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When a confined bubble translates steadily in a cylindrical capillary tube, without the
consideration of gravity effects, a uniform thin film of liquid separates the bubble
surface and the tube wall. In this work, we investigate how this steady state is
established by considering the transitional motion of the bubble as it adjusts its film
thickness profile between two steady states, characterized by two different bubble
speeds. During the transition, two uniform film regions coexist, separated by a
step-like transitional region. The transitional motion also requires modification of the
film solution near the rear of the bubble, which depends on the ratio of the two
capillary numbers. These theoretical results are verified by experiments and numerical
simulations.
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1. Introduction

The motion of elongated bubbles confined in small geometries is of significant
geological, industrial and medical interests. Examples include enhanced oil recovery
(Blunt 2001), coating processes (Quéré 1999; Stone 2010; Kotula & Anna 2012),
particle separation (Yu, Khodaparast & Stone 2018) and lung biomechanics (Gaver
et al. 1996; Hazel & Heil 2003). When a bubble of length L> 2R translates steadily
in a circular capillary of radius R, a thin film of liquid separates the bubble surface
and the tube wall, as first observed by Fairbrother & Stubbs (1935). The thickness of
this lubricating film is of particular interest, since it is crucial to the mass and heat
transfer in this multiphase hydrodynamic configuration. The relationship between the
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film thickness and the bubble velocity U was investigated theoretically by Bretherton
(1961) and experimentally by Taylor (1961). Bretherton (1961) found that, with
negligible buoyancy and inertial effects, the lubricating film is uniform near the
centre of a long bubble, and the film thickness h∞ is given by

h∞/R= 0.643(3Ca)2/3, (1.1)

where the capillary number Ca≡µU/γ is the dimensionless speed of the bubble, and
µ and γ represent the fluid viscosity and surface tension, respectively.

The dynamics of a long, confined bubble in a circular capillary has been widely
investigated thereafter, including effects from finite capillary numbers, inertia, liquid
impurities, buoyancy, etc. For example, the uniform film thickness increases with
an increase in the bubble velocity, in which case finite capillary numbers and
inertia become significant (e.g. Aussillous & Quéré 2000; Heil 2001; de Ryck
2002; Khodaparast et al. 2015; Magnini et al. 2017). Aussillous & Quéré (2000), for
instance, provided a scaling argument to extend (1.1) to a larger range of Ca and
fitted the experimental results from Taylor (1961). Several accounts have been carried
out considering the effects of impurities in the continuous fluid phase, including
surfactants and suspensions. While both impurities thicken the film, surfactants
increase the film thickness by introducing additional fluid flux due to a Marangoni
stress (Ratulowski & Chang 1990; Park 1992; Stebe & Barthes-Biesel 1995; Olgac
& Muradoglu 2013), and suspensions, which lead to particles being adsorbed on the
interface, thicken the film by modifying the boundary condition on the bubble surface
(Yu, Khodaparast & Stone 2017). Moreover, as the tube radius R increases, buoyancy
effects can become significant, which can break the film thickness uniformity or lead
to film rupture (Leung et al. 2012; Atasi et al. 2017; Lamstaes & Eggers 2017).

Although a wide variety of investigations have been carried out analysing the
relationship between the film profile and the bubble velocity, most of the literature
considers the case where the translational velocity is a constant, thus the bubble profile
is steady. Instead, in this paper, we ask how such a steady state is established. In
order to start from a well-defined initial condition, we investigate the time-dependent
dynamics of a bubble as it transits from one steady state at Ca1 to another steady
state at Ca2, as shown in figure 1(a). We consider the bubble translation in pure
liquid, neglecting inertial and buoyancy effects, such that the film thickness at each
steady state is governed by the corresponding Ca, and thus can be predicted by
Bretherton’s result (1961), or Aussilous and Quéré’s correlation (2000) at higher Ca.
Different film regions are categorized in § 2, where the theoretical derivation of the
time-dependent profile will be given. The experimental setup and numerical methods
are described in § 3, followed by the results and a comparison among theoretical,
experimental and numerical results in § 4.

