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É lsnd

the F of f

Fcy 5 f y FG e xy dx
IR

with e x earix

Define nine product and never

f f
a
F x f x dx UFU FA

Thull
i F L R L or is unitary

i e

fi f f f
ii F PF FP Pf e f x

explicitely g 1
f x fan f y e x y dy

Pref DIY In
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In particular i A F f U HF
Also note Ella AFU

Ya 1 ft ett y de

Now restrict to Schwartz class T IR

f e c IR ftp.psoo BEZ o

with seminorm CastinteBog but If 0 f 0

If a z sup
elan

DB FG

T xt Do D D

B multi wider D art
1 9 t tn

Also define multiplication operator M
by Mj f x f x

m f x T f x

with this

If lo 11MtDP F has

Note J R C LP R 1 1

I p as
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Thints a s a

i fe Y R Mjf D f F FEY OR

ii f f E Y OR AD fife T OR

Proof
i a D f E J IR follows from def
i s Mjf Y OR follows from the

commutation relation Heisenberg

D M D ME MD i 2

Repeated application allows us to
write

D My D Mj D art

Mj D poly Dj
Claim now follows from def

use Δ inequality

i c To prove FF E Y ARD note that
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Mj D f f y
u

y f x f x e x y dx

12

i y fun Mpif x e x y de

by parts i D Mj f e e ey d

I F D M f y
Thurs

MT DP F I IDT MP 1 3

This yields
A MTDP F F has 115 DoMP f Has

11 D MPF 11 as

TCU by a b

ii Use Leibniz rule
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Convolution
f f x f x x f x dx

K

5 f if Ff Ffa 1 4

Proof
fife x f y f y e x y ye dydyz

Sf y ya f ya e x y dy dy
5 1 Ff Ffa x Da

Example Gaussian

Q Man R symmetric pos def

f x e
t Qx

5 f y If e y a y

or more symmetrically

f x deta e
x Qx

Ff y
det Q

1
e ry Q y
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Proof

F y e
Tx Qx 2T x y de

complete the square

Jm e
t x iQ'y Q x iQ'y ty.Qlyg

e ty.Qyf
tw.Qw dw

R

diagonaliseIe qwit.tqnwi dw

9570 ev's of Q

I éᵗᵗ dt

1 t
in I

o
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Tempfhht.fi yiciryanaltoY R

Y IR biew maps Y IR

f f u f u f
in 9 IR in

Define topology on Y R by
uj u if u f u f FESAR

Define More Don Fu Y IR

by Mtu f u MTF fET R

D a f 1 u Df
Fu f u Ff

It is helpful to identify a with a

function via

m f f x g x dx
42

More Mtg
D're D g
In F g
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Exclet Divac measure u f f x

5 f s F F f f y el xy dy

Example 2 miagniary Gaussian exercise

F Man R symmetric det Q 0

u f fk g x dx g x e x Qx sgn Q

ÉᵗsgnQ tens
5 g y e Y Q y evs
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IE m
Do in

Recall 1.3 which says in particular

Mt I F DT DP F 1 F MP 2 1

This means that the Fowier transform
intertwines multiplication by and

differentiation

What about multiplication by e p e

Define
59 f x f x g 2 2

TP f x e p x f x

Their

TP F F SP SP f It p 2 3

2 1



Proof
FF f y e p y FG e Exoy dx

f f x e x p y dx

f xip efx y dx

f s f e eft y de

F's f y
Mse

Therefore formally

TP e p M M Yun

59 5 9

e g D
D

What about the analogue of Heisenberg's
commutation relations

2 2



TP 59 f x e p x F x g

59 P f x TPF x g

e px pq f x g
and so

59 TP e p q PS9
or more symmetrically

e 9 TP 59 e IP 59 TP 2 4

So far we considered multiplication
by and by e p x and

the corresponding differentiation and
translation operators

Aim to each a T 1122 symbol
associate operator Op a quantisation
such that formally but see discussion

of tempered distributions

a x y e px Op a TP
a x y e gy Op a 59
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Fourier expand

a x y a q p e px gy dp dg

I
Op a q p e E TP 59 dp dg

Weyl quantisation
could use other conventions

Consider action on f E Y Rn

Op a f x

9 p e 18 p x f g dpdg

4 51
2nd y x p e 4 p f y dpdy

IS s e x y x f y dy dx

This is the usual formula for the Weyl
quantisation of the symbol a
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Tunnel Let ae SCIR Tuan Op a

can be extended to a contrinous map

Op a Y R Y IR

with
Op a Op a 2 5

So real symbols correspond to formally self adjoint ops

Proof
op a FG Kalty f y dy

R
with kernel

Kalty y e k y y dy

I a x y

Kal Y IR x IR 2.6

Define Op a w with me 8 IR by

Op a a f f u Kalx f x dx
112

set h x a Ka x 2.7
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Tuen th e Y IR by 2 6 and the

linearity of u Hence Op a maps

Y IR to 9 IR

To establish the continuity of this

mapping assume up U i e

uj f u f f e y Irn

But then hj x h x XEIR

where hit kj Ka x and

g as above

For the proof of 2 5 note that the Kernel

of Opt a is

Kalyst Ka x y Kernel of Op a

Re

We now turn to Op a corresponding to

tempered distributions
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For me 9 R identify with fet a

via

u f f x y a x y dedy
Define 1122

Op a f x Kalt y f x dx
112

where Ka corresponds to

Ua E J IR x IR deferided by
Ua F F x y Ka x y dedy
F E Y IR Rk

Hence for F E G IR Op a f
defies an element in 5 IR and

we obtain

T.hu 2 LetaeY IR Then Op a

can be extended to a continuous map

Op a Y IR 9 IR

2 7



We conclude this lecture by generalising
the commutation relations 2.3

set 3 i e 5

Fyfe
let a e 9 1122 or e g Rn

Op a F 5 Op a 03 2 8

Proof Recall

Op a a p q e E TPS dp dg

So Op a F

L a p q e E TP 59 F dp dg

Ée E FSPT 9FE.ae ft 9g

5 Jan a q p e E P 59 dpdg
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Op ao

suice

a o x y a y x

fat p q e py q x dg dp

Ja q p e px gy agdp

no
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EIE.EEatoyintegratsandsSemiclassicaIFouriertr
ansforms

