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Random Lattices in the Wild: from Pólya’s Orchard
to Quantum Oscillators

JENS MARKLOF

Point processes are statistical models that describe the distribution of discrete events in space and time.
Applications are everywhere, from galaxies to elementary particles. My aim here is to convince you that there
is an exotic but interesting class of point processes — random lattices — that have fascinating connections
with various branches of mathematics and some basic models in physics.

So what is a random lattice? First of all, a lattice in
dimension one is any non-trivial discrete subgroup
of the additive group of real numbers R. (Non-trivial
means anything but the group of one element.) The
additive group of integers Z is an example and, up
to rescaling by a constant factor, it is in fact the only
example. Now in order to turnZ into a random object,
let us translateZ by a real number U to obtain the set
S(U) = Z +U, and then view U as a random variable
uniformly distributed in the unit interval [0,1]. The
choice of the unit interval is natural since U and U+1
will lead to the same shifted lattice S(U). With this,
S(U) becomes a random set, which we take (for the
purposes of this discussion) to be synonymous with
random point process. One can check that S(U) is
a translation-stationary random point process, i.e.,
S(U) + t has the same distribution as S(U) for every
choice of t 2 R — a simple consequence of the fact
that U is assumed to be uniformly distributed in [0,1].
A random point process describes the probability
of �nding k points in a given set B . In the present
setting, for B a bounded interval of length |B | and
integer k � 0, we have that

P

✓
|S(U) \ B | = k

◆
= max

✓
1 �

��k � |B |
�� , 0

◆
.

It is not di�cult to see that the expected number of
points in B is |B |, which means that the process has
intensity one — compare this with the corresponding
probabilities for a Poisson process!

The above construction has produced a simple
instance of a point process in R. Independent
superpositions of one-dimensional randomly shifted
lattices explain for example the limiting gap
distribution of the fractional parts of the sequence
log n, with n = 1,2,3 . . . [14]. But the fun really starts
in dimension two!

Poisson process

A homogeneous Poisson process with
intensity one in R can be realised as
a sequence of random points where
the distances between consecutive points
are independent random variables with
an exponential distribution. That is, the
probability that a gap is larger than s is e�s .
It follows that the probability of having k
points in the interval B is given by the Poisson
distribution

|B |k
k !

e� |B | .

Two-dimensional random lattices

To construct a two-dimensional random lattice, we
begin with the integer lattice Z

2. We could proceed
as before and de�ne a random point process in R

2

by shifting Z2 randomly by a vector ", say, uniformly
distributed in [0,1]2. This is �ne, but there is a
more interesting avenue. Unlike in dimension one, we
have a non-trivial group of linear volume-preserving
transformations acting on R2. We can use this action,
rather than the group of translations as above, to
randomise Z

2 and thus produce a two-dimensional
random lattice with a fundamental cell of volume one.
Here is how it works. We represent elements in R

2

as row vectors x = (x1,x2). A linear transformation is
then represented by real matrix multiplication from
the right,

x 7! x
✓
a b
c d

◆
= (ax1 + cx2,bx1 + dx2).

Volume is preserved if and only if the determinant
has modulus one, that is |ad � bc | = 1. We will only
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need to consider the case where also orientation is
preserved, which means ad � bc = 1. Such matrices
form a group, which we will label as SL(2,R). L
stands for linear and S for special (referring to the
unit determinant). To produce our �rst example of a
random lattice in R

2, consider the sheared lattice

P1 (u) = Z
2
✓
1 u
0 1

◆
.

Note that, P(u + 1) = P(u), and it is therefore
natural to consider u as a random variable uniformly
distributed on [0,1]. This turns P(u) into a random
set, a random point process. A similar construction
is possible for the randomly rotated lattice

R1 (q) = Z
2
✓
cos q � sin q
sin q cos q

◆

where q is uniformly distributed in [� c
2 ,

c
2 ]. It is a

fact that any matrix inM 2 SL(2,R) can be uniquely
written as a product of a shear, stretch and rotation
matrix

M =
✓
1 u
0 1

◆ ✓
v1/2 0
0 v�1/2

◆ ✓
cos q � sin q
sin q cos q

◆

where u is real, v is real and positive, and �c < q 
c. This is known as the Iwasawa decomposition of
SL(2,R), and provides a parametrisation of SL(2,R)
in terms of (u ,v ,q). It follows that any choice of
random elements (u ,v ,q) yields a random lattice
Z
2M . The above examples of randomly sheared or

rotated lattices are simply special cases! But is there
a particular natural choice of probability measure for
(u ,v ,q) that plays the role of a uniform measure?
One could start with u uniformly distributed in
[0,1] and q uniformly distributed in [� c

