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Level spacing statistics and integrable dynamics

Jens Marklof

Abstract. Level spacing statistics of quantum systems, which have a com-
pletely integrable classical limit, are expected to follow locally the statistics
of a Poisson process, according to a conjecture of Berry and Tabor. I will
report on a recent proof of this fact in the case of two-point statistics of a ring

threaded by Aharonov-Bohm flux lines.

1. Introduction

The theory of quantum chaos is concerned with quantum systems which possess
a classical limit. When the classical dynamics is chaotic, one finds the level spacing
statistics typically follow those of suitable random matrix ensembles [3]. If, in
contrast, the classical dynamics is completely integrable the statistics can in general
be modeled by a Poisson process [1]. Although these observations are supported by
overwhelming numerical evidence, only a few rigorous results are available, mostly
in the integrable case. For recent reviews on the state-of-the-art, the reader is
referred to [12, 2, 8, 9]. Here I will discuss a family of integrable systems previously
studied in [4, 5] and [10], for which the connection to the Poisson model can be
understood rigorously in the case of two-point statistics.

The eigenvalues studied in [4, 5, 10] are of the form λj = (m−α)2 +(n−β)2,
where α, β are constants and m,n run over the integers. Let us here focus on the
special case when β = 0. The λj can then be interpreted as the energy eigenvalues
(in suitable units) of a quantum particle constrained to a cylindrical ring with
length π and radius one, which is threaded by an Aharonov-Bohm flux α. More
precisely,

λj = (m− α)2 + n2

where m ∈ Z and n = 1, 2, 3, . . ., if we assume Dirichlet boundary conditions on the
cylinder’s rim.

2. Pair correlation

The mean density D of the sequence of λj is clearly

D := lim
λ→∞

1
λ

#{j : λj ≤ λ} =
π

2
.

(Recall: the number of lattice points in a semicircle of radius
√

λ is asymptotically
πλ/2.)
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The pair correlation function of the eigenvalue sequence λj is now defined as

R2[a, b](λ) =
1

Dλ
#{j 6= k : λj ≤ λ, λk ≤ λ, a ≤ λk − λj ≤ b}.

It is well known that if the λj come from a Poisson process with mean density D,
one has

lim
λ→∞

R2[a, b](λ) = D(b− a)

almost surely. In the case, when the λj are the energy levels defined above, we have
the following results, cf. [10].

We shall call α diophantine if there exist constants κ, C > 0 such that∣∣α− p

q

∣∣ >
C

qκ

for all p, q ∈ Z. The smallest possible value of κ is κ = 2. We will say α is of type
κ.

Theorem 1 ([10], Theorem A.10). Assume α is diophantine. Then

lim
λ→∞

R2[a, b](λ) =
π

2
(b− a).

This is clearly in accordance with the Poisson model. In the case of rational
values of α the spectrum is highly degenerate. One has

R2[−a, a](λ) ∼ cα log λ (λ →∞)

for any a > 0, and some constant cα depending only on α. This in turn can be used
to show that the previous theorem is in fact wrong for topologically generic α:

Theorem 2. For any a > 0, there exists a set C ⊂ [0, 1] of second Baire
category, for which the following holds.1

(i) For α ∈ C, we find arbitrarily large λ such that

R2[−a, a](λ) ≥ log λ

log log log λ
.

(ii) For α ∈ C, there exists an infinite sequence L1 < L2 < · · · → ∞ such that

lim
j→∞

R2[−a, a](Lj) = πa.

Thus the diophantine conditions in Theorem 1 are indeed necessary. Part (i)
and (ii) of Theorem 2 follow from the logarithmic divergence at rational α and
from Theorem 1, respectively, by a typical Baire-category argument, see Section 8
in [10]. The key to Theorem 1 is the value distribution of Jacobi theta sums, see
next section.

Theorems 1 and 2 illustrate the subtle dependence of spectral correlations on
the choice of parameter: While almost all values (in measure) lead to the expected
answer, topologically generic choices do not. This remarkable fact had been pointed
out first by Sarnak [11] in the case of flat tori, where he established convergence
to Poisson for almost all flat tori. His result has recently been improved by Eskin,
Margulis and Mozes [6], who characterized all “good” tori by diophantine condi-
tions.