F f y 4 f x en x y dx

with en x e E eatt
Define dilation An f x 4ᵗʰ f hx

Note MA n f U If 4 i e

An is unitary
Furthermore

Fn A if Fan 3 1

Proof
Ai Ff y 6 F F Wy

4 fuf x enl x y dx

4ᵗʰ Jan f hx e xy dx
3 1 FIFE



3 1 Fn is unitary sice and An are

Note also

D An An hD KM An AnMj 3 2

Proof
D An f x L D f h x h An Djf x

M An F x Li hx h f hx 4 A M f x

E
which in turn implies cf 2 1

Mj Fu F h L D Fu Fu Mj 3 3

Proof

Mj Fu M FA F D An Fan hDj
4 D Fn h Dj F An h F M An FyMj

Re

3 2



Heisenberg
Twn3I uncertainty principle
For f E L Rm with If U 1

11M f 11 Mj Fuf 11 t

Proof
11M f 1,11 Mj Fuf 11 11 Mif 11 11 Fu h D Fl

Fn unitary
h 11M FU 11 D F U

Candy Schwerz
11M f U H D FU 1 Mjf D f 1

1m Mjf Dif
Now

Mjf D f f M D f
and also use int by parts MIDI fD M f f

Et M D f f

tri fMjDjF7
Take average of these two expressions
Then Im Mjf Dif Ee
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The uncertainty principle says that a

fat f and its semiclassical FT fuf
can't be smiltoniously highly localised

ÉÉÉ 4 4 x IETC.IR 11412 1

Then If 12 1

and 70 3 DEC IR compact sit

J f x Pdx 1 e

4K localised in 4 The
On the other hand
F f y Jan 4 h x entry dx

L I ut dy
is localised in 41 6

ye
best simultaneous
localisation for

3 4



Asympotics as h 0

let f E J R YEIR 770ʰ

iTf f y ly t 11 D f 111 4101

That is Fu f y Cn h N 1
P depends on y f

Proof F f y An Ff y 4 Ff Wy

5 f Wy w 1 1 Iffy
FD f city
11 D f 111

Special case of oscillatory integral
here with biear phase

We consider more general phase functions
in 54
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Setationaryphase
For fe C IR f E C IR 4 0

define the oscillatory integral

In In f 4 f x e 4G do

11 1 x x it tt

That Non stationary phase
Assume Ifupp1044711 0

Then N 3 Cn S.t

In f g Ca 4N

Proof Define brier operator L by

Lga Htp DYE D g x

1

Then for gu t en 4K
we have L gu L gu

Work out the adjoint of L
4 1



In FG g x ax

File Big a

DjFj x g x dx

112

Sin F G g x dx

D LA f x D FG

and f Y N

suice ID f x 1 D 4G is in C IR

Now

In Spn FG gu x dx

Nfpa f G Lugu G dx

4N E f G guk dx

WALE FU Me

4 2



What if DYK 0 for some

stationary phase

We start with the special case of the

quadratic phase f x x Qx

Note 24k Qx
detQ 0

Q Q
real

so DYK 0 x 0

sice def Q 0
to 2

Twn4.2 Quadratic stationary phase

ei sgnQ
In f 4 4

I

ÉÉ D Q'D f o Of V

For explicit
dependence on

f see proof

4 3



Proof Example 2 in 1 yields
we also

In f 9 SFG en ax de
É

L Sftp ec Ey a y dy

I
f

Julf ÉÉ i Fly y.at dy

T

Ru.NET
error term

Fly yay ay JM.ci f y

dyMFEDD.Q'DYF O

D.Q'D F o

Now replace f F to get formula

for In f y

4 4



Error term

Ru N f h t

nfT y ay et E y Q'y dy dt

So

I Run f it i t at

n
F y y.Q.ly dy

TE

NI

C
yqzn n

of 111

suice 11 w̅ 111 A year
11Dec 11
Exercise

4 5



Def f E C IR IR has non

degeneratecritical point at toe 12 if

29 to 0 and detay to 0

2 2
2g

syn 224 x t ve evs ve evs

Thm4.2_ Morse Lemma

IE CP IR IR with non deg crit pt
at Xo Then I neighbourhoods O E UC IR

to E V C IR and a differ
r v re

s.t

yo f
1

x 96 x Qox

where 0

Qo
n

1mn
r ve us of 2 Y to

Proof See Zworski Theorem 3.15
4 6



Tu4.3_ General stationary phase
Let f e CP U2 to non deg crit.pt
of 4 24 x 0 suppf to

Then there exist diff opperators Azu

of order 2k sit

In f 4 Ack f Ko 4ktE en Y o

Of q 4N E

where

Y i
Proof W 1

og Xo 0 Y o 0 24 o 0

Let X E CE IR sit supp X CU and

x 1 in a neighbourhood of 0

In f 9 In X f 4 In 1 x f y

apply Thn4 tl

Q LM
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In e f 4 f x e 44 do

I r x

F x x en Y r x det 2 5k ok

HEY F x en ix Qo x de

Fk F Fx Idet 2 re

Now apply quadratic stationary phase
Theorem 4 2

1711
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EE.IEmemaoi
EFirii itn.si

is a vector space V E IR IRI.IR

with the symplecific form

6 Z Z Z 22 5 1

n

Un 0

Explicitly 6 z Zz XiYz Yitz Z Jj
e g 6 x y x y 6 y x

Note
i 6 z 22 6 22,2

antisymmetric
ii 6 z Z 0 22 21 0

non degenerah
iii t

3 3
1

5 1



For biew subspace L C V set

Lt z E V 6 z w 0 WEL

orthogonal complement w r t 6

Note i duir 2 dim Lt 2n

ii Lt L
iii L L2 Lf Lat
iv L n L t L Lt

Proof Exercise

Def L is called Lagrangian if Lt L

If L is Lagrangian then

i 6 z w 0 Z WEL

L is totally isotropic subspace
ii if ZEV sit 6 Z L 0

then Z E L

L is cal totally isotropic

Example L IR 0 or 0 x IR

5 2



If L Lagrangian Lagragian
EE Loi v

Proof Let E be maximal amongst
tot isok subspaces sit L n L 0

Then it L n L V Now

suppose ÉE Fit z I L

Then we we have 6 IRz w 0

So IRZ is tot isotrop and

IRZ is not maximal contradiction
So I c L and therefore

L C E L L V Ie

Example L IR 0 0 IR

But there can be others

L E are called Iese Lagrangian

planes
5 3



If b bn forms a basis of L then

there is a basis 5 5ns of sit

6 bi 5 Sij
To see this note that

L

z 6 z

parametrises the space of him functional
forms on with basis 6 bj
E is dual to and b the dual
basis

bis bu bi 5 symplectic basis

of V

More generally a symplectic manifold
M 6 is 2n din smooth manifold
with a symplectic differential form

