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Abstract. When a solid plate is withdrawn from a liquid bath, a receding contact
line is formed where solid, liquid, and gas meet. Above a critical speed Ucr, a
stationary contact line can no longer exist and the solid will eventually be covered
completely by a liquid film. Here we show that the bifurcation diagram of this
coating transition changes qualitatively, from discontinuous to continuous, when
decreasing the inclination angle θp of the plate. We show that this effect is governed
by the presence of capillary waves, illustrating that the large scale flow strongly
effects the maximum speed of dewetting.

The distinction between a dry solid and a solid covered by a liquid film is central for all
painting and coating processes. In a system driven either by external motion of the solid or by
gravity, this distinction is determined not only by the equilibrium properties of contact lines,
but crucially by non-equilibrium solutions of moving contact lines. As a prototypical problem,
consider a solid plate partially submerged in a liquid, which does not wet the solid. At rest,
the fluid will form a static meniscus terminating at an angle corresponding to the equilibrium
contact angle θe. A classical calculation due to Laplace [1,2] shows that the contact line rises
(or falls) to a position of z relative to the equilibrium level of the bath:

z = ±�c
√
2 [1− cos (θp − θe)], (1)

where θp is the plate inclination, �c =
√
γ/(ρg) is the capillary length, and γ, ρ the surface

tension and the density of the liquid, respectively. The ± sign depends on whether θe is smaller
(+) or larger (–) than the plate inclination.
If the plate is withdrawn from the liquid at a constant speed U , viscous forces will draw up

the liquid, and the contact line position rises to a new, non-equilibrium value (cf. Fig. 1).
This value results from the competition between viscous and capillary forces, so a proper
dimensionless measure of U is the capillary number Ca = ηU/γ, where η is the viscosity of the
fluid. Above a critical value Cacr of the capillary number (typically Cacr <∼ 0.01), a stationary
contact line position is no longer sustainable, and in the long-time limit the plate is covered
by a liquid film. According to classical phenomenological ideas [3], this transition occurs when
the apparent contact angle, as observed macroscopically, goes to zero. From (1) this transition

would thus occur as the contact line position reaches its maximal height z0 = �c
√
2(1− cos θp),

which is ≈�cθp for small θp.
This idea has recently been confirmed using asymptotic matching between the static solution

(1) and the local fluid motion near the contact line [4,5]. The local motion is characterised by a
microscopic length λ, which regularises the viscous stress singularity predicted by the Navier-
Stokes equation. For λ = 0, no contact line motion would be possible [6]. The physical origin of
λ may depend on the physical system at hand, but in this paper we are going to assume that
the cut-off is due to fluid slip [7,8]. Typical values for λ are a few nanometres [9].
However, in principle there is a smaller speed Ca∗ which is sufficient to initiate the

entrainment of a liquid film. Snoeijer et al. [10,11] have investigated the intermediate
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Fig. 1. A solid plate is withdrawn at constant speed from a bath of partially wetting liquid. The
position of the meniscus is measured by z, the elevation over the bath.

situation of a liquid film that covers a partially dry substrate, and thus ends at a receding
contact line. In the limit that the film is very long, its properties must become independent of
the liquid meniscus, and the tip moves at a speed Ca∗ that only depends on the static contact
angle θe and the slip length λ. Thus, if the plate speed is greater than Ca

∗, a film can be
entrained, given appropriate initial conditions.
In this paper we investigate the bifurcation diagram of the entrainment transition as function

of the plate angle θp. This comes about since Cacr and Ca
∗ have a different dependence on the

inclination of the plate. Above a critical value of θcrp , Cacr > Ca
∗, and the transition towards

the coating layer is discontinuous. Namely, once the speed is raised (slightly) above Cacr, the
contact line moves up at a finite speed Cacr − Ca∗. At θcrp , however, Cacr drops below Ca∗
and the film develops as soon as the plate speed is greater than Ca∗. In this case the speed
at which the contact line moves up becomes arbitrarily small at threshold. Another striking
feature is that for small inclinations the maximum height of the meniscus no longer obeys the
‘zero contact angle’ argument predicting a finite z0 at the transition. We show that the critical
height becomes much larger than predicted by (1) and even diverges below a critical plate
inclination.
Results.We numerically solved for the shapes of stationary menisci, characterised by the liquid
thickness h(x), using the lubrication approximation [12,13]. This long wavelength expansion
remains quantitatively accurate when the interface slope remains small, h′ � 1, so we consider
small plate inclinations only. As the equilibrium contact angle enters as a boundary condition
h′ = θe at the contact line, it is convenient to use the rescaled height h̄ = h/θe, such that
h̄′ = 1. If we further introduce θ̄ = θp/θe, λ̄ = λ/θe and δ = 3Ca/θ3e , and dropping overbars,
the equation for the meniscus becomes [4]:

h′′′ − h′ + θ = δ

h2 + 3λ2
. (2)

All lengths are expressed in the capillary length �c, typically a millimetre, while we take the
slip-length λ = 3.3×10−3 throughout the paper.1 The boundary conditions for this third order
equation are thus h = 0 and h′ = 1 at the contact line, and the third condition comes from
matching to the bath, h � xθ as x → ∞. Solutions are found numerically using a shooting
procedure.
The results are conveniently represented in terms of the meniscus elevation z, see Fig. 2(a).

