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Abstract. The Lorentz gas is one of the simplest, most widely used models to study the transport
properties of rarified gases in matter. It describes the dynamics of a cloud of non-interacting point
particles in an infinite array of fixed spherical scatterers. More than one hundred years after its concep-
tion, it is still a major challenge to understand the nature of the kinetic transport equation that governs
the macroscopic particle dynamics in the limit of low scatterer density (the Boltzmann-Grad limit).
Lorentz suggested that this equation should be the linear Boltzmann equation. This was confirmed
in three celebrated papers by Gallavotti, Spohn, and Boldrighini, Bunimovich and Sinai, under the
assumption that the distribution of scatterers is su�ciently disordered. In the case of strongly corre-
lated scatterer configurations (such as crystals or quasicrystals), we now understand why the linear
Boltzmann equation fails and what to substitute it with. A particularly striking feature of the periodic
Lorentz gas is a heavy tail for the distribution of free path lengths, with a diverging second moment,
and superdi↵usive transport in the limit of large times.
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1. Introduction

The Lorentz gas describes the time evolution of a cloud of non-interacting point particles in
an infinitely extended array of fixed scatterers. In the simplest setting of zero external force
fields, each particle moves with constant velocity along a straight line until it hits a sphere of
radius r, where it is scattered elastically. Besides specular reflection (as in Lorentz’ original
setting), we will also allow more general spherically symmetric scattering maps, for example
those resulting from mu�n-tin Coulomb potentials. The scatterers are centered at the points
of a locally finite subset P ⇢ Rd, which is fixed once and for all. The configuration space
of the Lorentz gas is thus Kr = Rd \ (P + Bd

r ) where Bd
r is the open ball in Rd of radius

r, centered at the origin. The phase space of the Lorentz gas is T(Kr), the tangent bundle
of Kr. We use the convention that, for q 2 @Kr, the tangent vector v points away from
the scatterer.1 Given initial data (q,v) 2 T(Kr) at time t = 0, we denote position and
velocity at time t 2 R by (q(t),v(t)). For notational reasons it is convenient to also define
the dynamics inside the scatterer by (q(t),v(t)) = (q,v) for every (q,v) 2 T(Rd)\T(Kr).
With this, the phase space is T(Rd) = Rd ⇥ Rd. The Liouville measure of our dynamics is

Proceedings of the International Congress of Mathematicians, Seoul, 2014



624 Jens Marklof

q

0

Figure 1.1. The Lorentz gas for a periodic scatterer configuration P = Z2, with three distinct particle
trajectories starting at the point q0.

the Lebesgue measure dq dv. Since we have assumed that the scattering map is elastic, the
particle speed kvk is a constant of motion. We may therefore restrict the dynamics, without
loss of generality, to the unit tangent bundle T1(Rd) = Rd ⇥ Sd�1

1

, where the Liouville
measure is now the Lebesgue measure restricted to kvk = 1. We assume that P has constant
density n > 0, i.e. for any bounded D ⇢ Rd with volRd(D) > 0 and volRd(@D) = 0 (volRd

denotes the Lebesgue measure in Rd and @D the boundary of D) we have

lim
R!1

#(P \RD)

volRd(RD)
= n. (1.1)

By a trivial rescaling of length units, we may assume in the following that n = 1.
In the present setting, the Boltzmann-Grad limit is defined as the limit of low scatterer

density. Density refers here to the volume density, i.e., the relative volume vdrd occupied
by the scatterers, rather than their number density n = 1. The constant vd = volRd(Bd

1

) =
⇡d/2/�(d+2

2

) is the volume of the d-dimensional unit ball. For a fixed scatterer configu-
ration P the Boltzmann-Grad limit corresponds therefore to taking r ! 0. To capture the
dynamics of the Lorentz gas in this limit, we measure length and time in units of the mean
free path length,2 which is asymptotic to v�1

d�1

rd�1 (as r ! 0). To this end we introduce the
macroscopic coordinates

(Q(t),V (t)) = (rd�1

q(r�(d�1)t),v(r�(d�1)t)) 2 T1(Rd). (1.2)

The mean free path length is now given by the r-independent quantity ⇠ = v�1

d�1

. The

1 We ignore the case when scatterers overlap. This configuration will be statistically insignificant in the limit
r ! 0 for P with constant density.

2 The mean free path length is defined as the average distance travelled between collisions.
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evolution of an initial macroscopic particle density f 2 T1(Rd) is defined by the linear
operator

[Lt
rf ](Q,V ) := f(Q(�t),V (�t)) (1.3)

where (Q(�t),V (�t)) are the macroscopic particle coordinates corresponding to the data
(Q(0),V (0)) = (Q,V ) at time t = 0.

The question is: For a given scatterer configuration P , does Lt
r have a (weak) limit as

r ! 0? That is, for every t > 0 is there

Lt : L1(T1(Rd)) ! L1(T1(Rd)) (1.4)

such that, for every f 2 L1(T1(Rd)) and bounded A ⇢ T1(Rd) with boundary of zero
Lebesgue measure,

lim
r!0

Z

A
Lt
rf(Q,V ) dQ dV =

Z

A
Ltf(Q,V ) dQ dV ? (1.5)

Using Boltzmann’s heuristics, Lorentz [25] predicted in 1905 that the answer to this ques-
tion should be “yes” and that the particle density ft := Ltf at time t satisfies the linear
Boltzmann equation (also referred to as the kinetic Lorentz equation)

(@t + V · @
Q

)ft(Q,V ) =

Z

Rd

[ft(Q,V 0)� ft(Q,V )]�(V ,V 0) dV 0, (1.6)

where �(V ,V 0) is the di↵erential cross section of a single scatterer (see Section 2). Lorentz’
heuristic derivation was, over sixty years later, confirmed rigorously for random scatterer
configurations P by Gallavotti [20] and Spohn [41], where the convergence in (1.5) is estab-
lished for the ensemble average. Boldrighini, Bunimovich and Sinai [10] proved a stronger
result by showing that for a fixed realisation of a Poisson process the limit (1.5) exists almost
surely (cf. Section 5). One can in fact show that, for initial data (Q

0

,V
0

) randomly dis-
tributed in T1(Rd) according to an absolutely continuous probability measure ⇤, the curve
t 7! (Q(t),V (t)) converges in distribution to a random flight process, where the free flight
times are independent identically distributed random variables with an exponential distri-
bution. Eq. (1.6) is precisely the Fokker-Planck-Kolmogorov equation of the limit process
(cf. Section 5).

In his 2006 ICM address [22] (cf. also [23]), Golse pointed out that, due to the heavy tail
of the free path length distribution [11, 21, 30], the linear Boltzmann equation fails in the
case P = Zd. The main objective of this paper is to illustrate the deeper reason behind this
failure not only for general periodic scatterer configurations, see Section 6 and [14, 27–30],
but as well for aperiodic point sets with strong long-range correlations, cf. Sections 7, 8 and
[31, 32, 45]. We will uncover a new class of random flight processes that emerge in the
Boltzmann-Grad limit (Sections 2, 3) and whose transport equations generalise the linear
Boltzmann equation (1.6) in a natural way (Section 4).