2. Theoretical derivation

The structure of the transitional film profile solution is shown in figure 1(b). The
front of the bubble (region I) moves at the new speed U2. In the lubrication limit,
a film of thickness h∞2 is selected according to (1.1), and a uniform film of this
thickness is formed. Since there is no horizontal pressure gradient along the uniform
film region, there is no motion in the film relative to the tube wall. In the rear part
of the bubble (region IV), the film still has its thickness h∞1 corresponding to the
initial speed U1. The two film regions are separated by a step (region III), which
remains stationary in the frame of the tube, as we will show below. Thus the length
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Time-dependent motion of a confined bubble in a tube
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FIGURE 1. Schematics of a bubble translating in a circular capillary between two
steady states. (a) Problem statement. The transitional dynamics and film profile h(x, t)
are obtained as a bubble transits between two steady-state speeds from U1 and U2,
where it develops the corresponding films of uniform thicknesses h∞1 and h∞2 . An (x, y)
coordinate system can be used to describe the film profile for this axisymmetric problem.
(b) Schematic of the transitional bubble film profile, where five regions are categorized.
(c) Schematic of the step-like transitional region.

of region II is determined by how much the front of the bubble has advanced since
the change in speed at t= 0, which is LII ≈U2t. Finally, there is a thin film region in
the back of the bubble that exhibits the characteristic oscillations found by Bretherton
(1961). However, owing to the incompressibility, the rear of the bubble moves at the
same speed as the front, producing a mismatch between the speed U2 and the film
thickness h∞1 . As a result, the shape of the film at the back differs from that found
for the classical steady-state Bretherton problem.

2.1. Uniform film thickness at steady state
We begin by summarizing Bretherton’s original steady solution, which describes the
steady states shown in figure 1(a) and forms the basis for our description during the
transition. The bubble surface is separated from the inner tube wall by a uniform thin
liquid film of thickness h∞. Since the film thickness is much smaller than R, we can
describe the film motion in an (x, y) coordinate system as shown in figure 1(a). In the
limit of small capillary numbers, it follows that |dh/dx| � 1 (as we confirm below),
and the dynamics of the film are described by the lubrication equation (Eggers &
Fontelos 2015)

ht +
γ

3µ
(h3hxxx)x = 0, (2.1)

which describes the viscous motion inside the film in response to the gradient of
the capillary pressure −γ hxx (here subscripts denote derivatives). Moving with the
bubble at the steady-state velocity U, the solution is of the form h(x, t)= h(x− Ut).
Combining with (2.1) and integrating once over x, we obtain

h3hxxx + 3Ca(h∞ − h)= 0. (2.2)
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Rescaling according to H(X) = h(x)/h∞ and X = x(3Ca)1/3/h∞, one obtains the
similarity equation (or Landau–Levich–Derjaguin–Bretherton (LLDB) equation)

H3HXXX + 1−H = 0, (2.3)

which describes the transition region between the film and the caps at either end.
We begin with the front of the bubble. Starting from the film, which corresponds

to the boundary condition H(−∞) = 1, we integrate (2.3) towards X →∞, where
the solution matches to a spherical cap of radius R, set by the tube radius.
Integrating numerically, one finds that HXX(∞)= 0.643. The corresponding curvature
hxx = HXX(∞)(3Ca)−2/3/h∞ is thus equal to the curvature of a spherical cap, 1/R,
which yields Bretherton’s result (1.1), with a typical slope scale |dh/dx| ∼ Ca1/3

� 1.
The LLDB equation takes a single boundary condition H(−∞) = 1 (apart from
translations), as a result of which a unit film thickness (1.1) is selected at the front
of the bubble.

In contrast, we have to integrate in the opposite direction in the rear of the bubble:
starting from the film at X =∞, where H = 1, we now integrate towards X→−∞,
the rear spherical cap of radius R. Here we have used the fact that the film thickness
h∞ is constant all along the middle of the bubble. Combining with (1.1), the similarity
solution at the back is now determined by two boundary conditions

H(∞)= 1, (2.4a)
HXX(−∞)= h∞(3Ca)−2/3/R= 0.643. (2.4b)

Analysis of (2.3) shows that it has a unique solution subject to (2.4). While the profile
has a monotonic behaviour at the front, it develops characteristic oscillations at the
back.

2.2. Film thickness profile at the transitional state
Now we generalize the steady-state theory in the previous section to the time-
dependent motion of a bubble in transition between two steady states, by imposing
an instantaneous velocity change from U1 to U2, as sketched in figure 1(a).