1A set of first Baire category is a countable union of nowhere dense sets. Sets of second

category are all those sets, which are not of first category.
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Triple and higher correlations are presently much less well understood. A num-
ber of results on higher-dimensional flat tori are due to VanderKam [15], where the
increased dimension of the moduli space facilitates the averaging, very much in the
spirit of ideas of Sinai [14] and Major [7].

3. Spectral form factors and Jacobi theta sums

The spectral form factor

K2(t, λ) =
1

Dλ

∣∣ ∑
j:λj≤λ

e2πiλjt
∣∣2

is essentially the Fourier transform of the pair correlation density. We have

R2[a, b](λ) =
∫ ∞

−∞
K2(t, λ)χ̂[a,b](t) dt− χ[a,b](0) + o(1)

where χ̂[a,b] is the Fourier transform of the characteristic function χ[a,b] of the
interval [a, b]. Convergence problems may be avoided by smoothing χ[a,b] slightly.

In the case when the eigenvalues λj are given by values at integers of quadratic
forms, the exponential sum defining K2(t, λ) is a theta sum. In the case discussed
here, it is a variant of Jacobi’s theta sum, namely

Θf (τ, φ|ξ) = v1/2
∑

(m,n)∈Z2

fφ((m− y)v1/2, nv1/2)e( 1
2 (m− y)2u + 1

2n2u + mx),

with τ = u + iv, ξ =
(

x
y

)
and fφ = Uφf , where Uφ is a certain one-parameter-

group of unitary operators (U0 = id) acting on smooth functions f ∈ L2(R2), see
[10], Section 3 for details. One finds that

K2(t, λ) =
1

4D
|Θf (τ, φ|ξ)|2 + O(λ−1)

for u = 2t, v = λ−1, φ = 0 and (x, y) = (0, α). The function f is set to be a
(smoothed) characteristic function, defining the energy window for the λj . f may
for instance be taken as f(ω, w) = χ[0,1](ω2 + w2), so that 0 ≤ λj/λ ≤ 1.

The crucial idea is now that the function |Θf (τ, φ|ξ)|2 can be identified with a
function on a quotient manifold M = Γ\(SL(2, R)nR2), with Γ a discrete subgroup
of SL(2, R)nR2. The manifold M is non-compact but has finite volume with respect
to Haar measure. Furthermore the average∫

|Θf (2t + iv, φ|ξ)|2χ̂(t) dt =
1
2

∫
|Θf (u + iv, φ|ξ)|2χ̂[a,b](

u

2
) du

is an average along a unipotent orbit, which is expanding as v = λ−1 → 0. Following
Ratner’s classification of measures invariant under unipotent flows, it can be shown
that the orbit becomes equidistributed on M with respect to Haar measure, as long
as α is irrational [13, 10].

The equidistribution theorem must not, however, be applied directly in our
situation since |Θf (u + iv, φ|ξ)|2 is unbounded, diverging in the cusp at infinity as

|Θf (u + iv, φ|ξ)|2 ∼ v|fφ(−yv1/2, 0)|2 (v →∞)

uniformly for y ∈ [− 1
2 , 1

2 ]. Compare [10], Proposition 3.13.
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In fact, a small arc of the orbit in the neighbourhood of u = 0, which runs into
the cusp, gives a non-vanishing contribution; one can show ([10], Lemma 7.3) that
for any fixed ε > 0,∫

|u|<v1−ε

|Θf (u + iv, φ|ξ)|2χ̂(
u

2
) du → 2π2χ̂[a,b](0) = 2π2(b− a),

as v → 0. The remaining part of the orbit |u| > v1−ε becomes equidistributed,
under the condition that α is diophantine ([10], Theorem 6.3).2 We find, as v → 0,∫

|u|>v1−ε

|Θf (u + iv, φ|ξ)|2χ̂(
u

2
) du → 1

vol(M)

∫
M

|Θf |2dµ

∫
χ̂[a,b](

u

2
) du.

Analogous to the proof of Lemma A.8 in [10], one can work out
1

vol(M)

∫
M

|Θf |2dµ = 2π

and obviously ∫
χ̂[a,b](

u

2
) du = 2χ[a,b](0).

Collecting all contributions, we therefore have (recall D = π/2)∫
K2(t, λ)χ̂[a,b](t) dt → 1

8D

(
2π2(b− a) + 4πχ[a,b](0)

)
=

π

2
(b− a) + χ[a,b](0)

as λ →∞. Hence
lim

λ→∞
R2[a, b](λ) =

π

2
(b− a)

as claimed in Theorem 1.
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