A major open question in the field is whether the dynamics in the Lorentz gas converges,
in the limit of large times t, to Brownian motion. The first seminal result in this direction
was the proof of a central limit theorem for the two-dimensional periodic Lorentz gas with
finite horizon3 by Bunimovich and Sinai [12]. For general invariance principles, see Mel-
bourne and Nicol [35] and references therein. In the case of the infinite-horizon periodic

3 Finite horizon means that the free path length has an upper bound. This requires a suitable choice of scatterer
configuration P (e.g. a triangular lattice) and su�ciently large scatterer radius r.
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Figure 2.1. Scattering in the unit ball.

Lorentz gas, again in dimension d = 2 and with fixed radius r > 0, Bleher [6] conjectured
a superdi↵usive central limit theorem with a

p
t log t normalisation, rather than the standardp

t in the finite horizon case. Bleher’s conjecture was first proved by Szász and Varjú [42]
for the discrete-time billiard map, and by Dolgopyat and Chernov [19] for the billiard flow.4
It is currently unknown how to extend these results to higher dimensions d � 3 or to aperi-

odic scatterer configurations [4, 5, 15, 17, 18, 24, 36, 43]. The problem becomes tractable,
however, if we pass to the low-density limit r ! 0: If P is a typical realisation of a Poisson
process, then the limiting random flight process satisfies a central limit theorem with

p
t

scaling, in any dimension d � 2. This follows from standard techniques in the theory of
Markov processes [37] as pointed out by Spohn [41]. If P is a Euclidean lattice, then the
limiting random flight process satisfies a superdi↵usive central limit theorem with

p
t log t

normalisation, again in any dimension d � 2. See Section 9 and [34] for further details.

2. Intercollision flights

We begin by defining the scattering map, which we assume is spherically symmetric, pre-
serves angular momentum and is the same for each scatterer. Let us choose a coordinate
frame so that the incoming velocity is aligned with the first coordinate axis (cf. Figure 2.1),

vin = e

1

:= (1, 0, . . . , 0). (2.1)

(All vectors are represented as row vectors.) The impact parameter b is the orthogonal
projection of the point of impact onto the plane orthogonal to vin, measured in units of r.
In the present frame, b = (0,w) with w 2 Bd�1

1

. (We will also refer to w as impact
parameter.) When w 6= 0, the outgoing velocity is

vout = vin cos ✓ + (0, bw) sin ✓, (2.2)

4 Superdi↵usive central limit theorems have also been established for compact planar billiards, such as the sta-
dium [3] and billiards with cusps [2].
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where the angle ✓ is called the scattering angle and b
w := w�1

w with w := kwk. For
w = 0 we simply assume vout = �vin. By the assumed spherical symmetry, ✓ = ✓(w) is
only a function of the length w 2 [0, 1[ of the impact parameter w. Equation (2.2) can be
expressed as

vout = vinS(w)�1, (2.3)

with the matrix
S(w) = exp

✓
0 �✓(w)bw

✓(w) tbw 0d�1

◆
2 SO(d). (2.4)

The exit parameter is defined as the orthogonal projection of the point of exit onto the plane
orthogonal to vout, and is given by

s = �wvin sin ✓ + (0,w) cos ✓ = (0,w)S(w)�1. (2.5)

The di↵erential scattering cross section �(vin,vout) is defined by the relation

�(vin,vout) dvout = dw. (2.6)

Note that in the present setting �(vin,vout) = �(vout,vin).
For simplicity, we assume throughout this paper that one of the following conditions

holds:5

(A) ✓ 2 C1([0, 1[ ) is strictly decreasing with ✓(0) = ⇡ and ✓(w) > 0.
(B) ✓ 2 C1([0, 1[ ) is strictly increasing with ✓(0) = �⇡ and ✓(w) < 0.

This hypothesis is satisfied for many scattering maps, e.g. specular reflection6 or the scat-
tering in the mu�n-tin Coulomb potential V (q) = ↵max(kqk�1�1, 0) with ↵ /2 {�2E, 0},
where E denotes the total energy, cf. [29].

An inductive argument shows that there is a sequence (wn)n2N in Bd�1

1

, so that the
impact parameter bn, exit velocity vn and exit parameter sn at the nth collision are given by
the frame-independent formulas

vn = e

1

R�1

n , bn = (0,wn)R
�1

n�1

sn = (0,wn)R
�1

n (2.7)

where
Rn := R(v

0

)S(w
1

) · · ·S(wn). (2.8)

Here R : Sd�1

1

! SO(d) is smooth up to finitely many singular points, such that vR(v) = e

1

for all v 2 Sd�1

1

. For an example see footnote 3 on p. 1968 of [28].
We can now express position and velocity at time t > 0 as7

q(t) = q⌫(t) + (t� ⌧⌫(t))v(t) +O(r⌫(t)), v(t) = v⌫(t), (2.9)

where

⌧n :=
nX

j=1

tj , ⌧
0

:= 0, (2.10)

5 All results extend in fact to more general scattering maps, see [29] for details.
6 Here ✓(w) = ⇡ � 2 arcsin(w) and thus condition (A) holds.
7 The O(r⌫(t))-error is simply due to the fact that we have not included the jumps of position at each scattering.

In the case of specular reflections, all formulas are exact.
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Figure 2.2. Illustration of a scattering map satisfying Hypothesis (A).

is the time to the nth collision, tj is the jth intercollision time,

⌫(t) := max{n 2 Z�0

: ⌧n  t} (2.11)

is the number of collisions within time t,

qn :=
nX

j=1

tjvj�1

(2.12)

is the particle location at the nth collision8 and

vn = R(v
0

)S(w
1

) · · ·S(wn)e1 (2.13)

is the velocity after the nth collision as calculated in (2.7).
In the macroscopic coordinates (1.2), the above translates to

Q(t) = QV(t) + (t� TV(t))V (t) +O(rdV(t)), V (t) = V V(t) (2.14)

where Qn = rd�1

qn, V n = vn, Tn = rd�1⌧n and

V(t) := ⌫(r�(d�1)t) = max{n 2 Z�0

: Tn  t}. (2.15)

3. A refined Stosszahlansatz

We will now investigate the particle trajectory corresponding to random initial conditions
(Q

0

,V
0

) and outline a strategy to establish the convergence to a random flight process in

8 Again, this is up to an error of order O(rn).
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Figure 3.1. Intercollision flight in the Lorentz gas between the nth and (n + 1)st collision. The
exclusion zone is a cylinder of radius r with spherical caps.
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Figure 3.2. The intercollision flight in Fig. 3.1 after applying the linear map RnD(r) with r very small.
The exclusion zone is now approximately a cylinder with flat caps.

the Boltzmann-Grad limit.9 We will, for now, keep the scatterer configuration P general,
and discuss in later sections examples of P which allow a rigorous treatment.

