop’ on the other. Over both parts of the
outer solution the temperature is approximately constant but different, with a strong
gradient between the two regions. The pinch region connecting the two parts is
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FIGURE 2. (Colour online) Rupture of a viscous liquid sheet as described by (2.2),
starting from initial conditions h(x, 0) = 1 − 0.4 cos(x), u(x, 0) = π sin(x) and θ(x, 0) =
cos(x), a particular case of those used in Bowen & Tilley (2013) (dashed curves), with
parameters O=D= 1/4 and M= 10. Shown are six snapshots, taken at times t0= 0, t1=

2.247, t2= 4.032, t3= 5.138, t4= 5.987, t5= 6.800, of the height profile h(x, t) (a), with
a zoom of the pinch region shown in (b). The velocity v(x, t) and temperature θ(x, t)
profiles are shown in (c) and (d), respectively.

described by two different similarity solutions, which hold in two different regions,
with two different sets of scaling exponents. Matching all regions together, we are
able to describe pinch-off in terms of a single free parameter, which is the position
of the pinch point. All other parameters are found in terms of the initial conditions,
or can be absorbed into a shift in time. The results agree very well with numerical
simulations of the long-wavelength equations. We show for the first time, both
theoretically and numerically (see figure 5), that the minimum of the sheet thickness
h(x, t) decreases exponentially, at a rate we calculate. This result refutes the conjecture
of Bowen & Tilley (2013) that finite-time sheet breakup occurs when both Marangoni
and viscous forces are present. In a final section, we discuss our results and give
perspectives. Appendix A presents a detailed analysis of the leading-order equation
arising in the exponentially thinning film region and contains a complete list of its
possible solutions.

2. Long-wavelength equations and simulation
We consider the motion of a free liquid sheet, whose plane of symmetry has been

fixed in the z-plane (see figure 1). We expect that generically the sheet breaks up
along a line, so in describing this singularity, we can assume that fields only depend
on the coordinate x perpendicular to this line. Thus the shape of the sheet is described
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uniquely by the half-thickness h(x, t). We assume that the surface tension depends
linearly on temperature θ (Craster & Matar 2009) according to

γ = γ0 − k(θ − θ0), (2.1)

which is a good approximation away from any critical point (Rowlinson & Widom
1982). Typical values for the coefficient k and the reference surface tension γ0 for
water are (Tilley & Bowen 2005) 0.2 dyn cm−1 K−1 and 60 dyn cm−1, respectively.
We will assume that k> 0 as is the case for most systems, but the opposite sign will
simply reverse the flow of heat. The average velocity in the sheet is u(x, t), and the
temperature θ(x, t), which is allowed to diffuse.

Bowen & Tilley (2013) derived the equations for a slender sheet of variable surface
tension as an extension of the classical long-wave description for a free liquid sheet
by Erneux & Davis (1993). The dimensionless forms of these equations are

ht =−(hu)x, (2.2a)

ut + uux = hxxx + 4O
(hux)x

h
−M

θx

h
, (2.2b)

θt + uθx =D
(hθx)x

h
, (2.2c)

where subscripts denote differentiation with respect to the variable. As a length scale
we take L0=L/π, where L is the width of the computational domain, τ =

√
L3

0ρ/(εγ0)
is the time scale, chosen to make the coefficient in front of the surface tension term
hxxx unity, and ρ is the fluid density; the unit of velocity is L0/τ . As the unit of
temperature ∆ we take half of the variation of the initial temperature across the
system. Since the films to be considered are very thin compared to their spatial
extension, we choose H = εL0 as a height scale, where ε� 1. This means that the
sheet can be considered slender throughout its evolution, justifying the use of a
long-wavelength description.

Then (2.2a) describes mass conservation, and (2.2b) is the momentum balance
across the sheet. Inertial forces on the left are balanced by surface tension, viscous
stresses and Marangoni forces on the right, respectively. Note the key feature
that the Marangoni stresses contain a factor 1/h, and are thus amplified for thin
sheets. The size of the kinematic viscosity ν is measured by the Ohnesorge number
O = ν

√
ρ/(L0γ0ε), and a dimensionless measure of surface tension variations is

defined by M = k∆/(γ0ε
2). We assume that the variation of the surface tension is

small (of the order of 1 %), so we can take surface tension as a constant, except in the
Marangoni term. Likewise, second-order corrections to the temperature dependence
of surface tension can be neglected.

The last equation (2.2c) describes the diffusion of temperature through the sheet,
and D = κ

√
ρ/(L0γ0ε), where κ is the thermal diffusion coefficient; P = O/D is

known as the Prandtl number. We remark that we are considering a contaminant that
diffuses in the bulk, and that the effects of Marangoni elasticity are not considered.
Were a surfactant to be present on the surface only (Stone 1990), the factor 1/h on
the right-hand side of (2.2c) would be absent, since it comes from averaging over the
sheet. Thus the asymptotic balance would change in that case, which is an issue worth
exploring. It is seen from the dependence of M on ε that, even for a small relative
change of the surface tension k∆/γ0, M can be of order one if the aspect ratio is
small. In the description (2.2), we have neglected heat conduction in the surrounding
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gas, since the thermal conductivity in the liquid is much greater. We also did not take
into account the effect of evaporation into the gas atmosphere, as temperature variation
is small, and pinching occurs on a fast time scale. This is confirmed formally with
estimates used to find the dominant behaviour in the evaporation of drops (Larson
2014).