2 ,
c
2 ], as

above — but what is a natural uniform probabilty
measure on the positive axis for v? The answer
is highly non-trivial, but has a beautiful geometric
interpretation. The key to the solution is the modular
group � = SL(2,Z), where now all matrix coe�cients
are restricted to integers. It is a discrete subgroup
of SL(2,R) and in fact precisely the subgroup of
all W 2 SL(2,R) such that Z2W = Z

2. This means
that M and WM lead to the same lattice Z

2M , and
we can therefore restrict our attention to only one
representative of the coset �M = {WM | W 2 �}. A
convenient set of such representatives is for example
given by

F=
⇢
(u ,v ,\) 2 R

3 | � 1
2 < u < 1

2 ,

u2 + v2 > 1, v > 0, � c
2 < q < c

2

�

(we should also include about half of the boundary).
This set is called a fundamental domain of the
�-action, just as the unit interval is a fundamental
domain of the Z-action on R. The most natural
uniform measure on F is obtained from the Haar
measure of SL(2,R), restricted to Fand normalised
as a probability measure. Explicitly, this Haar
probability measure is

`F =
3
c2

du dv dq
v2

.

Geometers will have spotted the intriguing similarity
with formulas from hyperbolic geometry: The group
SL(2,R) acts on the upper complex halfplane H =
{g 2 C | Im g > 0} by Möbius (fractional linear)
transformations

g 7! ag + b
cg + d , M =

✓
a b
c d

◆
.

The Möbius transformation for M as in the Iwasawa
decomposition maps i to u + iv , and thus the Möbius
action really comes from group multiplication in
SL(2,R). In fact, we can identify �\ SL(2,R) with
the unit tangent bundle of the modular surface
�\H, where the angle \ = �2q parametrises the
direction of the tangent vector at the point g =
u + iv . With this identi�cation, the Haar probability
measure `F becomes the natural invariant measure
for the geodesic and horocycle �ows for the modular
surface.

Haar probability measure

If (x1,x2,x3) is a uniformly distributed random
vector in the unit cube (� 1

2 ,
1
2 )3, then

(u ,v ,q) =
 
sin( c3x1),

cos( c3x1)
1
2 � x2

,cx3

!
.

is a random element in F distributed
according to the Haar probability measure `F.

A key property of Haar measure on SL(2,R) is
that it is invariant under left and right multiplication
by its group elements. This implies that (using
the invariance under right multiplication) for M
distributed according to `F, the random lattices
Z
2M and Z

2M g have the same distribution for
every element g 2 SL(2,R). In other words, the
random point process Z2M is SL(2,R)-stationary!
The process is, however, not translation-stationary
since the origin is always realised. But even with
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the origin removed, the random process Z2M \ {0}
is not translation-stationary (as the formulas below
will show). Nevertheless, Siegel’s famous mean value
formula (published in 1945) shows that its intensity
measure is the standard Lebesgue measure dy .

Siegel’s mean value formula

Motivated by questions in the geometry
of numbers, Siegel proved that for any
measurable function f : R2 ! R�0,
π
F

✓ ’
x 2Z2M \{0}

f (x)
◆
d`F =

π
R2
f (y ) dy .

Siegel’s formula in fact works for lattices
in arbitrary dimension d . In 1998 it
was generalised by Veech to general
SL(d ,R)-stationary point processes in R

d .
(Veech in fact proved it for a more general
class of random locally �nite Borel measures
in R

d ).

One challenge is now to work out the probability

P

✓
|Z2M \ B | = k

◆

for a given Borel set B . This turns out to be more
di�cult than one would think, despite the explicit
and simple form of the Haar probability measure.
The problem is the domain of integration! Let us
specialise to the case of lattice points in a strip.

Lattice points in a strip

Consider the lattice Z
2M restricted to the vertical

strip
Zw ,R =

�
w �R,w +R

�
⇥ (0,1),

the green strip in Figure 1. For simplicity (and because
it’s all that is needed for our applications below) we
assume that �R < w < R, so that the vertical axis
interesects Zw ,R . We can now look for the lattice
point in the strip with the lowest height, i.e., with the
smallest positive x2-coordinate. For typical lattices
this point will be unique, and we will denote it by q .

It is remarkable that, for any given lattice Z2M , there
are at most three possible choices for q : the two
basis vectors r ,s of Z2M with minimal height in the
larger vertical strip between �2R and 2R (see Figure

1), and their sum r + s . This fact, and its link to the
famous three gap theorem for circle rotations, is
explained in [15]. This pretty observation enables us
to calculate the distribution of the minimal height
vector q [12].

s

r

r + s

�2R w �R 0 w +R 2R

Figure 1. The two linearly independent lattice vectors with
lowest and second-lowest heights in the vertical strip
between �2R and 2R form a basis. One can show that at
any vertical strip of width one (in green) contains at least
one of the three points, and hence the minimal height
vector q is either r , s or r + s .