Let us focus on the nth and (n+ 1)st collision and consider a parallel beam of particles
with given velocity vn�1

that hit a scatterer located at yn with a certain intensity distribution
� in the impact parameter wn (Figure 3.1).10 The task is now to calculate the probability
of hitting the next scatterer in a small time interval around tn+1

with impact parameter

9 We assume here that (Q0,V 0) is distributed according to a fixed, absolutely continuous probability measure
⇤ on T1(Rd). One can, of course also prepare the initial particle cloud on smaller scales. For example take
(q0,v0) = (r�(d�1)Q0,V 0) random with respect to a fixed absolutely continuous ⇤. In the case of the periodic
and the quasicrystal Lorentz gas [28, 29, 32] we are even able to consider more singular ⇤: Fix q0 and only take
v0 random according to an absolutely continuous measure on the unit sphere. In this case, we have convergence
for every q0, with the same limit distribution for almost every q0.
10 The measure � will of course depend on the history of the particle beam, and in particular on r, but let us

assume here for the sake of argument that � is a fixed Borel probability measure on Bd�1
1 . A key part of the

paper [29] deals with the problem of r-dependent measures in the setting of the periodic Lorentz gas, by obtaining
uniform estimates over families of �.
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near wn+1

. Recall that we expect tn+1

to be of order r�(d�1), and it is natural to set
Tn = rd�1tn. We now first shift our coordinate system by �yn � r(sn + vn

p
1� ksnk2)

so the left center of the cylinder is now at the origin, then rotate our coordinate system by
Rn 2 SO(d), so that the outgoing velocity vn becomes e

1

, cf. (2.7), and finally apply the
linear transformation given by the matrix

D(r) =

✓
rd�1 0
t0 r�11d�1

◆
(3.1)

which rescales the length units along and perpendicular to the cylinder. Note that the caps of
the cylinder become flat as r ! 0, cf. Fig. 3.2. In particular

r
�
sn + vn

p
1� ksnk2

�
RnD(r) = r

�
(0,wn) + (1,0)

p
1� kwnk2

�
D(r)

= (0,wn) +O(rd).
(3.2)

The rotation matrix Rn is, by (2.8), given by Rn = Rn�1

S(wn) where Rn�1

is fixed
(since vn�1

is assumed fixed in this discussion). For wn random according to �, we are
interested in the probability that the particle hits the next scatterer at a time Tn+1

in the
interval A = ]⇠, ⇠ + d⇠[ and with impact parameter wn+1

in some box B ⇢ Bd�1

1

. This
probability is, for small r, approximately11 equal to the probability that the random point set

e⇥r(yn) = (P � yn)Rn�1

S(wn)D(r)� (0,wn) (3.3)

does not intersect the cylinder Z(⇠) =]0, ⇠[⇥Bd�1

1

and has (at least12 ) one point in the box
A⇥B. Our general objective is therefore to try to prove that there is a random point process13
⇥(y) in Rd and a random variable h 2 Bd�1

1

distributed according to � such that, for every
fixed y 2 P ,

e⇥r(y) ���!
r!0

e⇥(y) := ⇥(y)� (0,h) (3.4)

in finite-dimensional distribution. This means that for any k 2 N, A
1

, . . . ,Ak ⇢ Rd

bounded with boundary of measure zero and n
1

, . . . , nk 2 Z�0

, we have

lim
r!0

P
�
#(e⇥r(y) \Ai) = ni 8i) = P

�
#(e⇥(y) \Ai) = ni 8i

�
. (3.5)

It is crucial that⇥(y) and h are independent, and that⇥(y) is independent of the choice
of � and Rn. We conclude that, if the convergence in (3.4) indeed holds in finite-dimensional
distribution (as we are dealing with only two test sets, Z(⇠) and A⇥B, convergence in two-
dimensional distribution is in fact su�cient) then the probability that the particle hits the
next scatterer at a time Tn+1

2 A and with impact parameter wn+1

2 B, is in the limit
r ! 0 given by

P
�e⇥(yn) \ Z(⇠) = ;, #(e⇥(yn) \ (A⇥B)) = 1

�
. (3.6)

In some instances, ⇥(y) will not depend on the scatterer location y, for example when P is
a realisation of a Poisson process or a Euclidean lattice, as we shall see below. If ⇥(y) does

11 This approximation is justified, if the limit distribution is continuous in ⇠.
12 We assume that, in the limit r ! 0, the probability of having one point in a small set is approximately the

same as the probability of having one ore more points. As in footnote 11, this is justified, if the limit distribution is
continuous in ⇠.

13 Throughout this paper, we will represent random point processes as random point sets.
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depend on the scatterer location, the hope is that this dependence is “mild,” in the sense that
there exists a probability space (⌃,F , ) and a map

◆ : P ! ⌃, y 7! ◆(y), (3.7)

so that ⇥(y) depends only on the value of ◆(y). We will call ◆(y) the colour of y, and
consider the colourised scatterer configuration,

{(y, ◆(y)) : y 2 P} ⇢ Rd ⇥ ⌃. (3.8)

We assume furthermore that the colour in (3.8) is distributed according to the probability
measure on ⌃, in the sense that (cf. (1.1)) for any bounded D ⇢ Rd with volRd(D) > 0,
volRd(@D) = 0 and any measurable set B ⇢ ⌃ with (@B) = 0,

lim
R!1

#{y 2 P \RD : ◆(y) 2 B}
volRd(RD)

= (B). (3.9)

Let us define ⌦ := ⌃ ⇥ Bd�1

1

as the product space of colour and impact parameters, with
probability measure = ⇥ v�1

d�1

volRd�1 . Instead of (3.4), we must now consider the
convergence for the corresponding colourised point processes. Once we understand the
colourised limit, we can compute the limit distribution for the probability of emerging from
a scatterer with a given colour and exit parameter !n, and hitting the next scatterer at time
Tn 2 ]⇠, ⇠ + d⇠[ with colour and impact parameter !n+1

2 B ⇢ ⌦. We denote this proba-
bility by Z

B

k(!n, ⇠,!) d⇠ (d!), (3.10)

which defines the transition kernel k(!0, ⇠,!). The conclusion of the above heuristics is
now that the particle trajectory

⌅r : t 7! (Q(t),V (t)), (3.11)

with random initial condition (Q
0

,V
0

) distributed according to some absolutely continu-
ous measure ⇤ on T1(Rd), converges in the Boltzmann-Grad limit to the continuous-time
random flight process ⌅(t) in T1(Rd) defined as follows.