For simplicity, we consider solutions to (2.2) in a fixed domain [0, π] (after non-
dimensionalization), and assume that

u= hx = θx = 0 for x= 0,π, (2.3)

i.e. no-flux boundary conditions for the velocity and free boundary conditions for the
height and the temperature. This choice of boundary conditions is motivated by the
fact that, for symmetric initial data, for example those of figure 2, they result in
solutions which can be extended to periodic solutions of period 2π. The conditions
(2.3) also imply that there is no mass or heat flux out of the system, and thus

M =
∫ π

0
h(x, t) dx, Q=

∫ π

0
θ(x, t)h(x, t) dx (2.4a,b)

are conserved quantities, set by the initial conditions. We do not expect our choice
of boundary conditions to have an effect on the structure of the singularity. The
outer film and drop regions will still be described by the same leading-order ordinary
differential equations (ODEs), but their solutions may be selected by the particular
boundary and initial data. However, with the particular choice of boundary conditions
(2.3) we are able to determine the structure of the singularity largely in terms of the
two quantities M and Q alone.

Our main focus will be on pinch-off singularities for which h→ 0 at some point x0

in space. To summarize what is known or widely accepted about pinch-off singularities
of the system (2.2), and as stated in the Introduction, for O = 0 finite-time pinch-
off can occur for suitable initial conditions. The neighbourhood of the pinch point
is described by the similarity solution of Burton & Taborek (2007) for any value of
M, and Marangoni forces are subdominant. If, on the other hand, O is finite and
M= 0, breakup can never occur (Eggers & Fontelos 2015) and instead the sheet will
eventually relax to a uniform state h(x)=M. The present paper deals with the case
that both M and O are non-zero, for which we find a local pinch solution for which
the thickness goes to zero exponentially in time (a typical example being presented
in figure 2).

To solve the system (2.2) we extended the finite-difference schemes developed
previously for the modelling of finite-time rupture under the presence of van der
Waals forces by Peschka (2008) and Peschka, Münch & Niethammer (2010) and of
coarsening dynamics of droplets in free liquid films by Kitavtsev & Wagner (2010).
We incorporated the temperature equation (2.2c) along with the Marangoni term
−Mθx/h, coupled with the boundary conditions (2.3). The resulting fully implicit
finite-difference scheme is solved on a general non-uniform mesh in space, with
adaptive time step. At every time step the nonlinear system of algebraic equations is
solved using Newton’s method. In order to resolve the solution close to the rupture
point, we applied the algorithm of Peschka (2008) for dynamical grid re-meshing to
concentrate points near where the film thickness is the smallest.
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FIGURE 3. (Colour online) Typical height (a) and temperature (b) profiles near pinch-off.
On the left is shown a film (region I) which thins exponentially, and on the right a drop
in static equilibrium (region IV). These two outer regions are joined together at x0, where
pinch-off ultimately occurs. The temperature inside the film has a nearly constant value θl,
in the drop a constant value θr, with a sudden drop in the pinch region. The inner region
at the juncture between film and drop has to split into two subregions (II and III), which
have different scalings.

3. Self-similar pinch-off solutions
We begin with an overview of the structure of the solution in the asymptotic region

that we hope to describe, guided by the results of a numerical simulation, shown in
figure 3 for a late time in the evolution. The outer solution, observed on a macroscopic
scale, is split between a thin-film region I on the left, and a drop region IV on the
right; the two are joined together at the pinch point x0. The film thins exponentially
in time, while the drop is in static equilibrium, and has a stationary profile. The
temperature is almost constant in the two regions, with a sudden jump near the pinch
point. Since the surface tension is lower on the left (higher temperature), this drives
a Marangoni flow from the film into the drop, which is responsible for the thinning
of the film.

The crucial question is how this strong temperature gradient is maintained, and what
stabilizes the sudden jump in temperature. To understand this, one must study the
inner region joining the two outer solutions, whose width will turn out to be of the
same order as the film thickness, and which is therefore not resolved in figure 3. To
achieve matching between regions I and IV, one must subdivide the inner region into
two subregions, characterized by similarity solutions with different scalings. The first
one, region II, we call the ‘pinch region’, because the film thickness has its minimum
there and it is where pinch-off ultimately occurs. This region is characterized by a
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balance of inertia, viscosity and Marangoni forces. However, this does not match the
drop region, where surface tension alone is important. This necessitates another region
III, the ‘transition region’, where only surface tension and viscosity are important. In
the following we will show by asymptotic matching that the structure composed of
regions I–IV is consistent on both the local scale and the macroscale.

The fundamental insight that determines the structure of both similarity solutions is
that the flux of liquid across the inner region is set by the flux out of the thin-film
region, which is set on a macroscopic scale. Thus the flux j= hu across inner regions
II and III must be a spatial constant (but does depend on time). We will see that
this constraint fixes the scaling exponents, and greatly simplifies the structure of the
solution. Curiously, a similar structure was found for Hele-Shaw flow (Bertozzi et al.
1994), viscous films in a capillary tube (Lamstaes & Eggers 2017) and bubble breakup
in a low-viscosity fluid (Gordillo et al. 2005).

We now present all asymptotic regions systematically, and discuss matching between
them.