2.2.1. The uniform film regions (II and IV)
As shown in the steady problem (§ 2.1), a specific film thickness is selected near

the front of the bubble based on (1.1). Thus, at the initial velocity U1, the front of the
bubble lays down a film of thickness h∞1 =0.643(3Ca1)

2/3R, where Ca1 is the capillary
number based on U1. After the bubble velocity is switched to U2, this film thickness
becomes h∞2 = 0.643(3Ca2)

2/3R. We will show in the following subsection that, while
the bubble front translates at speed U2, the step connecting the two uniform film
regions is effectively frozen in the laboratory frame. Taking the time of the velocity
change to be t= 0, the length of region II is LII ≈U2t (see figure 1b). In the reference
frame of the bubble, the step is seen to move towards the rear. Eventually, when the
step has moved past the entire bubble, a new steady state is established (figure 1a).
This transitional process takes a period of time approximately L/U2, where L is the
length of the bubble.
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Time-dependent motion of a confined bubble in a tube

2.2.2. Dynamics of the step (III)
We aim to find an approximate description for the dynamics of the step, after it

has been created by an instantaneous velocity change at t = 0. We would like to
know whether (i) the location of step changes in time, and whether (ii) there will
be significant change in shape over the course of an experiment.

Following similar analyses in Boatto, Kadanoff & Olla (1993), McGraw et al.
(2012), and Bäumchen et al. (2013), we try an ansatz in the laboratory frame, in
which (2.1) holds:

Ĥ(s)=
h(x, t)

h∞2
, (2.5a)

s=
x+Uwt

f (t)
, (2.5b)

where Uw is the travelling wave speed of the step and f (t) describes the relaxation of
the step region towards a flat state. As a result, equation (2.1) becomes

3µ
γ (h∞2 )

3 (Uw − sft)f 3Ĥs + (Ĥ3Ĥsss)s = 0. (2.6)

Hence, Uw must vanish for (2.6) to be consistent, and so the step remains stationary in
the frame of the tube. This result is also consistent with the physical intuition that the
thin film of fluid tends to be frozen in the lab frame due to the no-slip and shear-free
boundary conditions at the tube wall and the bubble surface, respectively. Thus, the
step relaxation function f (t) satisfies

f 3ft = γ (h∞2 )
3
/(3µ). (2.7)

This means the local film profile relaxes in time according to

f (t)=
(

4γ (h∞2 )
3

3µ
t+w4

)1/4

, (2.8)

where w= f (0)1/4 represents the initial width of the step, in agreement with Bäumchen
et al. (2013). In addition, we expect the initial step width w=O(R). We assume that
the velocity jump is triggered at t= 0, with a transition time 1t→ 0, and information
propagates rapidly in the liquid. Therefore, the curvature of the front spherical cap
can adjust to the pressure signal almost instantaneously, but bubble translation is
negligible. Thus, we can relate the fluid volume in the step region to the fluid
volume entering/exiting the film region due to the sudden curvature change in the
front spherical cap:

πw(R− h∞1 )
2
−

1
3πw[(R− h∞1 )

2
+ (R− h∞2 )

2
+ (R− h∞1 )(R− h∞2 )]

≈
2
3π[(R− h∞1 )

3
− (R− h∞2 )

3
], (2.9)

where we approximate the step region of the bubble as a cone frustum on the left-hand
side, and the front spherical cap as a hemisphere on the right-hand side, respectively.
Assuming that h∞1 , h∞2 �R, the volume balance (2.9) simplifies to w/R≈ 3/4=O(1).
This result is further confirmed in the experiments and simulations below.
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FIGURE 2. Similarity solution of the step-like region III. Results are obtained by solving
(2.10) numerically for different values of r= h∞1 /h

∞

2 = [0.2, 0.5, 1, 1.5, 2].

With s defined by (2.5b), the similarity equation becomes

(Ĥ3Ĥsss)s − sĤs = 0, (2.10)

with the boundary conditions Ĥ(∞)= 1, Ĥ(−∞)= h∞1 /h
∞

2 ≡ r and Ĥs(±∞)= 0. The
results corresponding to various values of r are displayed in figure 2. Similar similarity
profiles in thin films have been observed in the literature (e.g. McGraw et al. 2012;
Bäumchen et al. 2013), where the solutions develop small overshoots owing to the
fourth-order structure of the equation.