6 dx dy dx n dy
i e looks locally like IR

ⁿ
6

5 4



Symplectic group of V 6

Sp V 6 ge Gl V 6 gz gw 6 z w

In the standard basis V 1122 this

becomes the matrix group

Sp n IR g E GL 2n IR gz 3gw 2 Jw

g E GL 2n IR ᵗg g I

tea tac
i g sp n IR iff ad tab In

tdb tbd

i
g
1 Ed tb

te ta

Proof c

i EE
tda tbetas tbd
tcattac teb tad

5 5 Me



T acts transitively on pairs L E

of transverse Lagrangian subspaces

Proof Let e en E entis Én can

be the standard symplectic basis

with e etc the standard unit vec's

and b bn 5 5 be the symplectic
basis for L V 1122

Then

g b bn 5 5m Sp n m

suice

0 6 ei e 6 g
e g e 6 bi b 0

SigG ei Ej 6 g ei g éj 6 bi 5 Sig

0 6 éi éj o géi géj 6 bi 5 0

g L IR x o g
0 IR

e
5 6



Examples of symplectic matrices

i
a

x Man IR x x

ii f at Muen CR detato

iii 3 Hn

In 0

Twn5I mail.ms agct
K U n Sp n IR n 0 2n

a Ren 1mn
Im re Re u

is a group isomorphism

Recall U n ne GL n e trim In

n r EGL n IR ᵗrr In

Proof Identify 1R with C via

Y it x iy to

5 7



TL5.5 Iwasawa decomposition

ge Sp n IR 3 x a Muen IR symm
with a 0 pos def and UE U n

such that

g 1 Ku
a

Proof See A Terras Harmonic Analysis
on symmetric spaces and Applications II

p 277 Cartan decomposition p 287

g D K a Me
or polar P

pos def

See also

G B Folland Harmonic Analysis in Phase

Space p 172 for proof of Cartan

decomposition Prop 4 3 and maximal

compactness of k U n Prop 4 5

5 8



ssymplemorphm Hamiltonian

i Éz2 open se u v smooth

2 4 w Y
Def se is symplectic a symplecto
morphism if x 6 6 6.1

with the push forward
se 6 z z 6 r z set

Write 6 1 as

dx r dy du r du

É av is symplectic iff

ae 2 espln.ir

for every Y E U

Proof dan du Adx B dy Cdx D dy
with A 2k B 2yu C 2v D 2 v

Then du n du dx r dy iff 8 Sp n IR

4
6 1



beatngfuctions

f IR x 112 IR smooth

sit det 2 3 4 to no 0

set y 24 v 2m 9
and define

re U

Y w Y
in neighborhood U2 xo 2 4 Xo Yo

Implicit function theorem a smooth

T.me
se is symplectic

Proof a dre e du dec 1 d 24
du r 24 du 2 4 dx

du n 2 4 dx

b d e dy dx n d 2 4
dx 1 2 4 dx 2 4 du

dx 1 2 4 du

du n du
6 2



Diltonidynamics
Describes the time evolution of
a point in phase space 1R

IRo 1122

t i x t y t

Convenient formalism for classical

Newtonian mechanics

Hamilton's equations of motion

x ̅ H x y

i H x y F m

6.2
o x y o yo

initial data

f It f HE Ct 1122 IR

Hamilton function
may depend on t

6 3



In symplectic notation

2 Y 3

I H z
6.3

210 Zo

ft 1122 R Hamiltonian flow
to Z t

Thing off 6 6 t

That is Hamiltonian flow preserves 6

Proof
dx n dy

di n dy dx n dy

d 2,4 m dy de d 2H

124 A dx 2y dy dy
de 2 dx 2 Hdy

0
Dec

6 4



T.IE motion HG y 11742
x ̅ y t Xo tyo
if 0 y t yo

ii Isotropic harmonic oscillator
H x y Elly 12 11 112

x ̅ y

j
e Z 3z

define exp by
matrix Taylor series

Ye zo estzo
In duin n 1 i and z t eit to
iii General quadratic Hamiltonian functions
H z 2 Qt Q E Manu IR symm