3.1. Region I: thin-film region
The width of this region is of order one, yet the thickness τ(t) of the film shrinks to
zero, so we use the ansatz

h(x, t)= τ(t)hf (x), u(x, t)= uf (x), θ(x, t)= θl, (3.1a−c)

where the temperature is assumed constant, in accordance with our earlier observations.
Inserting (3.1) into the equations of motion, (2.2a) yields

τ̇hf =−τ(hf uf )
′ (3.2)

and, at leading order τ 0, (2.2b) results in

uf u′f = 4O
(hf u′f )

′

hf
, (3.3)

where the surface tension term is of order τ , and thus drops out in the limit τ →
0. Here and in the remainder of the paper, a dot denotes a derivative with respect
to time, and a prime denotes a derivative with respect to the spatial variable. Note
that (3.3) represents a balance between inertia and viscosity, while surface tension and
Marangoni forces drop out. Dividing (3.2) by τhf uf and (3.3) by 4Ou′f , the term h′f /hf
can be eliminated between the two equations, and one obtains an equation for the
velocity uf alone:

ū+
τ̇

τ4Oū
=

ū′′

ū′
−

ū′

ū
, (3.4)

where we have rescaled the velocity according to uf = 4Oū. In (3.4) only the second
term on the left-hand side depends on time. Therefore, necessarily one has −τ̇ /τ =
4aO, where a> 0 is a constant, which depends on initial conditions, as we will see.
This implies

τ(t)= τ0 exp{−4aOt}, (3.5)

ū−
a
ū
=

ū′′

ū′
−

ū′

ū
, (3.6)
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where τ0 is an arbitrary normalization factor, which depends on the choice of origin
for the time coordinate.

As shown in appendix A, (3.6) can be integrated and possesses a one-parameter
family of ‘blow-up’ solutions of the form

ūA(x)= A+ tan
[
(x− x̄)

√
a− A2

]√
a− A2, for A ∈ (−

√
a,
√

a). (3.7)

The boundary conditions ū(0)= ū′′(0)=0, which follow from (2.3), together with (3.3),
require that A= x̄= 0, and thus

uf = 4O
√

a tan(x
√

a). (3.8)

The flux jf (x)= hf (x)uf (x) is calculated from (3.2) as

ln jf =

∫
4Oa
uf

dx, (3.9)

and then it follows from (3.8) that

jf (x)= j0 sin(
√

ax), hf (x)=
j0

4O
√

a
cos(
√

ax), (3.10a,b)

where j0 is a positive constant. It is clear from the first equation of (3.1) that, by
adjusting τ0, we can make hf (0) = j0/4O

√
a attain any value, which means that j0

can be chosen arbitrarily. In the numerical results reported below, we will make the
particular choice j0 = 4O

√
a.

The pinch point x0 is determined by where hf goes to zero, which is at

x0 =π/(2
√

a); (3.11)

the interval 0 6 x 6 x0 will be referred to as the ‘thin-film region’. At x0, the flux is
jf (x0)= j0, which means that according to (3.1) the mass flux through the pinch point
and into the drop is τ j0. In the neighbourhood of x0, the outer (film) profiles are

h≈−
j0τ(x− x0)

4O
, u≈−

4O
x− x0

. (3.12a,b)

In figure 4 we present the leading-order film solutions (3.8) and (3.10) in the thin-film
region (red dash-dotted curves), superimposed with full numerical solutions, rescaled
according to (3.1). Even for times of order one, very convincing convergence towards
the asymptotic solutions is found.

3.2. Region IV: drop region
The total mass in the film region is of order τ , which means that any change in the
volume of the drop region is a subdominant correction. To leading order, the drop
volume is constant and the drop thus converges towards a static shape, with no flow,
and temperature is constant: h(x, t) = hd(x) and θ(x, t) = θr, while u(x, t) = 0. The
leading-order solution to (2.2b) in this region must satisfy h′′′d = 0, and thus

hd(x)=C0[(π− x0)
2
− (x−π)2], (3.13)
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FIGURE 4. (Colour online) Comparison of a numerical solution of (2.2) (initial data and
parameters as in figure 2), with the leading-order solutions (3.10) and (3.8) (dash-dotted
curves), in the thin-film region. Five snapshots of (a) the height (linear plot) and (b) the
velocity (log-linear plot) solutions to (2.2) are shown at times t1= 2.247, t2= 4.032, t3=

5.138, t4 = 5.987, t5 = 6.800. The thinning rate a = 0.819 was calculated from the
numerical solution using (3.6). The pinch point was found to be x0 ≈ 1.7355, in very
good agreement with (3.11).

where x0 is the pinch point as in (3.11). The constants C0 and θr are determined
uniquely by conservation of mass and heat (2.4), which yield∫ π

x0

hd(x) dx=M,
∫ π

x0

hd(x)θr dx=Q. (3.14a,b)

From this the constants can be computed as

C0 =
3M

2(π− x0)3
, θr =

Q
M
. (3.15a,b)

In particular, we have the following expression for the macroscopic contact angle of
the drop:

h′d(x0)=
3M

2(π− x0)2
≡ s, (3.16)

which will be used later to match to the pinch region.

3.3. Region II: pinch region
Since this solution lives on an exponentially small scale set by the film thickness τ ,
we try the similarity solution

h(x, t)= τ α1H (ξ) , u(x, t)= τ α2U (ξ) , θ(x, t)= τ α3Θ (ξ) , ξ =
x− x0

τ β
.