It should be noticed that, based on the results above, the step relaxation in
the transition region III is extremely slow. While the characteristic time for the
translational dynamics is τtrans∼ L/U2, the step relaxation time τrelax can be estimated
using (2.8), τrelax ∼ (µR/γ )(R/h∞2 )

3, where the initial step width w is approximated
by the tube radius R. We expect to observe relaxation of the step-like profile
when τtrans � τrelax, which in the lubrication limit requires extremely long bubbles,
L/R � Ca−1

2 . Relaxation of the step is thus difficult to observe during a physical
experiment, and the time duration over which a bubble transits from one steady state
to another is mainly governed by the translational time scale τtrans. As a result, once
the step with initial width w is formed, the film profile h(x, t) in region III translates
at velocity −U2 relative to the bubble surface, similar to a propagating shock.

2.2.3. The front and rear similarity solutions (I and V)
Given the existence of a uniform film in region IV, we now describe how

Bretherton’s theory is modified near the back of the bubble. On one hand, the
entire bubble moves at the new speed U2. On the other hand, as discussed before, the
film thickness h∞1 is still associated with the initial speed U1. Thus, in the reference
frame of the bubble, the thin film equation is

h3hxxx +Ca2(h∞1 − h)= 0. (2.11)

Next, we rescale to the LLDB equation (2.3) with the transformation H̃ = h/h∞1 and
X̃= x(3Ca2)

1/3/h∞1 . As in the Bretherton problem, requiring the curvature of the film
solution to match the curvature 1/R of the rear cap, we obtain the boundary conditions

H̃(∞)= 1, (2.12a)
H̃X̃X̃(−∞)= h∞1 (3Ca2)

−2/3/R. (2.12b)
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Time-dependent motion of a confined bubble in a tube
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FIGURE 3. Front and rear similarity solutions. (a) The dimensionless curvatures of the
similarity solution. Unlike region I, whose solution agrees with Bretherton (1961) with
a dimensionless curvature H̃X̃X̃(∞) = 0.643, a family of solutions and dimensionless
curvatures H̃X̃X̃(−∞) are obtained at the rear cap during the transition, depending on the
ratio Ca1/Ca2. (b) Different film undulations H̃(X̃) at the rear cap can be obtained as a
result of the family of solutions.

Combining with the expression (1.1) for h∞1 , the dimensionless curvature for the rear
spherical cap (2.12b) is simplified to

H̃X̃X̃(−∞)= 0.643(Ca1/Ca2)
2/3, (2.13)

which reduces to the standard boundary condition (2.4b) when Ca1 =Ca2.
Our numerical results for the similarity solutions in the front and the rear of

the bubble are summarized in figure 3. By construction, the rescaled curvature of
the front solution always approaches the universal value of 0.643 (figure 3a). As a
result, the front similarity solution is the universal solution of Bretherton. By contrast,
according to (2.13) the rescaled curvature at the rear depends on the ratio of capillary
numbers, producing a family of different solutions (figure 3a). With the rear spherical
cap curvature varying with the ratio Ca1/Ca2, a small alternation to the pressure drop
across the bubble rear interface may occur during the transient process. Furthermore,
different film oscillations also appear on the rear air–liquid interface with various
Ca1/Ca2 ratios (figure 3b).

3. Experimental setup and numerical methods

Experiments are performed in a refractive index matching setup (Yu et al. 2017,
2018), where a 5× objective (Mitutoyo) is used in the imaging apparatus. Pure
glycerol is used as the continuous phase, with viscosity µ = 1.00 Pa s (Anton Paar,
Physica MCG 301) and surface tension γ = 65.4 mN m−1 (pendant drop method),
respectively. A flexible tube connects the inlet of the glass capillary (R= 566 µm) to
a glycerol reservoir, whose pressure is adjusted and controlled by an Elveflowr OB1
MK3 pressure and vacuum controller, with a settling time as small as 40 ms (Elveflow
2009). The pressure and flow rate are linearly correlated based on calibration. The
flexible tube is partially unfilled before being inserted in the glass capillary. A
single bubble is formed in the glass capillary from the air column when a positive
pressure p1 is turned on. The bubble then translates at velocity U1. The pressure
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p2 is switched on with a step signal when the entire bubble enters the region of
interest, which triggers the transition to a new steady state at U2. Meanwhile, the
transitional dynamics of the bubble are recorded by the imaging apparatus at a film
rate of 30 f.p.s.