z 3 Q Z 20

f zo eat zo 6.4

Note By Tum 6.3 eat Sp n IR

6 5



ie iiiii ai

i.e.AeM2nxza 1R s.t JA JA
O A JA 0

Explicitly A Hamiltonian matrix

iff ta d b b to c

The Hamiltonian matrices are closed under

addition and the Lie bracket
A A2 A A2 A2 A

and form the Libra sp n IR of

Sp n IR

Exponential map

exp sp n K Sp n IR

A eA

It surjective

6 6



Lamiltoniarectrfields
can be used to generalise 6 4 to

non quadratic Hamiltonians

given a smooth Hamiltonian function H
let

X 2 H 2x 2H by

22H 2z
and define the operator Lt on C 1122

by Lt a z a 4 2

Theft
at Ht

Proof

31 Lt a z 2za flz t

3 22H

X Lt a z

7

6 7



T.EE
ii

i

21 Zz x 42 y te symplectic form

Extend V to Heisenberg group
1H 1H V 6 IR e IR x IR 11th IR

with multiplication law

z t Zz t2 Z 22 tittz 6 21,22

É a it satisfies the group axioms
ii Show that the map

M 1H GL n 2 IR

11
x 1

M z tz t 0 In Y

O O 1

is an viziativegroup homomorphism
The matrix representation of Ht

7 1 monomorphism



The center Z of 1H is defined as

2 he 1H h g gh g E IH

The 1

i 2 o t te IR and 1H
z 112ᵗʰ

Recall Go C G subgroup G Go gGo gEG
ii if L is Lagrangian then

I z t ZEL EIR 110 2,0 ZEL

are abelian subgroups of 1H and

I 1H12 Io 14 12

with the transverse Lagrangian of L

For ii note that ge 1HProof Exercise can be uniquely written as

g ñoh toe Ito hell

HII.IE G has a left action on itself

by big hg and a night action

rug ghi The left right Haar

measure is the up to normalisation

unique left right vivariant measure

on G
7 2



Ic and night Haar measure in

of 11th IR is the Lebsegue measure

Lebppner on 1122 x IR

Proof Suppose In µ µ he 1H

i e m h B µ B Barrel sets B

Now 1H is generated by the subgroups
E and Z For B Bo a b

the vivariance implies that

µ 53 no Bo b a

For some measure no on 1R 1H 2

L E acts on 1H Z by translations so

no Lebesgue on IR

same argument for the right action

4
Similarly the Haar measures v on 1L 1L

are the Lebesgue measures on L L IRC

7 3



The Lie algebra of 1H is the Heisenberg

algebra
1h V Reo

with Lie bracket defined by
i Z Zz 6 z 22 co z ZzEV
ii z eo 0 ZEV

So in particular hi he h 0 hje th
2 step nilpotent

Note If we choose a standard symplectic
basis b g bn 5 Ga then the

Lie brackets satisfy exactly Heisenberg's
commutation relations 1 2 where

b D 5 Mj Co Id
9 β

differentiation multiplication identityoperator operator operator

7 4



Matrix representation of 1h as Lie algebra
m the Mnez nez IR

ᵗx t
z t

8 8
meat

2 14
Proof m z t m z t m 0 x

and hence

m zist m Zeitz m 0 641,22

E

Note m z t 0 if k 23 and

hence

exp m z t 1 m Z t 2m 0 x y

M z t

1h is lie algebra of Hf

There is also a direct way of proving
this without going via the matrix rep

7 5



ITn tg presentation 5 of a

topologicalgroup G on a Hilbert space be
group of unitary

is a homomorphism operators on be
51g J g 51k u ye g 5 g

such that the map
a be g 5 g f

is continuous for every given f E Ge

Ed Left regular representation L

G H Je L 1H u

topology induced
by L metric

L h f g f h g

Check L h L he f g L he f h g

f hi hi g f hike g
L h.kz f g

Unitarity follows from the 1H inariance

of Haar measure µ

7 6



Schrodigerrepresentations

Given EIR define the function

1H S we C w 1

z t et t e et eurist
check that this is well defied

If L is a Lagrangian subspace then to

defines a unitary character unitary
representation on G of the abelian

subgroup 1L L Reo That is

X.ch Xa ha h ha

h he 1L

Note that it is not a character of 1H
for a 0 suice

x 0 to z_ 0 1

Xo z o 22,0 e 6 z z2

7 7



Key construction Given Lagrangian subspace L

consider functions F 1H G such that

F gh X h F g 7 1

gelH hell

This means F gh F g and hence

IF g I can be identified with a function

on 1H 1L Io Thm 7.2 ii

If F F satisfy 7 1 we can define
the uniner product
F Fz F g F g d g 7.2

11

suice again
Fi gh E gk F g F g hell

and norm 11 F 11 GF.FI
Tea Hilbert space of F satisfying 7.1

and 11 F U so together with the

winner product 7.2

7 8



The Schrodinger representation Wan
is now defied as the left regular
representationon Bea for 0

Wac h F g F h g
Let us specialise to

L IR e I 0 112

IR e IR 0

We have the unique decomposition

g
0 t 7.3

and a bijection
I

Re Ha 0 L W 7 4

F to f

defied by f x F 0

Note that the niverse R is given by
F g F J o Xs t

f x e rt

for g as in 7 3

7 9



Thur7se
Let We R Wa RI L 0 IR Then

W t f x f x g et pox t p q

e ex e ex

Proof
For h 18 t 4 t we have

Wo h F 8 0

F e 0

F t 6 1 1,1
Tox

F 59 0 ftp.x g p

F 79 0 ftp.x t q p

Corollary set a 1 and recall 2.2

w̅ 0 5 9

w̅ 0 P 7 5

r h would give Heisenberg's
7 10 commutation relations with

explicit h dependence



and the Weyl quantisation 82

Op a q p e E TP 59 dp dg

can be written as

Op a ñ q p w̅ f 0 dpdg 7 6

suice e E w̅ 8 0 w̅ d 0

e 91 w̅ 91 w̅ 91,0

w̅ is an example of an X viduced

representation

if Ind t ra
k

The corresponding infinitesimal
representationof the Lie algebia the gives the

algebra generated by D and M B 1

7 11



Then 7.3 basis independent
Lo E xe E u ptg

FEET Reward Then

W ret f x f x g et 6 x p t 6 q p

Proof Let h rest Then

we c h F x 0

F C u t x 0

F x u t 6 a x

T.es
c aol.es e

F x 9,0 e G x p 6 q p

Es

7 12



88stone vonneumanntheoren

q.gg
Define the Fourier Wigner transform

Fw f f q p f W b 0 f

F x f x g e pox p q dx

IR

fi x fa x e p x dx

T.FI f f ey ru then Fw f f 9 IR

ii Y IR 9 1124

iii Fu f fz Fw g g c Fa g

Prof Extend to linear map on L 1122

FwF q p San F x etp x dx

We have Fw 5 0 g where

540 F x y FF y x

519 P F x y F x g y p

Tuns Fw L 1122 L IR is unitary
maps S IR S IR and extends

8 1



to a map S IR S Ra

Choosing F x y f x f y proves the

claims Ex

A representation 5 of a group G on a

Hilbert space be is irreducible if there is

closed subspace be Te

measures
Tunes a 0 Mo 0

w̅ is irreducible

Proof Assume w.L.org 1

Assume Glo L IR such

that w̅ 4 f No f e Mo heh

If foe Get them

Fo W h f 0 he 1H

Fuffo f 0

Then 8.1 iii

1 Fuffo f 11 Ilfoll If 1 0

r for 0 or f 0
Me

8 2



gested by proved by 1930

Thm8.3 stone von Neumtann Theorem

Let J be a unitary representation of
1H Hu IR on a Hilbert space be such

that 5 0 t e et Id for some

0 Then Ge Hl with

JM H and 5 se unitarily
equivalent to Wo

Proof Assume w 1 org 1

Use shorthand 5 q p 5 0

and define the biear operator
Op a a q p 5 q p dpdg

with a e L IR

More precisely Opp a is defined by
f Op a g a q p f 5 q p g dpdgx
which is absolutely convergent scice

1 f 5
g p g If llfllyelltypfqh.ie

8 3 be



We have

5 x y Op a

a q p 5 x q y p e xp yg dpdg

Ja q x p y 5 q p e xp yg dpdg

Op b 8.1

b g p a q xp y e xp yg

and by the same calculation

Opp a J x y Opp b 8.2

b g p a q x p y e xp yg

Furthermore

Ops a Ops az

f a q p az 92 p 5 91 9 p Pe eklg.pe Pic
dpdadpedge

f a 9 92 p p az gaps 5 9 p e pqigp.tl
elpdg dpdq

Ops a az 8 3

8 4



with a a p q

f a q q p p az q p e qp q p dp dg

Claine
If Opp a f 0 fe be then a 0 a e

Proof f g
e ye by assumption

0 5 x y f Opp a 5 x y g
f 5C x y Op a 5 x y g

Set xp yg a g p f 519 p g dpdg

Fourier inversion

a
q p f J q p g 0 for a e p q

a 0 a e Ex

Claims
If a is even Op a Op a

Proof Op a afp ftp p9id9
5 9 p

8 5



Claims If a x y 2 e E
1 42 19112 then

Opp a 5 x y Op a 2 a x y Opp a 8 4

Proof Left hand side of 8 4 equals

Op a Op b Op a b

with b as in 8.1 and

a b g p

S a q q p p b q p e qp q p dp da

Ja q q p p a q x p y e xp y q
e qp p q dp dq

if e 19 q l p p'll 11g 4 llp y12 2 xp yg gp p'g

dp'd
completethe

2aug 19112 1p f hell't ly t L square

e E 119 ll lip'll 29 p x iy ip 2p p y ix ig
dp'dq

é 1911411pmhell't ly t

EEÉÉÉpntfixiafiLetg
ME

8 6



In the following fix a as in Claim 3

Is Op a 0

Éi Op a is self adjoint
53 Op a Ops a

Tuns Op a is an orthogonal projection
on Je

Set R Op a H the range of Op a

Then for f g e R

J x y f 5 u v g

f 5 x y 5 u v g

eaamnfif.it ns
f Op a 5 u x v y Op a g

e uy xu 2 a u x v y f g
8 5

Let 4 be an orthonormal basis

of R and define the closed biew span

be span J x y f x y E IR

8 7 countable if H separable



8.5 se be if it j

Note that if N be then 5N EM

and Op a is orthogonal projection be N

By above construction we must have

Op a N 0 N 0 be Ge

It remains to be shower that 5 Dej
is mitarily equivalent to w̅
Define functions f be