Consider the sequences of random variables ⇠ = (⇠n)n2N and ⌘ = (⌘n)n2N defined by
the Markov chain

n 7! (⇠n, ⌘n) (3.12)

with state space R>0

⇥ ⌦ and transition probability (n � 2)

P((⇠n, ⌘n) 2 A | ⇠n�1

, ⌘n�1

) =

Z

A

k(⌘n�1

, ⇠,!) d⇠ (d!), (3.13)

where the transition kernel k(!0, ⇠,!) is defined by (3.10). The initial distribution is

P((⇠
1

, ⌘
1

) 2 A) =

Z

A

K(⇠,!) d⇠ (d!), (3.14)

where
K(⇠,!) :=

1

⇠

Z 1

⇠

Z

⌦

k(!0, ⇠0,!) (d!0) d⇠0. (3.15)



632 Jens Marklof

The time-reversibility of the underlying microscopic dynamics (for every fixed r > 0) im-
plies that the transition kernel k is symmetric, i.e.

k(!, ⇠,!0) = k(!0, ⇠,!). (3.16)

Because the transition probability (3.13) is independent of ⇠n�1

, the chain n 7! ⌘n is also
Markovian, with transition probability

P(⌘n 2 A | ⌘n�1

) =

Z

A

Z 1

0

k(⌘n�1

, ⇠,!) d⇠ (d!). (3.17)

The stationary measure for this Markov chain is , and the distribution of free path lengths
with respect to this measure is defined as

 
0

(⇠) :=

Z

⌦

Z

⌦

k(!0, ⇠,!) (d!) (d!0). (3.18)

Let us write ⌘n = (�n,hn), where �n 2 ⌃ is the colour and hn 2 Bd�1

1

the impact
parameter. In analogy with the deterministic setting (2.9)–(2.15), we define the random
variables

T BG

n :=
nX

j=1

⇠j , T BG

0

:= 0, (3.19)

VBG(t) := max{n 2 Z�0

: T BG

n  t}, (3.20)

Q

BG

n := Q

0

+
nX

j=1

⇠jV
BG

j�1

, V

BG

n := R(V
0

)S(h
1

) · · ·S(hn)e1, (3.21)

Q

BG(t) := Q

BG

VBG
(t) + (t� T BG

VBG
(t))V

BG(t), V

BG(t) := V

BG

VBG
(t). (3.22)

The notation “BG” stands for Boltzmann-Grad limit and is used to di↵erentiate from the
deterministic counterparts (2.9)–(2.15). Note that none of the above depend explicitly on
colour. The hidden variable “colour” is needed to make (3.12) a Markov chain. The random
flight process ⌅ is thus defined as

t 7! ⌅(t) :=
�
Q

BG(t),V BG(t)
�
. (3.23)

The convergence of the random process ⌅r in (3.11) to ⌅ answers in particular our question
(1.5), since the former implies the convergence in (1.5) with Lt defined by

Z

A
Ltf(Q,V ) dQ dV = P(⌅(t) 2 A). (3.24)

Here f = ⇤0 is the Radon–Nikodym derivative of ⇤.

4. A generalised Boltzmann equation

This limiting process ⌅(t) defined in (3.23) is in general not a continuous-time Markov
process,14 but can be turned into one by extending the state space as follows. We define the

14 A consequence of this fact is that the family of operators Lt in (3.24) does not form a semigroup, i.e., LtLs =
Lt+s does not hold for all s, t > 0.



The low-density limit of the Lorentz gas 633

time until the next scattering by

TBG(t) := T BG

VBG
(t)+1

� t, (4.1)

the colour of the next scatterer by

�BG(t) := �VBG
(t)+1

, (4.2)

and the exit velocity of the next scattering by

V

BG

+

(t) := V

BG

VBG
(t)+1

. (4.3)

The process

t 7! e⌅(t) :=
�
Q

BG(t),V BG(t), TBG(t),�BG(t),V BG

+

(t)
�

(4.4)

is now a Markov process with state space T1(Rd)⇥R>0

⇥⌃⇥Sd�1

1

and backward equation15
8
><

>:

(@t + V · @
Q

� @⇠)ft(Q,V , ⇠,�,V
+

) = [Cft](Q,V , ⇠,�,V
+

)

lim
t!0

ft(Q,V , ⇠,�,V
+

) = ⇤0(Q,V )K(⇠,!)�(V ,V
+

),
(4.5)

with K(⇠,!) as in (3.15) and the collision operator C is defined by

[Cf ](Q,V , ⇠,�,V
+

)

= �(V ,V
+

)

Z

S

d�1
1

Z

⌃

f(Q,V 0, 0,�0,V ) k(!0, ⇠,!) d (�0) dV 0, (4.6)

where
!0 := (�0, s(V 0,V )R(V )), ! := (�, b(V ,V

+

)R(V )). (4.7)

A stationary solution of eq. (4.5) is given by

ft(Q,V , ⇠,�,V
+

) = K(⇠,!)�(V ,V
+

), (4.8)

which corresponds to ⇤ = Liouville measure. To see this, note that the left hand side of the
first line in (4.5) is

�(V ,V
+

) ⇠
�1

Z

⌦

k(!0, ⇠,!) d (!0). (4.9)

Furthermore, we have

⇠K(0,!0) =

Z 1

0

Z

⌦

k(!00, ⇠,!0) d⇠ d (!00) =

Z 1

0

Z

⌦

k(!0, ⇠,!00) d⇠ d (!00) = 1.

The right hand side of the first line in (4.5) therefore equals, in view of (2.6),

�(V ,V
+

)

Z

S

d�1
1

Z

⌃

�(V 0,V )K(0,!0) k(!0, ⇠,!) d (�0) dV 0

15 This equation is also known as Fokker-Planck-Kolmogorov equation.
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= �(V ,V
+

) ⇠
�1

Z

S

d�1
1

Z

⌃

k(!0, ⇠,!) d (!0), (4.10)

which equals (4.9) This shows that (4.8) is indeed a stationary solution of (4.5).
Let us now illustrate the above programme with a number of examples, where all or part

of the heuristics can be made rigorous. The principal questions we would like to answer, for
a given scatterer configuration P , are: Does the limit (1.5) exist? What is the limit process
⇥(y)? What is the transition kernel k(!0, ⇠,!)?

We begin with the classic setting where P is a typical realisation of a Poisson process
and will show how the generalised linear Boltzmann equation (4.5) reduces to the original.

5. Random scatterer configuration

The Poisson process⇥ = ⇥Poisson in Rd with intensity n = 1 is characterised by the property
that for any collection of bounded, pairwise disjoint Borel sets A

1

, . . . ,Ak and integers
n
1

, . . . , nk � 0,

P(#(⇥ \Ai) = ni 8i) =
kY

i=1

(volRd(Ai))
ni

ni!
e� volRd (Ai). (5.1)

We will assume in this section that P is a fixed realisation of a Poisson process. In a seminal
paper, Boldrighini, Bunimovich and Sinai [10] have shown that the limit (1.5) exists almost
surely and is given by the linear Boltzmann equation (1.6).

Theorem 5.1 (Boldrighini, Bunimovich and Sinai, 1983 [10]). The convergence in (1.5)
holds for a typical realisation P of a Poisson process, and ft = Ltf satisfies the linear
Boltzmann equation (1.6).

