Level spacing statistics and integrable dynamics

Jens Marklof

Abstract. Level spacing statistics of quantum systems, which have a completely integrable classical limit, are expected to follow locally the statistics of a Poisson process, according to a conjecture of Berry and Tabor. I will report on a recent proof of this fact in the case of two-point statistics of a ring threaded by Aharonov-Bohm flux lines.

1. Introduction

The theory of quantum chaos is concerned with quantum systems which possess a classical limit. When the classical dynamics is chaotic, one finds the level spacing statistics typically follow those of suitable random matrix ensembles [3]. If, in contrast, the classical dynamics is completely integrable the statistics can in general be modeled by a Poisson process [1]. Although these observations are supported by overwhelming numerical evidence, only a few rigorous results are available, mostly in the integrable case. For recent reviews on the state-of-the-art, the reader is referred to [12, 2, 8, 9]. Here I will discuss a family of integrable systems previously studied in [4, 5] and [10], for which the connection to the Poisson model can be understood rigorously in the case of two-point statistics.

The eigenvalues studied in [4, 5, 10] are of the form \(\lambda_j = (m-\alpha)^2 + (n-\beta)^2 \), where \(\alpha, \beta \) are constants and \(m, n \) run over the integers. Let us here focus on the special case when \(\beta = 0 \). The \(\lambda_j \) can then be interpreted as the energy eigenvalues (in suitable units) of a quantum particle constrained to a cylindrical ring with length \(\pi \) and radius one, which is threaded by an Aharonov-Bohm flux \(\alpha \). More precisely,

\[
\lambda_j = (m-\alpha)^2 + n^2
\]

where \(m \in \mathbb{Z} \) and \(n = 1, 2, 3, \ldots \), if we assume Dirichlet boundary conditions on the cylinder’s rim.

2. Pair correlation

The mean density \(D \) of the sequence of \(\lambda_j \) is clearly

\[
D := \lim_{\lambda \to \infty} \frac{1}{\lambda} \# \{ j : \lambda_j \leq \lambda \} = \frac{\pi}{2}.
\]

(Recall: the number of lattice points in a semicircle of radius \(\sqrt{\lambda} \) is asymptotically \(\pi \lambda/2 \).)
The pair correlation function of the eigenvalue sequence λ_j is now defined as

$$R_2[a, b](\lambda) = \frac{1}{D\lambda} \# \{j \neq k : \lambda_j \leq \lambda, \lambda_k \leq \lambda, a \leq \lambda_k - \lambda_j \leq b\}.$$

It is well known that if the λ_j come from a Poisson process with mean density D, one has

$$\lim_{\lambda \to \infty} R_2[a, b](\lambda) = D(b - a)$$

almost surely. In the case, when the λ_j are the energy levels defined above, we have the following results, cf. [10].

We shall call α diophantine if there exist constants $\kappa, C > 0$ such that

$$|\alpha - \frac{p}{q}| > \frac{C}{q^\kappa}$$

for all $p, q \in \mathbb{Z}$. The smallest possible value of κ is $\kappa = 2$. We will say α is of type κ.

Theorem 1 ([10], Theorem A.10). Assume α is diophantine. Then

$$\lim_{\lambda \to \infty} R_2[a, b](\lambda) = \frac{\pi}{2} (b - a).$$

This is clearly in accordance with the Poisson model. In the case of rational values of α the spectrum is highly degenerate. One has

$$R_2[-a, a](\lambda) \sim c_\alpha \log \lambda \quad (\lambda \to \infty)$$

for any $a > 0$, and some constant c_α depending only on α. This in turn can be used to show that the previous theorem is in fact wrong for topologically generic α:

Theorem 2. For any $a > 0$, there exists a set $C \subset [0, 1]$ of second Baire category, for which the following holds.\(^1\)