f 5 x y f j fixed

Then

f f e ay xv 2 a u x v y

similarly define g7 L IR by

g W Y 0 go go g 2 e 942

By calculation similar to the one leading to 8 5

we have g g f Y f ye

8 8



So for finite linear combinations of the farm

f Ee Cie f
e

g Ee cie game
we have f fa

ye gi 922
By the density of such f in H and g
in L the correspondence fi gi
extends by linearity continuity to

unitary map be L R which

intertwines 5 H and W
e

The Stone von Neumann Theoran and

Schur's Lemma give the following
classificationof unitary representations of

Hu IR 0 leads to representation of 1122

Every irreducible unitaryEpiefSation of Hu IR is unitarily

equivalent to one and only one of
i Schrodinger rep Wa with a e IR 0

ii op f t e B T with BE 112

8 9 see below p 9 5



EIEI.in IEe
Quadratic Hamiltonian functions
generate driear symplectictransformationson phase space IR

The Schrodinger representation of the

Heisenberg group produces quantum
mechanical operators

New
Will construct action of symplectic
group on Heisenberg group which

yields a representation that describes

quantum transformations corresponding
to quadratic Hamiltonians

Sp v H V symplectic Heisenberg

group The map

9 1



Sp v 1H v H V

g h g z t to g h gz t

with g z 9 J
defines a left action of Sp V on HCV

key is that Sp v preserves a

Warning Note that g h h g h g hz
cf action of Sp v our

Recall from 7

W is the left regular representation of H
We h F ho F Who

on the Hilbert space Gl of functions
F he X e F h le IL

with X z t e t 0 1 throughout

L 0 IR gave the classical Schrodinger
representation in position space It will be more

convenient to work with L 112 03

9 2



which yields the unitarily equivalent
Schrodinger representation in momentum space
Fix L IR x o 0 x IR

We now use the decomposition

g 9 0 t 9.1

and a bijection
I

R Ha 0 L R 9 2

F to f

defied by f y F 0

Note that the niverse R is given by
for g as in 9.1

F g F o Xi t

f y
e rt

FEET R W R L 03 112 Then

W t f x f x g et pox t pq
e ex e ex

9 9

31



Thiel Thin 7.3 f also basis videp version

Let Wa R Wari L IR x 0 Then

W p t f y f y p et g y t Epg
e ex e ex

Proof
For h 1 t it t we have

Wo h F 9 0

F 9 e 0

F t 11,19

F
y p

0 109 t g y q p

F
y p

0 e g y t q p

Corollary set a 1 and recall 2.2

w̅ 0 9

w̅ p 0 g p
9.3

9 4



Kegida
If W W we obtain new representation
209 on Je 2 ge Sp V by setting

w9 u W g h

Stone von Neumann Theorem WS is

irreducible and I unitary R g on be

such that heat V

WS h R g W h R g 9 5

Schema If 5 is a unitary
representation of G on be then

5 is irreducible iff R J TR for

R be be R c Id CEC

Ther g g2 E Sp V

R g g C g g R g R ge

with C g gz E C c g ge 1

9 5



Proof The operator R g R g R g g
1

commutes with the irreducible

representationW 9 R 92 kwh
R gig R g Rg

hence by Schur's Lemma

R g R ga R g g c gi.ge Id

c g ge 1 by mitarity Be
Suice C g g 1 in general as we

will see R g is only a projective
representation of Sp V

Note c is a cocycle i e

C g g 93 c 92,93 c gi.gr c gigz 93

9.6
Ioof
i R g R g R gs c gz g3 R g R gzg

C g 9293 C g gs R g 92 93
ii R g R g R gs c g g R gig R gs

clg.gr C g g gs R g g gs Dec

9 6



The Mackey obstruction group turns every

projective representation into a proper one

T.IE t aiai

with g t grotz gigz titz c gi get
Then R g t t R g is a unitary proper

representation of Gc

We will later see that there is a choice of
R g such that c g g and R g

can be realised as a proper rep of a

double cover of Sp n IR the metaplectic

group

it i i i i it
P esp v detato

d

So in particular d to tbd Edb

and gL L g E P E EL

9 7



As in the case of the Schrodinger representation
the idea is to use the left regular
representation of Sp V on the Hilbert