Image processing is performed for each experimental image sequence, where a
Matlab program is written to identify the boundaries of the bubble and the inner tube
wall, with the error controlled within ±1 pixel, or ±2.44 µm. The film profile h(x, t)
is obtained from the difference between the position of the bubble surface and the
tube wall, and the experimental bubble volume is calculated from a volume integral
based on the film profile.

Numerical simulations are carried out using a commercial finite-element solver
(COMSOL Multiphysics). The three-dimensional axisymmetric Stokes equations are
solved numerically, and the deforming interface of the bubble is represented using
the arbitrary Lagrangian–Eulerian (ALE) technique, which facilitates an accurate and
sharp capture of the interface evolution. We impose a Poiseuille flow and zero pressure
boundary condition at the inlet and outlet, respectively, and apply the Young–Laplace
law at the bubble interface. The liquid phase is discretized and solved, assuming a
zero gas–liquid viscosity ratio. The pressure on the external side of the interface is
imposed by incorporating the constraint of constant bubble volume. This framework
was developed by Balestra, Zhu & Gallaire (2018) and has been well validated against
the classical theory (Bretherton 1961). For more details, refer to Balestra et al. (2018)
and Hadikhani et al. (2018).

A slight bubble volume variation is observed in experiments when the pressure jump
is applied. Therefore, two simulations using different volumes are performed: we use
the volume of the initial state at U1 to obtain a steady-state bubble profile at Ca1 in
the first run, and that of the transitional process in the second, where we trigger the
transition to Ca2 by a sudden change of the underlying flux.

4. Comparison of experiments, numerics, and analysis

The experimental and numerical results of a bubble undergoing the transitional
dynamics are shown in figure 4. A typical experimental image series is shown in
figure 4(a), with the zoomed-in film profiles shown in figure 4(b). The transitional
motion is triggered by a pressure jump from p1 = 150 mbar to p2 = 950 mbar,
corresponding to Ca1= 1.96× 10−3 and Ca2= 1.65× 10−2, respectively. The capillary
numbers are calculated from the bubble speeds, which are measured experimentally
by tracking the locations of the bubble nose, determined by the intersection between
the tube centreline and the front cap of the bubble surface. Time t = 0 is taken as
the frame right before the pressure jump is applied, and the dynamics are shown
in the consecutive frames with 1t = 0.467 s between each panel. The boundary
detection results are also displayed, with the red and blue curves representing the
detected bubble surface and the tube wall, respectively. As is shown in figure 4(c),
the experimental (red) and numerical (blue) bubble film profiles h(x, t) are plotted
in the laboratory frame within a distance 100 µm from the tube wall. The direct
comparison between experiments and simulations shows excellent agreement. The
simulation results in the first run are plotted for t = 0 s, and those in the second
run are used for the corresponding later times. The interior of the profile has the
expected structure of two uniform film regions of different thicknesses, connected
by a step, which remains stationary in the laboratory frame. The film thicknesses
at regions II and IV measured experimentally, 41.5 µm and 13.4 µm, agree well
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FIGURE 4. Experimental and numerical bubble profiles. (a) Experimental images and edge
detection of the bubble profile. A pressure jump is applied at t = 0, which triggers the
bubble to transit between steady states from Ca1= 1.96× 10−3 to Ca2= 1.65× 10−2. The
detected bubble surface and the tube wall are shown as red and blue curves, respectively.
(b) Zoomed-in edge detection results in the thin film region. (c) Comparison of results
in the laboratory frame among experiments (red), numerical simulations (blue) and the
scaled similarity solution (2.10) (green). (d) Numerical results of the rescaled initial step
width w/R at different capillary number ratios Ca1/Ca2. The red and blue dot symbols
correspond to the cases shown in figure 4(c) and figure 5(b), respectively.

with the theoretical prediction of h∞2 and h∞1 within the experimental resolution of
2.44 µm. In particular, note the difference between the front and rear of the bubble:
while at the front the profile increases monotonically from a constant thickness
towards the front cap, the behaviour at the back displays oscillations, as seen in the
similarity solutions (figure 3).