(i) For $\alpha \in C$, we find arbitrarily large λ such that

$$R_2[-a, a](\lambda) \geq \frac{\log \lambda}{\log \log \log \lambda}.$$

(ii) For $\alpha \in C$, there exists an infinite sequence $L_1 < L_2 < \cdots \to \infty$ such that

$$\lim_{j \to \infty} R_2[-a, a](L_j) = \pi a.$$

Thus the diophantine conditions in Theorem 1 are indeed necessary. Part (i) and (ii) of Theorem 2 follow from the logarithmic divergence at rational α and from Theorem 1, respectively, by a typical Baire-category argument, see Section 8 in [10]. The key to Theorem 1 is the value distribution of Jacobi theta sums, see next section.

Theorems 1 and 2 illustrate the subtle dependence of spectral correlations on the choice of parameter: While almost all values (in measure) lead to the expected answer, topologically generic choices do not. This remarkable fact had been pointed out first by Sarnak [11] in the case of flat tori, where he established convergence to Poisson for almost all flat tori. His result has recently been improved by Eskin, Margulis and Mozes [6], who characterized all “good” tori by diophantine conditions.

\(^1\)A set of first Baire category is a countable union of nowhere dense sets. Sets of second category are all those sets, which are not of first category.
Triple and higher correlations are presently much less well understood. A number of results on higher-dimensional flat tori are due to VanderKam [15], where the increased dimension of the moduli space facilitates the averaging, very much in the spirit of ideas of Sinai [14] and Major [7].

3. Spectral form factors and Jacobi theta sums

The spectral form factor

\[K_2(t, \lambda) = \frac{1}{D\lambda} \left| \sum_{j: \lambda_j \leq \lambda} e^{2\pi i \lambda_j t} \right|^2 \]

is essentially the Fourier transform of the pair correlation density. We have

\[R_2[a, b](\lambda) = \int_{-\infty}^{\infty} K_2(t, \lambda) \hat{\chi}_{[a, b]}(t) \, dt - \chi_{[a, b]}(0) + o(1) \]

where \(\hat{\chi}_{[a, b]} \) is the Fourier transform of the characteristic function \(\chi_{[a, b]} \) of the interval \([a, b]\). Convergence problems may be avoided by smoothing \(\chi_{[a, b]} \) slightly.

In the case when the eigenvalues \(\lambda_j \) are given by values at integers of quadratic forms, the exponential sum defining \(K_2(t, \lambda) \) is a theta sum. In the case discussed here, it is a variant of Jacobi’s theta sum, namely

\[\Theta_f(\tau, \phi|\xi) = v^{1/2} \sum_{(m, n)\in\mathbb{Z}^2} f_{\phi}(m - y)v^{1/2}, nu^{1/2})e(\frac{1}{2}(m - y)^2u + \frac{1}{2}m^2u + mx), \]

with \(\tau = u + iv \), \(\xi = \begin{pmatrix} x \\ y \end{pmatrix} \) and \(f_{\phi} = U^\phi f \), where \(U^\phi \) is a certain one-parameter-group of unitary operators \((U^0 = \text{id})\) acting on smooth functions \(f \in L^2(\mathbb{R}^2) \), see [10], Section 3 for details. One finds that

\[K_2(t, \lambda) = \frac{1}{4D} \left| \Theta_f(\tau, \phi|\xi) \right|^2 + O(\lambda^{-1}) \]

for \(u = 2t, v = \lambda^{-1}, \phi = 0 \) and \((x, y) = (0, \alpha) \). The function \(f \) is set to be a (smoothed) characteristic function, defining the energy window for the \(\lambda_j \). \(f \) may for instance be taken as \(f(\omega, w) = \chi_{[0, 1]}(\omega^2 + w^2) \), so that \(0 \leq \lambda_j/\lambda \leq 1 \).