space HL 57

For F E M define R g with g E P

and some normalisation constant se g

R g F h se g F g h a 7

We will see that se is 1 dmi rep of P in

to make R g mitary on se we will see below

that selg det a is a convenient choice

rather than the more obvious det a
2

They det a a det a det as

i R g maps be to be

ii R g satisfies 9 5 with

c g g l 1

9 8



Proof i holds suice gL L As to ii

WS ho R g F h R g F g ho h

Tegho Eg hi
x g F g g 4 h

a g F h g h

r g W ho F g
t h

R g W ho F h

which yields 9 5 As to ii

R g g se g g se g se gz R g R ge
T g.ge

Me

ÉÉÉÉE it suffices to evaluate

9.7 at h 0 ye er

Three Fe Gee g Eat detato

R g F 0

det a F Ey 0 e y stay
9 9



Prof g É and hence

R g F 0 x g F
stay
ay

0

0 TiE
se g F Ey 0 e y stay

L normalisation se g Get a na

Note that via the isomorphism 9 2

Re H an

we obtain the unitary projective representation
R g R R g 521

of P on L IR

R g f y det a f tay e y stay
9 8

9 10



1Ei.it iitiiiiing
R g Foud the cocycle c g gz in 512

As in the case of the subgroup P we will use

left translation of 9 7

does not preserve me for g P

Write be Me v v8 B v g B

18 g L 119 g 1L Note X gh X h

FÉ atov L g F u F 5ᵗʰ
defines a unitary map

L_ g Sen u x is vs x

Proof
Assume F E ten i e F Kho ho F h

ho 1L
10 1



Then for h 128 g 1L we have

L g F 4h F g 44

F g 1h g h

g 4 F g h

X 4,5 L g F h

L g F L g F F g h F g h duh
Ng 14 129

h gñ glL

F E F E dv h

14 11

F FaZe E

Goal Fuid unitary map

52 c Gee Me

so that
R g Fs _L g 10.1

satisfies 9.5

10 2



Ideas Let 112 112 11 71h2
and define Fi cz as a twisted average

F 2
F h F h h X h dry h

1212

10.2
where uh is the Haar Lebesgue measure

on Kiz to be normalised below

checks
i For ko e 11 71h2

F uh ho x hiho F 4h ho 4,40

F 4h X 4

integral well defined
ii For he 1h2

F c F khz S F hh.kz x h dun.ch
12

F uh 4h dye.fi
12

ha F c F h

7FuLF Huz 10 3



T.hu 0.2 For R g as in 10.1

WS h R g R g W h

w R g F 4 R g F gut'ho

51,29 Y g F ghj'ho

L g Flgy
hok hi dy.fm

F h g hok x h due Ch

R g W h F ho

L g W h F hoh 4 do hi

F w g hoh X hi due hi

7

This yields 9.5 provided R g is invertible

We will see that for the correct normalisation

of wa it is in fact mitary
10 4



Let's work out 10 1 in the case

L L I IR x 0 L o IR

We have 11,2 14 2 and hence for h T

F F t 0

SF 0 9 o dy
112

S.at 9 io t x.y dy

SnnF 9 0 el xry dy
Note also that

F F 0 F 0 e try de

So Fe Fu É 10.2

10 5



If L La are not transversal we can

relate FL n
to lower dimensional

Fourier transforms This follows froces

Fact For any pair of Lagrangian planes Li La
there is a standard symplectic basis