This result was previously proved by Gallavotti [20] on average for random P = ⇥Poisson,
and by Spohn [41] for more general random scatterer configurations and scattering poten-
tials.

In the present setting, the limit process ⌅(t) is in fact already a continuous time Markov
process and the extension to e⌅(t) is not necessary. Nevertheless it is instructive to see how
the backward equation (4.5) reduces to the linear Boltzmann equation (1.6).

A review of the arguments used in [10] shows that the convergence (3.4) holds in finite-
dimensional distribution for almost all P with limit ⇥(y) = ⇥Poisson and thus, by the trans-
lation invariance of the Poisson process, e⇥(y) = ⇥Poisson. The limiting point process is
evidently independent of y, and we may paint all scatterers in the same colour. That is, ⌃
is the space of one element. We can thus identify ⌦ with Bd�1

1

and set (dw) = v�1

d�1

dw.
The Poisson distribution yields in (3.6) the transition kernel

k(!0, ⇠,!) = ⇠
�1

e�⇠/⇠, K(⇠,!) = ⇠
�1

e�⇠/⇠. (5.2)

The ansatz
ft(Q,V , ⇠,�,V

+

) = gt(Q,V )�(V ,V
+

) ⇠
�1

e�⇠/⇠ (5.3)

in the backward equation (4.5) of e⌅(t) shows that, after a separation of variables, the function
gt(Q,V ) is a solution of the linear Boltzmann equation (1.6). More directly, one can show
that ⌅(t) is Markov, and that the linear Boltzmann equation is the backward equation of
⌅(t).
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6. Periodic scatterer configuration

The opposite extreme of a random scatterer configuration is a perfectly periodic point set
P . We assume in this section that P is a Euclidean lattice L of covolume one. More gen-
eral periodic scatterer configurations are considered as a special case in the framework of
quasicrystals, cf. Section 8.

Theorem 6.1 (Marklof and Strömbergsson, 2008 [29]). The convergence in (1.5) holds for
every Euclidean lattice P = L of covolume one, where Lt is independent of the choice of L.

The main result of [29] is in fact more general: It extends to the convergence in distribu-
tion of the random process ⌅r in (3.11) to ⌅. The proof of Theorem 6.1 turns the heuristics
of Section 3 into a rigorous argument. Let us describe some of the key objects.

Every Euclidean lattice of covolume one can be written as L = ZdM for some M 2
SL(d,R). Since the stabiliser of Zd under right multiplication by G = SL(d,R) is the
subgroup � = SL(d,Z), one can show that there is a bijection

�\G ⇠�! {Euclidean lattices of covolume one}
�M 7! ZdM.

(6.1)

It is a well known fact that any fundamental domain of � = SL(d,Z) has finite Haar measure
in G = SL(d,R). This implies that there is a unique probability measure µ on �\G invariant
under the natural G-action (which is multiplication from the right). We define a random
point process in Rd by setting ⇥lattice = ZdM with M random in �\G according to µ and
the above identification (6.1) of �\G and the space of lattices. We will call ⇥lattice a random
lattice.

The following theorem says that, for any fixed P = L the convergence in (3.4) holds
with ⇥ = ⇥lattice. Note that by translational invariance of L, all point processes in (3.4) are
independent of y, and we will write in the following e⇥r instead of e⇥r(y).

Theorem 6.2 ([28]). Let � be an absolutely continuous probability measure on Bd�1

1

, let
A

1

, . . . ,Ak ⇢ Rd bounded with boundary of measure zero and n
1

, . . . , nk 2 Z�0

. Then

lim
r!0

P
�
#(e⇥r \Ai) = ni 8i

�
= P

�
#((⇥lattice � (0,h)) \Ai) = ni 8i

�
. (6.2)

This theorem is a consequence of equidistribution of large spheres on �\G:

Theorem 6.3 ([28]). For any M 2 �\G, any bounded continuous f : Bd�1

1

⇥ �\G ! R
and any absolutely continuous probability measure � on Bd�1

1

,

lim
r!0

Z

Bd�1
1

f(w,MS(w)D(r)) d�(w) =

Z

Bd�1
1

Z

�\G
f(w,M) dµ(M) d�(w). (6.3)

Theorem 6.2 is derived from Theorem 6.3 by choosing in (6.3) as test function f the
characteristic function of the set

�
(w,M) 2 Bd�1

1

⇥ �\G : #
�
(ZdM � (0,w) \Ai

�
= ni 8i

 
. (6.4)

This choice does of course not produce a continuous f , but one can show that (6.4) has
boundary of measure zero in Bd�1

1

⇥ �\G, and thus the characteristic function can be ap-
proximated su�ciently well by continuous functions. Details of this technical argument can
be found in [28], Sections 5 and 6.
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Since the limit process ⇥lattice is independent of y there is no need for colour (as in the
Poisson setting), and we again identify ⌦ with Bd�1

1

, and set (dw) = v�1

d�1

dw. In order to
work out the transition kernel k(w0, ⇠,w) in (3.10), set X = �\G and define the subspace

X(y) = {M 2 X : y 2 ZdM} (6.5)

of those lattices (of covolume one) that contain a given y 2 Rd. In [28] we construct a
probability measure ⌫

y

on X(y) so that

dµ(M) = d⌫
y

(M) dy. (6.6)

With this, we can infer that

k(w0, ⇠,w) = ⇠
�1

⌫
y

��
M 2 X(y) : ZdM \ (Z(⇠) + (0,w0)) = ;

 �
(6.7)

where y = (⇠,w0 �w). For an explicit description of the ⌫
y

-measure of the above set, see
[30], Section 2.2. In dimension d = 2, when B1

1

= ]�1, 1[ , eq. (6.7) can be used to calculate
an explicit formula for the transition kernel. We have [27]

k(w0, ⇠,w) =
12

⇡2

⌥

✓
1 +

⇠�1 �max(|w|, |w0|)� 1

|w �w

0|

◆
(6.8)

with

⌥(x) =

8
><

>:

0 if x  0

x if 0 < x < 1

1 if x � 1.

(6.9)

For independent derivations of Formula (6.8) that do not employ eq. (6.7) but a more direct
approach based on Farey dissections, see Bykovskii and Ustinov [13] and Caglioti and Golse
[14].