(3.17a−d)
Since the flux through the pinch region is τ j0=hu, we must have α1+α2=1. We also
expect (3.17) to match to the linear h-profile (3.12), which implies that α1 − β = 1.
Since the temperature changes over a scale of order unity, we have α3 = 0. Finally,
Marangoni forces drive the pinch-off and thus must come in at leading order near the
pinch point. We expect them to be balanced by viscous forces, which already come in
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t

8aOt

FIGURE 5. (Colour online) Log-linear plot of the minimum height as a function of time
(symbols) for the solution to (2.2), with parameters and initial data as in figures 2 and
4. The thinning rate a = 0.819 was calculated from the numerical solution using (3.6).
The solid line is the theoretical prediction (3.20). Constant C4 = log(minξ H(ξ)τ 2

0 ) =

log(4(8P−1)/(4P−1)O
√

a)− log(C+)+ 2 log(τ0) by (3.10b), (3.19a) and (3.32).

the thin-film region, and thus should also be important on even smaller scales. Then
from a balance of the last two terms of (2.2b) we obtain α2 − 2β = −β − α1, and
combining all of the above yields β = 1, α1= 2 and α2=−1. Then the leading force
balance in (2.2b) is at O(τ 3), and inertial, viscous and Marangoni forces come in at
leading order.

Thus in the pinch region the similarity solution takes the form

h(x, t)= τ 2Hp (ξ) , u(x, t)= τ−1Up (ξ) , θ(x, t)=Θp (ξ) , ξ =
x− x0

τ
,

(3.18a−d)
and the similarity equations are

j0 =HpUp, (3.19a)

UpU′p = 4O
(HpU′p)

′

Hp
−M

Θ ′p

Hp
, (3.19b)

UpΘ
′

p =D
(

HpΘ
′

p

Hp

)′
. (3.19c)

In particular, using (3.5) the minimum sheet thickness decays exponentially:

min
x

h(x, t)∝ τ 2
∝ exp{−8aOt}, (3.20)

which is confirmed numerically in figure 5.
The flux condition (3.19a) can be used to eliminate Hp, and we obtain the two

equations
U′p = 4O(U′p/Up)

′
−MΘ ′p/j0, Θ ′p =D(Θ ′p/Up)

′. (3.21a,b)
Integrating the first equation in (3.21) one expresses the temperature profile
dependence on Up explicitly as

Θp =
j0

M

(
4O

U′p
Up
−Up

)
+ θl, (3.22)
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where we have used the boundary conditions on the similarity profiles, as ξ→−∞,

Hp ≈−
j0ξ

4O
, Up ≈−

4O
ξ
, Θp ≈ θl, (3.23a−c)

which follow from comparison to (3.12).
Next, substitution of (3.22) into the second (temperature) equation of (3.21) gives

the following ODE for the profile Up:

4DO(U′′p −U′2p /Up)− (4O+D)U′pUp +U3
p +C2U2

p = 0, (3.24)

with C2 being a constant of integration. Evaluating the left-hand side of (3.24) for
ξ→−∞, once more using (3.23), one concludes that C2 = 0.

The second-order equation (3.24) can be turned into a first-order equation by putting
U′p(ξ)= P(Up), so that U′′p = P′P, and

dP
dUp
=

P
Up
+ [D−1

+ (4O)−1
]Up −

U3
p

4DOP
. (3.25)

The observation that (3.25) is invariant under Up→C+Up and P→C2
+

P suggests the
substitution

P=
wU2

p

4
√
DO

, (3.26)

which reduces (3.25) to the separable ODE

dUp

Up
=

dw

4
√
P +
√
P−1
− 4/w−w

. (3.27)

From (3.23) it follows that w must satisfy the boundary condition w ≈
√
P−1

for
Up→ 0. Hence, for each P > 0, bounded solutions of (3.27) have the form

Up(w)=


C+
(√

P−1
−w

)1/(4P−1)
/(

4
√
P −w

)4P/(4P−1)
for P 6=

1
4
,

C+ exp
{

2
w− 2

}/
(2−w) for P =

1
4
;

(3.28)

they are parametrized by a positive constant C+ and are defined in the range w ∈
(−∞,

√
P−1

). A typical plot of P(Up) is shown in figure 6. The behaviour near the
origin on the upper lobe is P≈U2

p/(4O), and corresponds to ξ→−∞, where U′p > 0.
This matches the expected asymptotic behaviour (3.23). The lower lobe near the origin,
on the other hand, corresponds to ξ→∞, and here U ≈−C+/w, so that

P≈−
C+U

4O
√
P−1 , ξ→∞. (3.29)

Differentiating (3.28) with respect to ξ yields

wU2
p

4
√
P−1

O
=


−C+

dw
dξ

w(
√
P−1
−w)(2−4P)/(4P−1)(4

√
P −w)(1−8P)/(4P−1) for P 6=

1
4
,

−C+
dw
dξ

w
(2−w)3

exp
{

2
w− 2

}
for P =

1
4
,

(3.30)
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FIGURE 6. (Colour online) The homoclinic orbit defined by (3.26)–(3.28), with
C+ = 2× 44/3 and P = 1.

which, upon substituting (3.28) back in, can be integrated to give

ξ =


−

4O
√
P−1

C+

∫ w

0

(
4
√
P − s

)1/(4P−1)
/(√

P−1
− s
)4P/(4P−1)

ds for P 6=
1
4
,

−
8O
C+

∫ w

0
exp

{
−

2
s− 2

}/
(2− s) ds for P =

1
4
.