The crucial idea is now that the function \(\left| \Theta_f(\tau, \phi|\xi) \right|^2 \) can be identified with a function on a quotient manifold \(M = \Gamma \backslash (\text{SL}(2, \mathbb{R}) \times \mathbb{R}^2) \), with \(\Gamma \) a discrete subgroup of \(\text{SL}(2, \mathbb{R}) \times \mathbb{R}^2 \). The manifold \(M \) is non-compact but has finite volume with respect to Haar measure. Furthermore the average

\[\int |\Theta_f(2t + iv, \phi|\xi)|^2 \hat{\chi}(t) \, dt = \frac{1}{2} \int |\Theta_f(u + iv, \phi|\xi)|^2 \hat{\chi}_{[a, b]}(\frac{u}{2}) \, du \]

is an average along a unipotent orbit, which is expanding as \(v = \lambda^{-1} \to 0 \). Following Ratner’s classification of measures invariant under unipotent flows, it can be shown that the orbit becomes equidistributed on \(M \) with respect to Haar measure, as long as \(\alpha \) is irrational [13, 10].

The equidistribution theorem must not, however, be applied directly in our situation since \(|\Theta_f(u + iv, \phi|\xi)|^2 \) is unbounded, diverging in the cusp at infinity as

\[|\Theta_f(u + iv, \phi|\xi)|^2 \sim v|f_{\phi}(-yv^{1/2}, 0)|^2 \quad (v \to \infty) \]

uniformly for \(y \in [-\frac{1}{2}, \frac{1}{2}] \). Compare [10], Proposition 3.13.
In fact, a small arc of the orbit in the neighbourhood of \(u = 0 \), which runs into the cusp, gives a non-vanishing contribution; one can show ([10], Lemma 7.3) that for any fixed \(\epsilon > 0 \),

\[
\int_{|u| < v^{1-\epsilon}} |\Theta_f(u+iv, \phi(\xi)|^2 \hat{\chi}\left(\frac{u}{2}\right) du \to 2\pi^2 \hat{\chi}_{[a,b]}(0) = 2\pi^2 (b-a),
\]
as \(v \to 0 \). The remaining part of the orbit \(|u| > v^{1-\epsilon} \) becomes equidistributed, under the condition that \(\alpha \) is diophantine ([10], Theorem 6.3).\(^2\) We find, as \(v \to 0 \),

\[
\int_{|u| > v^{1-\epsilon}} |\Theta_f(u+iv, \phi(\xi)|^2 \hat{\chi}\left(\frac{u}{2}\right) du \to \frac{1}{\text{vol}(M)} \int_M |\Theta_f|^2 d\mu \int \hat{\chi}_{[a,b]}\left(\frac{u}{2}\right) du.
\]

Analogous to the proof of Lemma A.8 in [10], one can work out

\[
\frac{1}{\text{vol}(M)} \int_M |\Theta_f|^2 d\mu = 2\pi
\]

and obviously

\[
\int \hat{\chi}_{[a,b]}\left(\frac{u}{2}\right) du = 2\chi_{[a,b]}(0).
\]

Collecting all contributions, we therefore have (recall \(D = \pi/2 \))

\[
\int K_2(t, \lambda) \hat{\chi}_{[a,b]}(t) dt \to \frac{1}{8D} \left(2\pi^2 (b-a) + 4\pi \chi_{[a,b]}(0)\right) = \frac{\pi}{2} (b-a) + \chi_{[a,b]}(0)
\]
as \(\lambda \to \infty \). Hence

\[
\lim_{\lambda \to \infty} R_2[a,b](\lambda) = \frac{\pi}{2} (b-a)
\]
as claimed in Theorem 1.

References

\(^2\)If \(\alpha \) is not diophantine, there will be subsequences of \(v \) along which small arcs of the orbit gain too much weight in the cusp when integrated over the unbounded theta sum; this results in the divergence observed in Theorem 2.

SCHOOL OF MATHEMATICS, UNIVERSITY OF BRISTOL, BRISTOL BS8 1TW, U.K.

E-mail address: j.marklof@bristol.ac.uk