There are no such formulas in higher dimension, although (6.7) can be used to extract
information to obtain asymptotics for ⇠ ! 0 and ⇠ ! 1, cf. [30]. We have in particular

1� 2d�1⇠
�1

⇠

⇣(d)⇠
 k(w0, ⇠,w)  1

⇣(d)⇠
, (6.10)

and so for small ⇠ this implies k(w0, ⇠,w) = (⇣(d)⇠)�1 + O(⇠). Here ⇣(d) is the Riemann
zeta function and ⇣(d)�1 is the relative density of primitive lattice points in Zd. Compare
(6.10) with the result for the Poisson process (Section 5):

kPoisson(w
0, ⇠,w) = ⇠

�1

e�⇠/⇠ = ⇠
�1 � ⇠

�2

⇠ +O(⇠2). (6.11)

The asymptotics of k(w0, ⇠,w) for large ⇠ is more complicated to state, see [30]. We will
here focus on tail asymptotics for the distribution of free path lengths [30]. For any ⇠ > 0,
we have

 
0

(⇠) =
1

⇠⇣(d)
+O(⇠), (6.12)

and for ⇠ ! 1

 
0

(⇠) =
Ad

⇠3
+O

�
⇠�3� 2

d
�
8
><

>:

1 if d = 2

log ⇠ if d = 3

1 if d � 4

(6.13)
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with the constant

Ad =
22�d

d(d+ 1)⇣(d)
. (6.14)

These asymptotics sharpen earlier upper and lower bounds by Bourgain, Golse and Wennberg
[11, 21]. Note that (6.13) implies that the density  

0

(⇠) has no second moment. In dimen-
sion d = 2 there is an explicit formula for  

0

(⇠) conjectured by Dahlqvist [16], and proved
by Boca and Zaharescu [7]. This formula of course also follows directly from the expression
for the transition kernel (6.8), cf. [27].

7. Several lattices

The previous two examples, random and periodic, could be analysed without the need to
introduce colour. We will now describe a first example where the extension of ⌅(t) to a
Markov process e⌅(t) (as outlined in Section 4) requires finitely many colours.

We consider a scattering configuration given by the union of N distinct a�ne Euclidean
lattices,

P =

N[

i=1

Li (7.1)

where each Li has covolume n�1

i . We will assume that the lattices are pairwise incommen-
surable in the sense that for any i 6= j, c > 0 and a 2 Rd, the intersection Li \ (cLj +a) is
contained in some a�ne linear subspace of dimension strictly less than d.16 This ensures in
particular that the density of P is n = n

1

+ . . . + nN . As before, we stipulate without loss
of generality that n = 1.

To describe the random point processes and corresponding collision kernels, we require,
in addition to a random lattice ⇥lattice in the previous section, the notion of a random a�ne
lattice. This is defined as ⇥a�ne = (Zd + ↵)M where ↵ is a random variable uniformly
distributed in Td = Zd\Rd and M is distributed with respect to Haar measure µ on �\G
as before. Note that ⇥a�ne is well defined, since Td and the Lebesgue measure on Td are
invariant under the natural � action (by right multiplication). We denote by⇥(1)

a�ne, . . . ,⇥
(N)

a�ne
independent copies of ⇥a�ne, which are furthermore independent of ⇥lattice.

For y 2 Lj for some j, and y /2 Li for all i 6= j, we define the point process ⇥union(y)
by

⇥union(y) = n�1/d
j ⇥lattice [

[

i 6=j

�
n�1/d
i ⇥

(i)
a�ne

�
. (7.2)

In the following theorem, we say y 2 P is generic, if y 2 Lj is not rationally related to
the other lattices Li (i 6= j) in a sense made precise in [31] (see the discussion after [31,
Thm. 1]). The set of non-generic y in P is contained in a finite union of a�ne subspaces of
dimension < d, and hence has zero relative density.

Theorem 7.1 ([31]). Let � be an absolutely continuous probability measure on Bd�1

1

, let
A

1

, . . . , Ak ⇢ Rd bounded with boundary of measure zero and n
1

, . . . , nk 2 Z�0

. Then,

16 This condition is not essential in the proof of convergence, but ensures that the limit distributions have a
particularly simple form. The case when all N lattices are commensurable is a special case of the setting discussed
in Section 8.
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for generic y 2 P ,

lim
r!0

P(#(e⇥r(y) \Ai) = ni 8i) = P
�
#((⇥union(y)� (0,h)) \Ai) = ni 8i

�
. (7.3)

The current setting requires N colours. In the notation of Section 3, we set ⌃ =
{1, . . . , N}, ◆(y) = i if y 2 Li, and define as the probability measure on ⌃ so that
({i}) = ni. We prove in [31] that the probability of emerging from a generic (as defined

above) scatterer with a given colour j0 and random exit parameter w0 (distributed according
to a fixed, absolutely continuous Borel probability measure � on Bd�1

1

), and hitting the next
scatterer at time Tn 2 ]⇠, ⇠ + d⇠[ with colour j and impact parameter w 2 B ⇢ Bd�1

1

con-
verges in the Boltzmann-Grad limit to (3.10). If the lattices are incommensurable as assumed
above, the transition kernel in (3.10) is given by

k((w0, j), ⇠, (w, j)) = k(1)(w0, nj⇠,w)
NY

i=1

i 6=j

Z 1

ni⇠

 (⇠0) d⇠0, (7.4)

and for j0 6= j,

k((w0, j0), ⇠, (w, j)) = ⇠K(1)(nj0⇠,w
0)K(1)(nj⇠,w)

NY

i=1

i 6=j0,j

Z 1

ni⇠

 (⇠0) d⇠0, (7.5)

where k(1)(w0, ⇠,w) is the transition kernel for a single lattice in (6.7), K(1)(⇠,w) the
corresponding integrated kernel in (3.15) for a single lattice, and

 (⇠) :=
1

vd�1

Z

Bd�1
1

K(1)(⇠,w) dw. (7.6)

The above formulas and (6.13) imply the following tail estimate for the distribution of
free path lengths:

 
0

(⇠) =
N(N + 1)AN

d �N�1

2Nn
1

· · ·nN
⇠�(N+2) ⇥

8
><

>:

�
1 +O(⇠�1)

�
if d = 2�

1 +O(⇠�
2
3 log ⇠)

�
if d = 3�

1 +O(⇠�
2
d )
�

if d � 4.

(7.7)

The proof of the above results follows the same strategy as in the single-lattice case stud-
ied in Section 6. The principal di↵erence is that the equidistribution in the space of lattices
stated in Theorem 6.3 has to be generalised to the equidistribution in products: Consider the
subgroup b� = �

1

⇥ · · · ⇥ �N in SL(d,R)N , where each �i is a lattice in SL(d,R). We
denote by µb

�

the unique SL(d,R)N invariant probability measure on b�\ SL(d,R)N , and by
' the diagonal embedding of SL(d,R) in SL(d,R)N , i.e. '(M) = (M, . . . ,M). Recall that
two lattices � and �0 in SL(d,R) are said to be commensurable if their intersection �\�0 is
also a lattice; otherwise � and �0 are incommensurable.