(3.31)

In (3.31), the origin ξ = 0 has been chosen arbitrarily as the point with U′p(0)= 0 and
Up(0)=Umax, with the maximum given by

Umax =

{
C+/44P/(4P−1) for P 6= 1

4 ,

C+/(2e) for P = 1
4 .

(3.32)

Combining (3.28) with (3.31) yields a parametric representation of the pinch profile
Up(ξ) with respect to the parameter w ∈ (−∞,

√
P−1

) (for a typical profile, see
figure 7). For w→−∞, (3.31) implies that

ξ ≈
4O
√
P−1

C+
ln |w|, ∀ P > 0 (3.33)

and since according to (3.28) Up ≈C+/|w| in the same limit, we have

Hp ≈
j0

C+
e(C+

√
P/4O)ξ , UP ≈C+e−(C+

√
P/4O)ξ , ∀ P > 0. (3.34a,b)

Note that we can write (3.34) in the original variables as

u(x, t) ≈
1
τ(t)

C+ exp

{
−

C+
√
P

4O
(x− x0)

τ (t)

}
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FIGURE 7. (Colour online) Similarity description of the pinch region. Five snapshots of
the velocity (a,b) and temperature (c,d) profiles taken at times t1= 4.032, t2= 5.138, t3=

5.987, t4 = 6.800, t5 = 7.6410 (solid lines). (a,c) Numerical solution using the same
simulation as in figure 2. (b,d) Profiles have been rescaled according to (3.17), with exact
solutions (3.28) and (3.36) (dash-dotted lines) superimposed.

= C+ exp

{
−
(C+
√
P/4O)(x− x0)+ τ(t) log[τ(t)]

τ(t)

}
, (3.35)

a representation that will turn out to be useful in the next subsection for matching to
the solutions in the transitional region (cf. (3.51)).

The temperature profile is found from (3.22) and (3.28) to be

Θp =


θl −

j0C+
M
√
P
(√

P−1
−w

4
√
P −w

)4P/(4P−1)

for P 6=
1
4
,

θl −
j0C+
2M

exp
{

2
w− 2

}
for P =

1
4
.

(3.36)

In figure 7, the similarity description (3.17) of the pinch region is tested against
a typical numerical simulation of the original system (2.2). On the left, we show
the raw data close to the pinch point x0, while rescaled profiles are shown on the
right. One sees very good convergence towards the exact solutions (3.28) and (3.36),
which are shown as the red dash-dotted lines. Note that the temperature experiences
a finite variation over the pinch region, which is of size τ . This length is much
larger than the thickness of the sheet, which is of order τ 2. Hence information from
the boundary diffuses quickly into the bulk, and the temperature can effectively be
treated as constant across the sheet, so our long-wavelength theory still applies.
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By taking the limit w→−∞, which corresponds to ξ→∞, we find the following
condition on the jump of the temperature across the pinch-off (see figure 3):

θr = θl −
j0C+
M
√
P < θl, ∀ P > 0; (3.37)

in particular, it shows that necessarily θr < θl. It is thus seen from (3.34) that Hp
grows exponentially, which does not match the drop profile, which has a finite slope
(3.16). This means we need another region between the pinch region II and the drop
IV, which we call the transition region.

3.4. Region III: transition region
Here we use the same similarity form (3.17) as before, but the balance is different.
On account of flux conservation, we have α1 + α2 = 1 as before. We also require the
transitional solution to match onto the linear drop profile for ξ→∞, which implies
that α1=β. Finally, we expect surface tension to enter the force balance (2.2b), so that
from a balance between surface tension and viscous forces we have α1− 3β=α2− 2β.
From these conditions we deduce the exponents α1 = 1, α2 = 0 and β = 1, and the
similarity solution becomes

h(x, t)= τHt (ξ) , u(x, t)=Ut (ξ) , θ(x, t)=Θt (ξ) , ξ =
x− x1(t)

τ
, (3.38a−d)

where x1(t) denotes the centre of the transition region, which will be shown below to
be slightly different from the pinch point x0. The similarity equations corresponding
to (3.38) are

j0 =HtUt, (3.39a)

0=H′′′t − 4O
(U′tHt)

′

Ht
, (3.39b)

0= (HtΘ
′

t )
′. (3.39c)

Here in the force balance (3.39b), only surface tension and viscosity come in at
leading order O(τ−2).

Once more, we insert U′t =−j0H′t/H
2
t into (3.39b) and integrate once, to obtain

C3 =H′′t Ht −
H′2t
2
− 4Oj0

H′t
Ht
. (3.40)

For (3.39c) to be consistent with a general Ht-profile, Θ = θr must be a constant,
which is consistent with (3.37), where we matched the temperature profile in the pinch
region directly to the constant value θr. In order to match to the constant slope (3.16)
for ξ→∞, we must have Ht ≈ sξ for ξ→∞, and thus C3 =−s2/2.