Distribution of the lattice point with
minimal height

If Z2M is a Haar random lattice, then the
minimal height vector q = (q1,q2) in Zw ,R
is distributed according to the probability
measure Kw ,R (q )dq with density Kw ,R (q1,q2)
given by

6
c2
H

 
1 +

q�12 �max
�
|w |, |q1 �w |

�
�R

|q1 |

!

where H (x) =
8>>><
>>>:

0 if x  0
x if 0 < x < 1
1 if 1  x .

The density Kw ,R (q ) evidently depends on the
choice of w , which proves that the random
process Z2M \ {0} is not translation-stationary. The
SL(2,R)-stationarity of our random lattice implies
on the other hand that all distribution functions must
be invariant under a simultaneously scaling of the
horizontal and vertical directions by factors of _ > 0
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and _�1, respectively. And indeed, the invariance

K_w ,_R (_q1,_�1q2) = Kw ,R (q1,q2)

is consistent with the explicit formula above.

If one is only interested in the height q2 of q but not
its direction, simply integrate over q1 2 [w�R,w+R].
The result of this integration can be found in [12,
Eq. (26)]. There is nothing to prevent us to further
average over w , thus providing the distribution of
the minimal height for a randomly shifted strip. The
result of this second integration is as follows.

Distribution of minimal height on average

For a Haar random lattice Z
2M the minimal

height of a lattice point in the strip Zw ,R ,
on average over w , is distributed according
to the probability measure PR (q2) dq2 =
2R P (2Rq2) dq2, with P (s ) given by (see also
Figure 2)

6
c2

⇥

8>>>>><
>>>>>:

1 (s  1)
1
s + 2

⇣
1 � 1

s

⌘2
log

⇣
1 � 1

s

⌘
� 1
2

⇣
1 � 2

s

⌘2
log

���1 � 2
s

��� (s > 1).

The �rst moment is
Ø 1
0 sP (s )ds = 1. There is,

however, a heavy tail: for s large, we have

P (s ) ⇠ 4
c2
s�3.

So already the second moment diverges! Compare
this with the exponential distribution in Figure 2,
which we would have obtained for minimum height
points from a Poisson point process with unit
intensity, in a strip of unit width.

0 .5 1 .0 1 .5 2 .0 2 .5 3 .0

0 .2

0 .4

0 .6

0 .8

1 .0

Figure 2. The exponential density e�s (blue) vs. P (s ) (red).

Let us now discuss two natural examples where
these distributions can be found in the ‘wild’. The
�rst describes visibility in Pólya’s orchard or —
equivalently — the free path length in the periodic
Lorentz gas, and the second the energy level
statistics for quantum harmonic oscillators.

Figure 3. The author in a perfectly periodic orchard: A
poplar plantation near Pordenone, Italy.

rw s/r

Figure 4. Intercollision �ight of a particle in the Lorentz
gas with scatterers of radius r . The free path length s is
measured in units of 1/r and the the exit parameter w in
units of r .

Pólya’s orchard and the Lorentz gas

Pólya asked how far one could see in a forest, if all
tree trunks had the same radius r and were either (a)
randomly located or (b) planted on a perfect periodic
grid. The same question arises in the study of the
free path length for the two-dimensional Lorentz gas,
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where in the simplest setting a particle moves along
straight lines in an array of spherical scatterers, see
Figure 4. Let us here focus on the periodic setting,
where the trees/scatterers are centered at points of
Z
2. What is the visibility, or free path length, with

the observer at a given tree looking in direction
(� sin q,cos q)? Is there a limit distribution when r
is small and \ random?

Figure 5. Left: A ray of length s/r in direction
(� sin q,cos q) intersecting k tree trunks of (small) radius
r . Right: A rectangle containing k lattice points pointing
the same direction, same length and width 2r .

Figure 6. Left: The con�guration in Figure 5 (right) rotated
clockwise by q. Right: The con�guration on the left
rescaled in the horizontal and vertical directions by
factors of r�1 and r , respectively. The rectangle has now
width 2 and height s .