bi 5 7 of such that

L R bi
u

L2 R bi R bi

so L NL k R b

n

i R 5 IR 5 Que bi

Exercise Prove this claim

The above would be useful to obtain formulas

for R g with g all a b c d

singular i.e det 0 We will not

further explore this here
10 6



Turnt
For g 3 11 we have

E J in R Fe L 3 RI
R J ink Fe _L 3 Ri

this choice will make c g ge 1
Proof

Fg 4 g F 9 0

f g F T 0 e x y dx

1 o

F 0 e x y ax
as

We have determined g for g
and ge P The following theorem shows

that this determines R g g Sp n IR

up to phase factors giving c g ge
10 7



jÉ s generates Sp n IR

Proof
If det a 0 then

a

co

Fi X
83 Ip

now a meta o

is an open neighbourhood of 1am
Hence the subgroupGo generated by the is

open It's complement GI U G g is open
g G

hence Go is also closed Thus Go Sp n R

since Sp n IR is connected
me

10 8 non trivial fact



Feels a with data 0

Then

R g f y det d e 4 u y F u due

with flu y u d cut u d y y.bd.ly

Proof 1,9 a a bdic

g
b
d

1,92

d f
So

É g f y R g 3 g 2 f y

detd F R g f d y e Ey bd y

R g f u e u d y du

F u ef u d cutu d y de

ME
10 9



Fit with data 0

Then

R g f y det c f e y r y f u du

with 4 v y v c dv v.c.ly y.ac.ly
Proof

a 9
a

stageg3 d c

So R g R g 3 55 g inks

and the claim follows from The 10.5 ya

Note if generates the symplectic map g
i e

p 21
2,9 ac ly Ec vRd
my c ldv c y

Y C 24 du

2yY a 2,4 act du to v

Eff ites b
10 10 IT



quantization of g
To see how it relates to the Weyl
quantisation we re define

Op a S a w w̅ w 0 dw 10.4

where V L

with

a z 5 a w e 6 w z dw 10.5

which is now widependent of the choice

of basis

In the standard identification IR x R

we have the modified Fourier transform

a x y fat a p e 9 y dpdg
11224

i e Z q p a g p

10 11



Thule ge Sp n IR

E g Op a R g Op a g

Proof
R g Op a I g at w w̅ w 0 dw

ja of w w̅_ w 0 dw

ao g z at w e o w g z dw

f a g w e 6 g w g z dw

J z

same Fourier coefficients Me

If g ge ext generates a one parameter

supgroup and thus the Hamiltonian flow

Yt z gez then the family of
unitary operators Ut se t R ge

satisfies

10 12



Ut Op a UI Op a o f 10.6

exact Egorov theorem

Here the phase factors se t 1 are

chosen so that Me te IR form a

group D metaplectic representation

Differentiation of 10.6 wir t t yields
with Ue e

Ht

Gt Op a fi H Op a

Comparison with the Heisenberg evolution

equation Alt i H A t

for A E Ui Alle yields

A t Op aof for A Op a

10 13



LtureCBarguarepresentationand

Etistaneresentation
as in Turn 9.1

Recall Schrodinger representation L IR 03

W_ t f y f y p e g y t p q

and the redefined Fourier Wigner transform

Fw f f q p f W1 81,0 f

F y f y p e g y p q dx

IR

Sufi y E fe y e g y dy

set y 2 e Y By Turn 8.1 iii

L2 IR Ra

f Fw I f
is an isometry

Explicitly
11 1



z q tip

Fw Io f z w̅ 9 0 Io f

Jpu244
tlly plt 2tig.y Tip 9 f y dy

244 e Tlp
12 Tip 9 e

9114112 2T 9tip y f y dy

Ellqtip11 E grip grip

244 5 2 1121121 e
114112 2T z y EZZ

f y dy
Def Bargaetrasford zee

Bf z 2 1 e
117112 atiz.ly Ez Z

f y dy

Def Feks pay
et Folland 2 iz 1

Fn F entire on C HF he as

with A FUSE F F 75 and

F F f Ftz F z ét Nav z

en

Set dup z e 112Pa z Lebesgue on

11 2



usefulproperties
i F E L R BF E Fu

and RFU A Bf kg or multi midex

ii Ja z 29 101 0 is an ONB

ii The Taylor series of F E fu converges to

F in the n Us norm

i F z e
NZU HFU FEEL ZEE

for proofs see Folland Chap 1 56

By iv F Fu F to F w is

bold biear functional w so F E

such that F w Ew F

Ect Ew z
ᵗw̅ Z 11 2

REF
E so Ew Jo z

Σ C 3 z
19120

E w̅ z et w̅ z

E
11 3



Thus for K z w̅ eTZw̅
F z S K z w̅ F w du w

reproducing kernel

The
Let T Fu Fu be bounded and set

K Z w̅ TEW z Then Kt is an

entire function on with

i K w e Fu K Z Fn
ii K z w̅ 1 e

4242442
1 1

iii T F z K Z w̅ F w due w

Proof
TF z Ez TF T Ez F I

TᵗEzT F w due w

where TET Ezf
Ez TEN 11.3

T Ew Z K z w̅

11 4



K Z w̅ holomorphic viz by 11.3

and holomorphic in w̅ i ii follow
ii follows from
K z w̅ Ez T Ew 1

HEZU ITEWU

4 4 UEzAUEwU
AT U 12 42112 UwU

e

TETTE Fn is bounded then it is

uniquely determined by K Z E

Proof K z w̅ is entire in z w̅

Let a 2 w̅ v z w̅

Then G u v K z w̅ is entire

in u v G is determined by u v

real via Taylor series i.e when

Im z w̅ 0 Re z w̅ z w

11 5 EA



Identify 1R is a to z grip
So that the multiplication law of H is

z t z t Zez t t Im Ez

LeBargatrasfore
By unitarity for F E Fn Fe L R

f B F Bf F

24Jun e
117112 at E Y EE

Fly F z dydust

so

B F y

2ⁿk e
114112 2T E y EE

F z dm z
an

Bergmanukernel
B z y 2

4
e Illy 1 atizoy Izz

11 6



Then

Bf Z B z y f y dy

B F y BL E y F z due z

B

arguevepesatiofH.IO
q ip t BW t B

1

So in particular now use z x iy
w qtipo grip 0 Bf z

B W 9 0 f z
it iniated

e
112112 I w̅ 0 w̅ 0 f

e
112112 Tilmz w̅

E w̅ 0 f

THz w F IT Rez w̅ UwU

e
FHWA 2 w̅

Bf z w

11 7



We conclude

D w t F z etz w̅ 2 it EUWA z w

Tw E 25 t Ew w̅

Compare with w̅ t

w̅_ g t f y f y p e g y t pq

We have formally

w̅.fi I t ffiE ffiEI ef iegE t E

and thus

0 wit F z E Eeg t f i
o

with F z f Eg

Also note

e
their

e
2 E

e iz.IE
w grip EEE

11 8



me

Want to conjugate Sp n IR so that

3 i

9 p P 9so that 3 30
q ip ptig

This is achieved by the unitary matrix

c euka c

csc 3

Set go C g C and note

5
Tibatib 2r ardai btc
c id c id 2s a d i btc

12 1



In particular

g o

b

go
1 Eb Eb

1 b I Eb
t b b

g D go
attai a tail
a tail atta

det a 0

g
Rea Imre w o

1mn Rea ge o

tie u 1

Furthermore
Re str Im str

Im Str Recs n

Str i s r

strict s

s 5 rrTE s ret

Efs 5 ref sts r r

Def Spc v Csp V C
1

subgroup of GL 2n C

12 2



c.TT espCaiiasiff E a n

c g

Fr ts 5 1Ts e spc iff is ST

47 g EE

Proof
ᵗ
c gc 3 c go J

to tg te I c g to c I

0 ᵗg 3 g
g satisfies same relations as Sp n IR Turn 5.2

a
Note i is equivalent to use g g

t 1

ʳᵗr s 5 1
12 1

Str rts

12 3



Cordary of Them 12.1

i det r 0 U r U 1

i 11 r's 11 11 5 v 11 1 Uru
2

iii r s
ᵗ
r s 5r

ᵗ
5r 1

Proof
i Kruff ru ru Gu Era

Ha 12 11 sull 1 55

ii Set a r v in above

ii Easy restatement of str rts tis tsñ

Ea
The key point here is that dat r 0

indicates we may be able to construct

a projective unitary representation
g via an integral formula that

simultaneously works for all g

g is midenced from U h via the

relation

gh g U h Q g 12.2

12 4



By Then 11 1 there is a kernel EuG etw̅

Kg z w̅ Ez Q g Ew

such that

Q g F z kg z w̅ F w dry w

Jul 2 If g 5 Spc v and

Q g a unitary operator satisfying 12.2

then

Kg z w̅ C.ge
z 5r z 2w.r'z w̅ r s w̅

12 3

for some constant Cg

Proof We have

Ew z eᵗZw̅ eᵗ who w 0 Eo z

FWAE.czw
so kg z w̅ cgeE

UZU Hwk 1

0 2,0 E Q g 0 w 0 Eo

12 5



step1 Assume z gw i e E g Then

z r w sw̅ 12.4

and Then 2 1 ii

w̅ trE 5 z 12.5

w r iz r sw̅ E tr it z

So HwA2 112112 w̅ w 2 E

w̅ r z w̅ r s w̅ z.tn w̅ z.gr z

2 5r z 2 w̅ r z w̅ r s w̅

By assumption 12.2

0 2,0 E Q g 0 w 0 Eo