Rescaling (3.40) according to

Ht =
8Oj0
√

2s
f (ζ ) , ζ =

s2

8Oj0
ξ, (3.41a,b)

it turns into
−1= f ′′f − f ′2/2− f ′/f . (3.42)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ri
nc

et
on

 U
ni

v,
 o

n 
15

 F
eb

 2
01

8 
at

 2
1:

02
:4

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

74

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.74


570 G. Kitavtsev, M. A. Fontelos and J. Eggers
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FIGURE 8. (Colour online) Phase-plane portrait of the ODE (3.43). The solid lines
correspond to the orbits and the dash-dotted line is the nullcline p= 0.

Putting p( f )= f ′, the phase-plane representation of (3.42) is

p′ =
p
2f
+

1
f 2
−

1
pf
. (3.43)

In order to match to (3.34), Ht must behave exponentially for ξ→−∞, which means
that p∼ f near the origin of the p–f plane. On the other hand, for ξ→∞ we have
seen that Ht ≈ sξ , and so p≈

√
2 for f →∞.

The nullcline p′ = 0 is the curve

f =
p

1− p2/2
, (3.44)

which is shown in the phase portrait, figure 8, together with some typical solutions
of (3.43). An inspection of the phase plane reveals that there is a unique orbit that
approaches the nullcline asymptotically as f →∞. As seen from (3.44), this is the
solution that has the right asymptotics for f →∞.

For the solutions shown in figure 8, a more careful analysis at the origin of the
phase plane is necessary. Assuming a regular expansion yields the series

p= f +
f 3

2
+ · · · ≡ p0( f ), (3.45)

which has no free parameters. To find the missing degree of freedom, we put p( f )=
p0( f )+ δ( f ), and linearize in δ to find

δ′ = δ

(
2
f
−

p′0
p0
+

1
p0f 2

)
≈
δ

f 3
, (3.46)

for small f . Making the Wentzel–Kramers–Brillouin (WKB) ansatz

δ = δ0e−Af α+···, (3.47)
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16O2a

FIGURE 9. (Colour online) Similarity description of the transition region. (a) Five
snapshots of the spatial derivative of the height profile hx(x, t) = H′t(ξ), using the same
simulation as in figure 2, for times t1=4.032, t2=5.138, t3=5.987, t4=6.800, t5=7.6410
(solid lines). Data from the transition region are shown in self-similar variables (3.38).
Each curve is shifted such that H′t(0) = 2, which defines x1(t); the collapsed profiles
are compared to the solution of (3.40) (dotted line), obtained by the shooting method.
(b) The corresponding values of ξ̃i = (x1(ti) − x0)/τ(ti), i = 1, . . . , 5 (dots) compared
to the prediction (3.54) (dotted line). The value of a is taken from figure 4. Constant
C5 =− log(τ0)4O/(C+P) by (3.54).

a leading-order balance as f→∞ yields α=−2 and A=1/2. Thus close to the origin,
we arrive at the representation

p= f +
f 3

2
+ · · · + δ0e−1/(2f 2), (3.48)

where the degree of freedom is in the parameter δ0. Now one can solve (3.43) by
shooting from the origin to infinity, as shown in figure 8. The value of δ is varied
until the solution asymptotes to the correct value p=

√
2.

Once we have obtained p( f ) = f ′(ζ ), we find f (ζ ) by (numerical) integration and
thus Ht(ξ) from (3.41). The derivative H′t(ξ) is shown on the left of figure 9 as the
red dotted line, and compared to hx, as found from a numerical simulation of the
full system (2.2). Allowing for a horizontal shift (which determines x1(t), see below),
excellent agreement is found.

For small f (ξ→−∞), f ′ = f yields

f ≈ f0eζ = f0e(s
2/8Oj0)ξ ; (3.49)

which transforms to the asymptotics

Ht ≈ Be(s
2/8Oj0)ξ and Ut ≈

j0

B
e−(s

2/8Oj0)ξ as ξ→−∞, (3.50a,b)

as well as

u(x, t)≈
j0

B
exp

{
−

s2

8Oj0

x− x1(t)
τ (t)

}
(3.51)

in the original variables. Comparing to the asymptotics in the pinch-off region (3.35),
we find the following matching conditions:

C+ =
s2

2j0

√
P
, (3.52)
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(a) (b)
O D M Umax θl θr =Q/M a j0 C+ θl − θr x0

0.25 0.25 10.0 2.0 0.958 −0.195 0.819 0.905 12.70 1.149 1.736
0.125 0.125 10.0 3.68 0.98 −0.195 1.01 0.503 23.38 1.197 1.563
0.25 0.25 20.0 4.121 0.882 −0.195 0.68 0.825 26.17 1.080 1.905

TABLE 1. (a) Dimensionless groups and macroscopic properties of three numerical
simulations; initial data for all simulations are as in figure 2, with M=π and Q=−0.2π.
(b) Rupture parameters as calculated from the analytical formulae derived for them. The
temperature jump condition (3.37) and the formula for the position of the pinch point
(3.11) are satisfied to within an accuracy of 5× 10−3.

B=
j0

C+
, (3.53)

ξ̃ (t)=
x1(t)− x0

τ(t)
=− log(τ (t))

4O
C+P

=− log(τ0)
4O

C+P
+

16O2a

C+
√
P

t> 0, (3.54)

where in the last equality in (3.54) we have used (3.5). On the right of figure 9
we test (3.54), shown as the dotted line, against the shift x1(t), as obtained from a
direct numerical simulation (dots). For large times, the dots are seen to approach the
theoretical prediction.