The step-like region III is considered in both figure 4(c) and figure 4(d). A rapid
curvature adjustment is observed prior to the step generation. In the laboratory frame
(figure 4c), the lower left corner of the step is pinned while the front of the bubble
moves forward at speed U2, laying down the film to form the shape of a step. The step
is seen to be stationary and not to change shape over the time scale of the experiment,
which is consistent with the estimates of § 2.2.2. Based on the film thickness ratio
r= h∞1 /h

∞

2 = 0.32, we computed the similarity solution for the step relaxation, which
describes the relaxation of the step at long times, much longer than the duration of our
experiment. Using the initial width w in (2.8) as an adjustable parameter, we observe
that the shape of the long-time similarity solution (green) fortuitously agrees very well
with the initial step (red and blue) created by the sudden change in bubble speed. We
find the initial step width to be w= c1R, with a fitting parameter c1= 2. Furthermore,
we repeated the numerical simulation with Ca2 ranging from 8.6× 10−4 to 2.0× 10−2,
and measured the step width w as the length over which the film thickness deviates
from both h∞1 and h∞2 by at least 3 %. As is shown in figure 4(d), the rescaled step
width w/R=O(1) over different capillary number ratios Ca1/Ca2, which validates the
order of magnitude estimate for the step width w.

To perform a quantitative test of the theory developed in § 2.2 about the front and
rear caps I and V, we performed numerical simulations of a bubble at much smaller
capillary numbers, for the transition from Ca1 = 2.95 × 10−4 to Ca2 = 8.57 × 10−4,
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0
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0.2
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0.4
0.5

0
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0.04
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Time-dependent (simulation)
Time-dependent (theory, year)

Ca1 = 2.95 ÷ 10-4, Ca2 = 8.57 ÷ 10-4

FIGURE 5. Direct comparison for the front and rear spherical caps between the numerical
simulation results (blue), and theoretical results both from § 2.2 (green) and Bretherton
(1961) (red). The bubble is undergoing transition from one speed to another, and the
profile at simulation time t = 0.88 is shown. (b) The results are rescaled by the tube
diameter 2R and plotted from the tube wall to the tube centreline. (a) Zoomed-in view
near the rear spherical cap, where the results from the simulation and time-dependent
theory agree, but both deviate from the classic steady-state theory at Ca1. (c) Enlarged
region near the front spherical cap, where the simulation results agree with the classic
steady-state theory at Ca2.

as shown in figure 5. The profile of the entire bubble, obtained from the numerical
simulation, is plotted in figure 5(b). In order to compare with the theory, the zoomed-
in views of the rear and front similarity regions are displayed in panels (a) and (c),
respectively. Starting in the front (figure 5c), excellent agreement is shown between
the numerical simulation (blue) and the theoretical similarity solution at Ca2 (red),
rescaled according to § 2.1. As explained before, the bubble front profile is identical
to that of Bretherton’s steady-state theory. The rear region is shown in figure 5(a),
comparing the numerical simulation (blue) to the time-dependent theory (green) with
Ca1/Ca2 = 0.35, where the results agree so well as to be nearly indistinguishable.
The time-dependent similarity solution is rescaled based on § 2.2.3, and is one of
the solutions shown in figure 3. For comparison, as the red curve, we also show the
shape one would have obtained from the steady theory. This demonstrates that the
unsteadiness introduces a significant change in the shape of the rear film.

5. Concluding remarks

Theoretical predictions are given for the time-dependent film profile of a confined
bubble transitioning between two steady states, triggered by an instantaneous velocity
change. The theory is validated with experiments and numerical simulations. Several
film regions can be categorized during the transition, as shown in figure 1(b). The film
profile near the front cap (I) and the thickness of the front uniform film region (II)
are identical to those at the second steady state, with the length of region II extending
in time. The rear uniform film region (IV) is of constant thickness h∞1 , identical to
that at the initial steady state. The two uniform film regions II and IV are connected
by a step-like film region (III), which is stationary in the laboratory frame. A
similarity solution is obtained for the film profile at region III. However, for the
range of capillary numbers studied, the step relaxation is too slow to be observed in
the experiments and simulations. During the transition, the rear film solution (V) is
modified according to the ratio Ca1/Ca2. This modification not only provides a family
of solutions near the rear spherical cap (figure 3), but it also modifies the undulations
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at the rear transitional region near the spherical cap (figure 5). It has not escaped our
notice that the present unsteady theory can be generalized to continuously varying
bubble speeds, as well as continuously varying tube cross-sections. A fuller account
of these cases is currently under preparation.
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