Theorem 7.2 ([31]). Let �
1

, . . . ,�N 2 SL(d,R) be pairwise incommensurable lattices,
and M 2 SL(d,R). Let � be a Borel probability measure on Bd�1

1

, absolutely continuous
with respect to Lebesgue measure, and let f : Bd�1

1

⇥ b�\ SL(d,R)N ! R be bounded
continuous. Then
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lim
r!0

Z

Bd�1
1

f
�
w,'(MS(w)D(r))

�
d�(w)

=

Z

Bd�1
1 ⇥b

�\ SL(d,R)N
f(w, g) d�(w) dµb

�

(g). (7.8)

The key ingredient in the proof of this statement is Ratner’s measure classification theo-
rem [38] via a theorem of Shah on the equidistribution of translates of unipotent orbits [40,
Thm. 1.4]. Theorem 6.3 corresponds to the special case N = 1. For N = 2 the proof is
simpler than for N � 3, see [26]. Theorem 7.2 is in fact an oversimplification—the proof of
convergence to the transition kernel k(!0, ⇠,!) in fact requires a variant of Theorem 7.2 for
products of spaces of a�ne lattices, cf. [31, Thm. 10].

The paper [31] proves the convergence to k(!0, ⇠,!) for a random exit parameter with
fixed probability measure �. What is still missing is a proof of the analogue of Theorem 5.1
(for random scatterer configurations P) or Theorem 6.1 (where P is a single lattice). It is
likely that the proof will follow the same line of arguments as in the periodic setting [29].

8. Quasicrystals

The third class of examples for scattering configurations P that lead to a generalised Boltz-
mann equation—and the second that requires colour—are quasicrystals. We restrict our
attention to quasicrystals constructed by the cut-and-project method, following closely the
presentation in [32]. Examples include many classic quasicrystals (such as the vertex set of a
Penrose tiling) as well as locally finite periodic point sets. In contrast to the previous section,
cut-and-project scatterer configurations generally require a continuous spectrum of colours.

A cut-and-project set P ⇢ Rd is defined as follows, cf. [1]. For m � 0, n = d+m, let

⇡ : Rn ! Rd, ⇡
int

: Rn ! Rm (8.1)

be the orthogonal projections of Rn = Rd⇥Rm onto the first and second factor, respectively.
Rd will be called the physical space, and Rm the internal space. Let L ⇢ Rn be a lattice of
full rank. The closure

A := ⇡
int

(L) ⇢ Rm (8.2)

is an abelian subgroup, and we denote by A0 the connected component of A containing
0. A0 is a linear subspace of Rm of dimension m

1

. We find vectors a

1

, . . . ,am2 (m =
m

1

+m
2

) so that
A = A0 � Z⇡(a

1

)� . . .� Z⇡(am2). (8.3)

The Haar measure of A is denoted by µA and normalised so that µA
��
A0 is the standard

Lebesgue measure on A0. For V := Rd ⇥A0, we note that L \ V is a full rank lattice in V .
For W ⇢ A with non-empty interior, we call

P = P(W,L) = {⇡(`) : ` 2 L, ⇡
int

(`) 2 W} (8.4)

a cut-and-project set. W is called the window set. If the boundary of the window set has
µA-measure zero, we say P(W,L) is regular. We will furthermore assume that W and L
are chosen so that the map

⇡W : {` 2 L : ⇡
int

(`) 2 W} ! P (8.5)
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is bijective. This is to avoid coincidences in P . It follows from Weyl equidistribution that
such P have density

n =
µA(W)

volRd(V/(L \ V)) . (8.6)

Furthermore, for y 2 P there is ` 2 L such that ` = ⇡(y) and

P(W,L)� y = P(W � y

int

,L), y

int

:= ⇡
int

(`). (8.7)

This suggests to define the colour chart ◆ : P ! ⌃ := W with ◆(y) = y

int

. The aim is now
to describe the “closure” (in a suitable sense) of the orbit of P under the SL(d,R)-action
and construct a probability measure on it. This will yield, as we shall see, our limit random
process ⇥(y) in (3.4).

Set G = SL(n,R), � = SL(n,Z) and define the embedding (for any g 2 G)

'g : SL(d,R) ,! G, A 7! g

✓
A 0d⇥m

0m⇥d 1m

◆
g�1. (8.8)

Since SL(d,R) is generated by unipotent subgroups, Ratner’s theorems [38, 39] imply that
there is a (unique) closed connected subgroup Hg  G such that:

(i) � \Hg is a lattice in Hg .

(ii) 'g(SL(d,R)) ⇢ Hg .

(iii) The closure of �\�'g(SL(d,R)) is �\�Hg .

We will call Hg a Ratner subgroup. We denote the unique Hg-invariant probability mea-
sure on �\�Hg by µHg = µg . Note that �\�Hg is isomorphic to the homogeneous space
(� \Hg)\Hg .

Pick g 2 G, � > 0 such that L = �1/nZng. Then one can show [32, Prop. 3.5] that
⇡
int

(�1/nZnhg) ⇢ A for all h 2 Hg , and ⇡
int

(�1/nZnhg) = A for µg-almost all h 2 Hg .
The image of the map

�\�Hg ! {point sets in Rd}, h 7! P(W � y

int

, �1/nZnhg) (8.9)

defines a space of cut-and-project sets, and the push-forward of µg equips it with a probabil-
ity measure. We have thus defined a random point process⇥quasi(y) in Rd, which is SL(d,R)
invariant, and whose typical realisation is a cut-and-project set with window W � y

int

and
internal space A. This process is precisely the limit process we are looking for:

Theorem 8.1 ([32]). Let � be an absolutely continuous probability measure on Bd�1

1

, let
A

1

, . . . ,Ak ⇢ Rd bounded with boundary of measure zero and n
1

, . . . , nk 2 Z�0

. Then,
for every y 2 P(W,L),

lim
r!0

P(#(e⇥r(y) \Ai) = ni 8i) = P
�
#((⇥quasi(y)� (0,h)) \Ai) = ni 8i

�
. (8.10)

This statement is (as in previous sections) a consequence of equidistribution. The fol-
lowing equidistribution theorems generalise Theorem 6.3 stated earlier, and are used in the
proof of Theorem 8.1. As in the case of Theorem 7.2, they are a consequence of Ratner’s
measure classification theorems [38], and in particular follow from a theorem of Shah [40,
Thm. 1.4] on the equidistribution of translates of unipotent orbits.
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Theorem 8.2 ([32]). Fix g 2 G, M 2 SL(d,R). For any bounded continuous f : Bd�1

1

⇥
�\�Hg ! R and any absolutely continuous probability measure � on Bd�1

1

,

lim
r!0

Z

Bd�1
1

f(w,'g(MS(w)D(r))) d�(w) =

Z

Bd�1
1

Z

�\�Hg

f(w, h) dµg(h) d�(w).