4. Discussion and conclusions
In this study we have derived the leading-order analytical structure of self-similar

solutions describing the thermal rupture of a thin viscous liquid sheet, and provided a
consistent matching of them to the outer solutions. The leading-order solutions in the
film region are given by the velocity and height profiles (3.8) and (3.10), respectively.
The film thins exponentially according to (3.5), while the macroscopic drop to its right
has a parabolic profile (3.13)–(3.15), with no flow inside. We derived explicit formulae
for the self-similar solutions (3.28)–(3.31) and (3.36) in the pinch region, and analysed
the solution (3.50) in the transitional layer. Finally, the matching conditions (3.16),
(3.37) and (3.52)–(3.53) fix all the parameters of the problem in terms of a and j0.
Since j0 can be normalized to any value by choosing the origin of the time axis, the
thinning rate a is really the only unknown parameter. We have checked numerically
that a indeed depends on the fine details of the initial data and, therefore, can only
be inferred from a more refined analysis.

Table 1 shows the dependence of rupture parameters upon variation of the
dimensionless groups of the problem; the initial data are held fixed. The parameter
a, and thus the pinch position x0, varies considerably. In turn, table 2 shows the
dependence of parameters upon variation of initial data while keeping dimensionless
groups fixed. In both tables the thinning rate a was determined numerically from the
asymptotic value of the quantity

ū2

4O
−

ū′′ū
ū′
+ ū′, (4.1)

as suggested by (3.6). The parameter τ0 was fixed (similar to figure 4) so that hf (0)=
1, which fixes j0= 4O

√
a. The constant C+ was calculated by two alternative methods:
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(a) (b)
Umax θl θr =Q/M h(x, 0) u(x, 0) θ(x, 0) a C+ j0 θl − θr x0

1.581 0.953 0.0056 1.0 π sin(x) cos(x) 0.887 10.039 0.942 0.946 1.668
1.495 0.909 0.0051 1.0 0 cos(x) 0.905 9.492 0.951 0.903 1.651
1.792 0.955 −0.0949 1− 0.2 cos(x) π sin(x) cos(x) 0.849 11.379 0.921 1.048 1.705

TABLE 2. (a) Initial data and macroscopic properties of three numerical simulations, with
dimensionless groups fixed at O= 1/4, D= 1/4, M= 10. The initial data have the same
values M=π and Q=−0.2π. (b) Rupture parameters as calculated. Both (3.37) and (3.11)
are satisfied to within an accuracy of 5× 10−3.

0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0
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(a) (b)
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FIGURE 10. (Colour online) Plots of the height (a,c) and temperature (b,d) for M =
1.75 >Mcr (rupture, a,b) and M = 1.55 <Mcr (no rupture, c,d). The initial data for
both simulations are given by h(x, 0) ≡ 1, u(x, 0) ≡ 0 and θ(x, 0) = cos(x). The other
dimensionless groups are fixed at O = 1/4 and D = 1/4 The initial conditions for the
height and temperature profiles are shown as the dashed curves. The direction of motion
of these profiles is shown by arrows.

using (3.52) with the contact angle s defined by (3.16), or from (3.32). Here the
maximum velocity Umax in the pinch region was determined from u(x, t), rescaled
according to (3.17).

Since in our simulations breakup is driven by temperature gradients, it is to be
expected that there exists a critical value of the M parameter above which breakup
occurs, while there is no breakup below this critical value, as found already by Bowen
& Tilley (2013). We tested this idea using constant initial conditions h(x, 0)≡ 1 and
u(x, 0) ≡ 0 for the height and velocity profiles, respectively; the initial temperature
profile is θ(x, 0) = cos(x). Figure 10 confirms that, for M smaller than a critical
value Mcr, no breakup occurs, and instead both height and temperature relax towards
constant values (second row). If, on the other hand, M>Mcr, the temperature profile
develops a jump, and the height goes to zero (first row). More detailed numerical
simulations indicate that for initial conditions as in figure 10, the critical value is
Mcr ≈ 0.16.
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FIGURE 11. (Colour online) Velocity (a) and the corresponding height profiles (b) for
the solutions to (A 1) in region I, defined in figure 12. The velocity profile was calculated
using (A 8) for a= 30, A= 5. The corresponding height profiles was calculated using (3.9)
for the flux jf = hf uf . The position of the point xA is specified uniquely by conditions (4.2),
and is shown by the dashed lines.

We find a singular limiting behaviour of solutions to occur when approaching
the threshold Mcr from above. The temperature plots in figure 10(a,b) indicate
that convergence towards the self-similar solution happens more slowly as Mcr is
approached, especially inside of the droplet core. Moreover, the amplitude θl − θr

of the temperature jump and the width of the film (0, x0) decrease to zero as
M→Mcr + 0. This suggests that the nature of the self-similar rupture changes at
the critical threshold Mcr and the rupture, if it still occurs, should happen near the
boundary x= 0 of the computational domain.