Q g D 5 2,0 Q g Eo Q g 0 w 0 E

g D h unitary
Q g

1 Eo Eo 7 Eo Q g Eo

We conclude that the claim is correct

in the case z gw with the choice

cg Eo g Eo7s
12 6



stepf
Define the complex variables u v e e

by a w̅ r z r s w̅
v i w̅ r z r sw̅

so that
2 r utiv s a iv
w̅ re iv

Then Kg z w̅ is entire in u v and

hence determined by its values for u VEIR

But this happens precisely when z g w

as in step 1 So Kg z w̅ is determined

by the restriction 2 gw Suice the RHS

of 12.3 is entire claim follows
E

Note that by unitarity of g

1 Eo 11 M Q g E 11 Q g E e Kg 2,0

kg 2,0 e
112112 dz

I cg f Eelz5r.iztEsF.tz 211242
dz

1cg det 1 si s r t

FE ts.gr r r

cg det r 1

12 7



For g Spc v define

Q g Fu Fu
by

g F z f
an
Kg Z w̅ F w dry w

with

Kg z w̅ detrj
z 55 z 2w̅ F z w̅ r s w̅

12.6

j Q g is unitary
ii Q g W h Q g N gh
iii Q g Q g c g 92 Q g g

with c g gz II

Proof U is unitarily equivalent to We

hence irreducible Stone von Neumann

implies that there is unitary Q g

satisfying i and ii As in the discussion

12 8



of R g Thu 9 2 we conclude that
Q g Q gz C g 92 Q gigz

for some complex cocycle with c gi gz 1

To work out c g gz set gi

Then

c g gz Eo Q g 92 Eo 7
Eo Q g Q gr Eo

Q g
ᵗ
Eo Q gs Eo75

Kg O E kg 2,0 e
zu

dz

det r J det r eE z5r z E r's E 22 E
dz

caetr.jh etr.th out

Idet r rats 52

Eo Q g 92 Eo

since
g g Elsie

Me

12 9



Via the Mackey obstruction group construction

we thus obtain the metaplectic
representationof the double cover of Sp V

generating functions

Fz w̅Éz 5rz w̅ riz w̅ r s w̅

S

ie a

2
w̅

Proof

224g 5r z tr 1 w̅

24g r z r's w̅

z r 2 w̅ fg S w̅

24g 5 254g 5r s tr 1 w̅

Ed
Fr tss 1

12 10 t t s ST



Exercise
work out Élg B Q go B

for g e P and g J

12 11



Lecture 7 Poissonsummationand
theatnsfo

s

Poissonsummationthen13
ie Let f E Y Rn Then

Ez f m Ez F
m 13.1

Proof Define f x mEzn f x m

since f E T IV this converges absolutely
uniformly on compacta C R and

g x r f x rez

The Fourier series of of is

Y x Σ if e k x 13.2

Kez
with

42 f x e C Kx dx

So
sn Eeznf

xtm e kx dx

13 1



series converges uniformly in ye o I

Eez gn
f m e Kx dx

k integer
f f x e Kx dx

Zero i m

T
F k

So the Fourier series 13.2 of of can be

written

mEznf xtm Eaf k e kik 13.3

setting 0 yields the theorem
Eg

We can re write 3 1 as cf Tum 10.3

E zu f
m in mean J

1
f m

E zu f
m in Izu 55 J f m

use F f for f 13 2 13.4



The Poisson summation formula is often
stated for more general lattices L of

of full rank in IR Set corol L vol 11 8

Let 29 ye IR x Y E Z EL

denote the dual lattice of L

thn13LI Let f E Y Rn Then

Σ f x covols Σ F y 13.5

EL YELE

Proof 3 a E GL n IR sit L a 2h

take a b bn where b form a basis

of L and covol L det a Then

2 ye IR am y ez mez

Teay
tail ye R m y ez m 2

a Z

13 3



Now use f x fo ax as test function
in Theorem 13 1 and note that

f y f ax e x y dx

fetal fo x e a ix y dx

F ta y
e

Take g then 13.5 can

be restated as

E znÉ g f m in Izu FCT 3
1 f m

13.6

with a quick proof apply 13.4 with

f x R g fo x and note that

3 x ̅ g 3 gs x ̅ 3 E

E X 1
What about general g in 13 6

13 4



Repietation theticapproach
V 6 symplectic vector space

L Lagrangian subspace
A self dual lattice in V 6 such

that span A M L L

The dual of A is

a vev v w EZ wer

and A is self dual if 1

Lemmy
I symplectic basis b bu bi Ea
such that L or b or 0

Z b 25 2 2h

Roof Exercise

Can assume in the following w 1 o
g

L OR x 0 A 22

13 5



We now construct a representation of 1H v

induced by a character X of the subgroup
in A IR e C 1H v

recall the construction via L Reo

We assume as before that z t e t

Better to work mod 1 in co component
Let IT v 1H v 2 2 I A 2 2

with 2 z 0 Zeo o t tez

an abelian subgroup of MCV
a torus

Gi 1H V
a RÉ2nJ

Proof
i Z t 22 2

22 to zest 0

EEE
ii clear since a self dual Fd

13 6



Key construction cf p 7 8

Given self dual lattice and X as above

consider functions F 1H C such that

F gh X h F g GE 1H 13.7
UEM

Note that swice X h 1 for heb z

F can be viewed as a function on III

Define inner product
F F F g F g duny g

N
A

where Mum
is the Haar probability 3 8

measure of 1h1m Irfan
Hey Hilbert space of F satisfying 13.7

and M F U CF.FI cos

Now define the lattice representation
Wa of HCV on be by

Wa h F g F h g
This is once more an widuced representation

13 7



W Ind f x cf p 7 9
Iiewed as a character of A

T.itTuitarily equivalent to WL

Proof The plan is to construct an isometry

F n Ge be

which intertwines We and Wa
For F E Ge set

51,1 F g Em
t h F gh 13.8

and note
i Wa h F F g F n

F h g

Fenn ho F higho

51,1 W h F g

ii Fe nF gho Enna X h F ghok

Σ X hi n F gh
he NANK

X ho F F g
so 13.7 holds 13 8



For g J 0 and h E 0

Enfield
1,15

Tiene

I efmx ix y F qm 0 13.9

and therefore

F n
F Fun Fa

n
x ̅ hi he F gh F gh dug

So
ru mze liE F ytm f ytme dedy

ge E F y tu f year dy

San F y f y dy

F Fe Dye

This proves is an isometry
13 9



normalised
To construct the niverse of F n set as probabili

measure

h F gh dir aF g Shauna

By construction 13.10

Fa _F gh h Fx _F g

We leave the proof of

52,1 Fx a id 13.11

as an exercise Ed

Solution For Fesen g Y 0
h 1 0

F F F g Em ʰ E F gh no B 0

Em Syn h ho F ghho due ho

Ean 1
1
1 1,0 F 1 11,01,0 ap

4 0 0 m p

Ean Same me FGÉ L
Izu Spa up a p dp

a o F Y 0 Ed

13 10



Thur13tl
Assume L E are transversal Lagrangian

planes L I R 0 0 R

Then Far Fun FL e

In fact one can show fr.cz Far Fin Lz
g 0 4 1 1,0

Proof F E M
no 11,0

x a F F gh dep hFye o F F g Selena

Σ 14 X ho F ghho due hSay.name
an

Say Fez f 10 Gm 0 ap

San F E 0 91,0 dy

F F g cf p 10 5
Em

Hence F Fun Fu and the

The Poisson summation formula is equivalent to
F _F e Fun F E F e

13 11 check



Seeta functions

For F E G R define the theta

function

f Sp n IR 1hm IR

boy

f g h Ezn W h g f m

For the special choice g Eai
and h t cf Then 9.3 and 9.8

f g h Ez F g f m p e q m t p q

deta Eez f
ta map

e m p bta m p g m t Epg
a quadratic exponential sum

theta function series sum

Gauss sum usually for rational argument
14 1



1

Example
Take f y e

5114112

g c

u.ve MY L IR v pos definite
4 0

Then check
t utiv

f g h

detv Eze m.im mix

OCXI.IT
Riemann theta function

Siegel theta series

14 2



Information formulas

h 3 g i c s g h g
ii For y be MET 22

f r h rg c r g f g h

ii For a 5 0 EA

f zh g
e Er s 0H h g

Proof
i By 13.4

zn
h E g f m

i n

E F s w̅ u F g f m

FA RCS

i n
c 3 g w̅ oh E Jg f m

14 3



i Ezn R f m

Eea f m e

b even
Then proceed as in i using
R s w̅ u RT g w̅ ph F r R g

rg w̅ rh rg

ii Σ w̅ 5 0 f m

Mezh

Eez f m s e m r Ers

Eez f m e Ers

Now replace in this relation f by R g f
and the claim follows

a

For further reading see the book by Lion

Vergue and my papers with M Welsh in

Journal d Analyse Math 2023
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