(8.11)

What are the subgroups Hg that can arise in the above construction? For almost every
lattice L in the space of lattices, we have Hg = G. Furthermore, if m < d, then for every
L with the property that ⇡|L is injective, we have Hg = G [32, Prop. 2.1]. A interesting
class of examples when m � d and Hg 6= G are cut-and-project sets constructed from
algebraic number fields. The Penrose tilings fall into this class. Let us briefly sketch how
such quasicrystals can be obtained as cut-and-project sets. Let K be a totally real number
field of degree N � 2 over Q, OK the ring of integers of K, and ⇡

1

= id, ⇡
2

, . . . ,⇡N the
distinct embeddings K ,! R. We also use ⇡i to denote the component-wise embeddings

⇡i : K
d ,! Rd, x 7! (⇡i(x1

), . . . ,⇡i(xd)), (8.12)

and similarly for the entry-wise embeddings of d⇥ d matrices,

⇡i : Md(K) ,! Md(R). (8.13)

Now consider the lattice

L = {(x,⇡
2

(x), . . . ,⇡N (x)) : x 2 Od
K} (8.14)

in RNd. This is a lattice of full rank. The dimension of the internal space is m = (N�1)d. It
is a fact of “basic” number theory [44] that A := ⇡

int

(L) = Rm, so that V = RNd. Choose
g 2 G and � > 0 so that L = �1/NdZNdg. Then [32, Sect. 2.2.1.] shows that

Hg = g SL(d,R)Ng�1, � \Hg = g SL(d,OK)g�1, (8.15)

where SL(d,OK) is a Hilbert modular group.
A further example of a cut-and-project set is to take the union of finite translates of a

given cut-and-project set. This is explained in [32, Sect. 2.3]. Let us here discuss the special
case of periodic Delone sets, i.e., the union finite translates of a given lattice L

0

of full
rank in Rd. An example of such a set is the honeycomb lattice, which in the context of
the Boltzmann-Grad limit of the Lorentz gas was recently studied by Boca et al. [8, 9] with
di↵erent techniques. The scatterer configuration P we are now interested in is the union of
m copies of the same lattice L

0

translated by t

1

, . . . , tm 2 Rd,

P =

m[

j=1

(tj + L
0

). (8.16)

We assume that the tj are chosen in such a way that the above union is disjoint. Let us now
show that P can be realised as a cut-and-project set P(L,W). Let

L = (L
0

⇥ {0}) +
mX

j=1

Z (tj , ej) ⇢ Rn, (8.17)



642 Jens Marklof

where 0 2 Rm and e

1

, . . . , em are the standard basis vectors in Rm. The set L is evidently
a lattice of full rank in Rn. Note that

⇡
int

(L) =
mX

j=1

Z ej = Zm, (8.18)

and therefore the closure of this set is A = Zm with connected component A0 = {0}. It
follows that for the window set

W =
m[

j=1

{ej} ⇢ A (8.19)

we indeed have

P(L,W) =

m[

j=1

(tj + L
0

). (8.20)

Let us now determine Hg in this setting. Take g
0

2 SL(d,R) so that L
0

= n�1/d
0

Zdg
0

,
where n

0

is the density of L
0

. Set

T =

0

B@
t

1

...
tm

1

CA 2 Mm⇥d(R). (8.21)

We then have L = n�1/n
0

Zng, for

g = n1/n
0

✓
n�1/d
0

g
0

0
T 1m

◆
2 SL(n,R). (8.22)

Suppose a

1

, . . . ,ad is a basis of L
0

so that the vectors a
1

, . . . ,ad, t
1

, . . . , tm are linearly
independent over Q. Then

Hg =

⇢✓
h 0
u 1m

◆
: h 2 SL(d,R), u 2 Mm⇥d(R)

�
. (8.23)

The Ratner subgroups that appear in the case of rational translates tj are discussed in [32,
Sect. 2.3.1].

Theorem 8.1 gives a complete description of the limit processes ⇥(y) that may arise in
the case of cut-and-project sets (as defined above). This answers in particular a question on
the distribution of free path lengths raised by Wennberg [45], see [32] for details. We do not
have a comprehensive solution to the remaining “Does the limit (1.5) exist?” and “What is
the transition kernel k(!0, ⇠,!)?” yet, but plan to address these in a forthcoming paper [33].

9. Superdi↵usion

One of the central challenges in non-equilibrium statistical mechanics is to establish whether
the dynamics of a test particle converges, in the limit of large times and after a suitable
rescaling of length units, to Brownian motion. The first important step in the proof of such
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an invariance principle is the central limit theorem for the displacement Q(t)�Q

0

, suitably
normalised by a factor �(t). If �(t) ⇣

p
t, we say the dynamics is di↵usive. If �(t)/

p
t ! 0

or �(t)/
p
t ! 1 as t ! 1, the dynamics is called subdi↵usive or superdi↵usive, respec-

tively. In the case of fixed scatterer radius r, most results are restricted to the periodic setting
and dimension d = 2, recall Section 1. In the case of the Boltzmann-Grad limit with a ran-
dom scatterer configuration, we have a central limit theorem with standard

p
t normalisation:

Theorem 9.1. Let QBG(t) denote the position variable of the random flight process ⌅(t) for
a Poisson scatterer configuration (cf. Section 5). Then there exists a constant �d > 0 such
that, for any bounded continuous f : Rd ! R and any17 (Q

0

,V
0

) 2 T1(Rd),

lim
t!1

E f

✓
Q

BG(t)�Q

0

�d

p
t

◆
=

1

(2⇡)d/2

Z

Rd

f(x) e�
1
2kxk

2

dx. (9.1)

This theorem follows from standard techniques in the theory of Markov processes [37],
as pointed out by Spohn [41]. On the other hand, the Boltzmann-Grad limit of a periodic
Lorentz gas satisfies a superdi↵usive central limit theorem with

p
t log t normalisation:

Theorem 9.2 (Marklof and Tóth, 2014 [34]). Let QBG(t) denote the position variable of
the random flight process ⌅(t) for a periodic scatterer configuration (cf. Section 6). Then,
for any bounded continuous f : Rd ! R and any18 (Q

0

,V
0

) 2 T1(Rd),

lim
t!1

E f

✓
Q

BG(t)�Q

0

⌃d

p
t log t

◆
=

1

(2⇡)d/2

Z

Rd

f(x) e�
1
2kxk

2

dx (9.2)

with ⌃2

d := Ad

2d⇠
.

Recall that Ad is the constant in the tail asymptotics of the free path lengths (6.13).
This means in particular that ⌃d is independent of the choice of scattering map (within the
admissible class). Although the superdi↵usive scaling is intimately related to the fact that
the second moment of the distribution of free path lengths diverges, the proof of Theorem
9.2 requires further information on the transition kernel k(!0, ⇠,!). The main ingredients
of our proof are (a) exponential decay of correlations in the sequence of random variables
(⌘n,V n)n2N and (b) the Lindeberg central limit theorem for the independent random vari-
ables (⇠n|⌘)n2N conditioned on ⌘ = (⌘n)n2N. For full details, see [34].
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17 Because we have already passed to the Boltzmann-Grad limit, we may here consider the random process
QBG(t) either with fixed initial data (as stated) or with random initial data distributed according to ⇤ (as assumed
in all previous sections).

18 Cf. footnote 17.
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