Finally, in appendix A we classify all solutions to the ODE (3.6), which describes
the velocity in the film region. In § 3.1 only the special solution of type I (according
to the classification of appendix A and figure 12) with A = 0 was considered.
However, our numerics indicate that, for suitably chosen initial conditions (with the
same boundary conditions (2.3)), solutions of type I with non-zero A (an example of
which is shown in figure 11) can be realized in the thin-film region. Namely, this
happens if one evolves solutions to (2.2) from a height profile given by a semicircle,
whose maximum is located at either x = 0 or x = π. This drop is connected to a
film region given by the parts of the height profile shown in figure 11, taken in the
intervals x ∈ [−π/(2

√
a− A2), xA] or x ∈ [xA, π/(2

√
a− A2)], respectively. Here the

point xA is defined uniquely by the conditions

u(xA)= h′(xA)= 0, (4.2)

and is chosen to be compatible with the boundary conditions (2.3). Correspondingly,
the leading-order velocity in the film region is prescribed by the corresponding parts
of the type I solution to (A 1) with |A|<

√
a.

We conjecture that solution of types II–IV, represented in the phase portrait of
figure 12, may also be realized in more complicated rupture scenarios, for example
in the case of several pinch points separating macroscopic drops of different sizes,
which interact by virtue of small fluxes through the film regions. This would be
similar to systems considered recently by Clasen et al. (2006), Glasner et al. (2008)
and Kitavtsev (2014).
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I
I

II

II

III III

IV IV
0

a

p

u

FIGURE 12. (Colour online) Phase portrait for (A 1). The borders of regions I–IV are
defined by two parabolas p±c (u) (solid lines) and the axis p= 0; the nullcline is defined
by the parabola pn(u) (dashed line). The solution curve corresponding to (3.8) is shown
as the dot-dashed parabola.
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Appendix A. Analysis of the velocity equation in the film region
Here we present the solution method and phase-plane analysis of the ODE (3.6):

u−
a
u
=

u′′

u′
−

u′

u
, (A 1)

where for convenience we skipped overbars. We first reduce the order of the equation
by introducing a new variable p(u)= u′(x). The corresponding equation for p(u) reads

u−
a
u
= p′ −

p
u
. (A 2)

By introducing p̃= p− a, (A 2) reduces to the ODE

u= p̃′ −
p̃
u
, (A 3)

which is invariant under the scaling u→ Cu and p→ C2p. Therefore, similar to our
treatment of (3.25), one can apply the substitution p̃=w(u)u2, which results in

1=w(u)+ uw′(u). (A 4)
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This equation can be integrated to yield

w(u)=−
2A
u
+ 1. (A 5)

This implies that the general solution to (A 2) can be characterized completely by
a one-parameter family of functions:

p(u)= (u− A)2 + a− A2 with A ∈ (−∞,∞). (A 6)

The general solution to (A 1) can then be obtained in the form

x− x̄=
∫

du
(u− A)2 + a− A2

, (A 7)

which yields explicitly:

x− x̄=



1

2
√

A2 − a
log

[
u(x)− A−

√
A2 − a

u(x)− A+
√

A2 − a

]
for |A|>

√
a,

1
√

a− A2
arctan

[
u(x)− A
√

a− A2

]
for |A|<

√
a,

1
A− u(x)

for |A| =
√

a.

(A 8)

In particular, for solutions with A∈ (−
√

a,
√

a), (A 8) yields the explicit solution (3.7).
To classify all solutions by phase-plane analysis, and to find their regions of

existence, it is useful to write (A 1) as the first-order system

du
dx
= p, (A 9)

dp
dx
= p

(
u−

a
u

)
+

p2

u
. (A 10)

Firstly, owing to the invariance p→ p and u→−u of (A 10), the phase-plane portrait
is symmetric around the axis u= 0. Moreover, all integral curves (A 6) intersect at the
singular point (u = 0, p = a). The set of stationary points of (A 10) is given by the
axis p= 0, while the nullcline dp/dx= 0 is given by the parabola

pn(u)= a− u2. (A 11)

Correspondingly, the integral curves (A 6) attain their minima at the nullcline.
Moreover, the axis p= 0, together with the two parabolas

p±c (u)= (u±
√

a)2, (A 12)

divide the phase plane into four regions shown as I–IV in figure 12. A solution to
(A 1) starting in one of the regions I–IV stays in that region for all x.

For pinch solutions considered in this article, only those lying in region I,
characterized by A ∈ (−

√
a,
√

a) in (A 8) and having the explicit representation
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(3.7), are relevant. By making the shift x̄= 0 these solutions are defined in the finite
interval x ∈ (−π/(2

√
a− A2),π/(2

√
a− A2)). They satisfy

uA(x̄)= uA(0)= A, (A 13)

and tend to infinity as x→±π/(2
√

a− A2). These two points would correspond to
pinch-off points of the full solutions to the partial differential equation system (2.2).
The special solution (3.8) analysed in § 3.1 corresponds to A= 0, and is selected by
the global boundary conditions (2.3) to system (2.2), consistent with (A 13).

Solutions lying in regions II–IV are parametrized by constants |A|>
√

a. From the
explicit representation (A 8) it follows that solutions in region III are defined on the
whole real line x∈R , while solutions in regions II and IV are defined on the half-lines
x ∈ (0,∞) and x ∈ (−∞, 0), respectively. In region III solutions are bounded and
approach stationary points u= A±

√
A2 − a at an exponential rate as x→±∞. The

solutions in regions II (IV) are unbounded in the one-side limit x→ 0+ (x→ 0−)
and approach the stationary point u = A −

√
A2 − a (u = A +

√
A2 − a) as x→∞

(x→−∞).
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