For moderate plate inclination (θ = 1), z increases with the (rescaled) plate velocity δ, until
a saddle-node bifurcation occurs at δcr. The elevation curve then undergoes an infinite
series of exponentially damped oscillations around another critical speed δ∗, each correspond-
ing to a saddle-node bifurcation. The oscillations are seen to have a well-defined wavelength
�osc. Profiles corresponding to the marked arrows are shown in panel (b), revealing increasingly

1 This convenient slip law slightly differs from the usual Navier slip condition, as the latter yields
a diverging h′′′ at the contact line. This choice has been shown to have no effect on the macroscopic
physics [4].
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Fig. 2. (a) Bifurcation diagrams: meniscus rise z vs. plate speed δ for various plate inclinations θ.
At a critical θcr the difference between δcr − δ∗ vanishes and the transition becomes continuous.
(b) Meniscus profiles h(x) for θ = 1.0 at locations separated by �osc/2. (c) To visualise capillary waves
on the film, which are exponentially damped, we multiplied (h − hf ) by a factor a = 10−0.5(x−xcl),
where xcl is the position of the contact line. The solutions (4) and (6) are exactly in phase, whereas
(5) is shifted by half a wavelength.

long films of almost uniform thickness hf =
√
δ∗/θ as one moves up the elevation curve. The

natural speed of a film, ending in a contact line, is δ∗. As the plate velocity is raised above δcr,
a front will start to move up the plate at a finite speed δcr − δ∗. However, another scenario
observed experimentally [10] is a jump to the film solution as soon as δ∗ is reached. The reason
for this discontinuous behaviour is not understood at present.
As the plate inclination decreases, the oscillations on the elevation curve become smaller

(cf. Fig. 2(a)), and have vanished entirely for θ = 0.1, making the transition toward a film
continuous. We now show that the oscillations in the bifurcation diagram are directly related
to small ripples on the actual profiles seen in Fig. 2(b), and which have the same wavelength
�wave, as seen in the expanded scale, panel (c). As one moves up the elevation curve by �osc/2,
one additional half-wave fits onto the profile, causing successive profiles in panel (b) to line
up exactly, confirming that �osc = �wave. One observes that solutions for which δ is at a local
maximum (minimum), the oscillation has positive (negative) amplitude close to the contact
line. This is consistent with the fact that dissipation is stronger when the thickness is thinner.
The above observations imply that the oscillations in the bifurcation diagram can be under-

stood completely in terms of (small) oscillations around a liquid film, obtained by linearising
(2) around hf . The wavelength �wave is easily found to be

�wave =

{
4π/
(
r−1/3 − r1/3) if α ≥ 1

∞ if α ≤ 1 , (3)

where α = 27θ3

δ∗ and r =
√
α−√α− 1. Perfect agreement between the analytical result (3) and

�osc as measured from the bifurcation diagrams is seen in Fig. 3(a) for various plate inclinations
θ. At a critical value θcr = (δ∗/27)1/3 = 0.108 the wavelength diverges and oscillations disappear
altogether. The numerical value will weakly depend on the slip length λ. At the same inclination,
at which the film transition becomes continuous, the elevation zcr at the entrainment transition
diverges. To further test our analytical criterion for this change of behaviour, we plotted the
speeds δcr and δ

∗ as function of θ (cf. Fig. 3(b)). Indeed, at θ = θcr, the two speeds become
identical and the “bump” seen in Fig. 2(a) goes away.
Outlook. We have shown that the transition towards liquid deposition can be continuous or
discontinuous, depending on the inclination of the plate. This provides a striking demonstration
of the fact that maximum speed of dewetting is not an intrinsic property of the contact line, as
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Fig. 3. (a) Right axis: the wavelength �osc (+) compared to �wave (solid line), as computed from (3).
Left axis: comparison of the elevation at the wetting transition, zcr, to the prediction of zero apparent
contact angle, z0 (�). The ratio zcr/z0 diverges as θcr is approached. (b) Dependence of δcr (dashed
line) and δ∗ (solid line) on the plate inclination θ. The short-dashed line is the theoretical prediction
from asymptotic matching [4,5], which breaks down for small inclinations.

has been claimed in an earlier paper [14], but subtly depends on the large scale geometry of the
problem. A very similar analysis applies to the shape of two-dimensional drops or ridges sliding
down an inclined plane [15]. Their shapes had previously been found numerically, and used as
a model problem to study the stability of contact lines [16,17]. At high speeds (large volumes)
sliding drops acquire a long tail, which correspond to the film solutions seen in Fig. 2(b). This
contrasts the behaviour of real three-dimensional drops [18,19], which eventually eject a small
rivulet out of their rear.
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