The number of tree trunks of radius r intersecting
a ray of length s/r is the same as the number of
lattice points in a rectangle of width 2r and length
s/r , see Figure 5. Now let’s rotate the whole picture

clockwise as in Figure 6 (left). The rectangle is now
vertical, and instead of the lattice Z

2 we have the
rotated lattice

R1 (q) = Z
2
✓
cos q � sin q
sin q cos q

◆
,

which we have met before. Finally, we stretch the
picture as described in Figure 6 (right), and obtain
the rectangle of height s and width 2 — the
r -dependence is gone! On the �ipside, the underlying
lattice has now transformed to the r -dependent
lattice

Rr (q) = Z
2
✓
cos q � sin q
sin q cos q

◆ ✓
r �1 0
0 r

◆
.

The visibility, or free path length, can now be
expressed as the minimal height of lattice points in
the strip Zw ,1, where w describes the o�set of the
ray relative to the center of the initial tree trunk; see
Figure 6. (For example w = 0 means the ray emerges
from its centre as in Figure 5.) The condition |w | < 1
ensures we are sitting somewhere on the tree trunk.
In the context of the Lorentz gas, the fact that the
minimal height can only take three values asw varies
is known as Thom’s problem, in turn a close variant
of Slater’s problem. The key fact we will now use is
the following:

Randomly rotated lattices

If q is a uniformly distributed random variable
in [� c

2 ,
c
2 ], then the random lattice Rr (q)

converges in distribution to the Haar random
lattice Z

2M as r ! 0.

This statement is a consequence of the
equidistribution of large circles in the homogeneous
space �\ SL(2,R). The convergence implies that the
limit distribution for the minimal height vector q
in the lattice Rr (q) restricted to the strip Zw ,1 is
given by the density Kw ,1 (q ), and the corresponding
distribution of the free path length is P1 (s ) = 2P (2s ),
see Figure 7. Note that if we had measured visibility
in units of the diameter 2s rather than radius r , the
limit distribution would be P (s ).

In the case of the Lorentz gas, P1 (s ) was in fact
�rst found by the physicist Dahlqvist [3] in 1997,
and only in 2007 established rigorously by number
theorists Boca and Zaharescu [1], who employed
analytic methods based on continued fractions and
Farey sequences. The density Kw ,1 (q ) plays an
important role in describing particles in transport in
the periodic Lorentz gas, and in 2008 was calculated
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independently by Caglioti and Golse [2] by continued
fraction techniques, and by Strömbergsson and
the author [12] via random lattices. The principal
advantage of the latter method is that it works in
any dimension [13] and even extends to aperiodic,
quasicrystalline point con�gurations! Now, on to the
second ‘real-world’ appearance of random lattices.

0 .2 0 .4 0 .6 0 .8 1 .0 1 .2 1 .4

0 .5

1 .0

1 .5

2 .0

Figure 7. The distribution of free path for the periodic
Lorentz gas with scatterers of radius r = 10�8, sampled
over 6000 initial conditions. Theoretical curves are the
exponential density 2e�2s (blue) vs. P1 (s ) = 2P (2s ) (red).
The data was computed using the algorithm in [9].

Quantum oscillators

In quantum mechanics, the energy levels of bound
states can only take speci�c discrete (‘quantized’)
values. One of the simplest and most fundamental
quantum systems with a purely discrete spectrum is
the harmonic oscillator. In two space dimensions, its
energy levels are given by

Em,n = (m + 1
2 )~l1 + (n + 1

2 )~l2

where m,n = 0,1,2, . . . run through the non-negative
integers. The quantities l1,l2 are positive reals,
the oscillation frequencies and ~ denotes Planck’s
constant. If we measure energy in units of ~l2, we
have the simpler expression

nm,n = (m + 1
2 )u + (n + 1

2 ), u =
l1

l2
.

Of particular signi�cance are the spacings between
energy levels, as they determine the emission
spectrum of the system. After a little thought, you
can convince yourself that the spacings between
consecutive levels nm,n in the interval [E ,E + 1) are
the same as the gaps between the fractional parts
bm of the sequence mu , where m = 0, . . . ,N � 1 and

N is number of nm,n in [E ,E + 1). The three gap
theorem mentioned earlier thus implies that we have
the same phenomenon for the energy levels for a
harmonic oscillator, at least for intervals of length
one. A numerical illustration of this fact is given in
Figure 8.

0 .5 1 .0 1 .5 2 .0 2 .5 3 .0

1

2

3

4

5

6

7

Figure 8. The gap distribution for the fractional parts of
nu , with n = 1, . . . ,50000 and u = c.

One can show, however, that the distribution in Figure
8 will not converge as N becomes large. The only
hope to see a limit is to introduce a further average
over u . Using the approach in [15], we can express
the gap between bm and its nearest neighbour to the
right as the minimal height of all lattice points in the
strip Zw ,1/2 (of width one), with w = m

N � 1
2 and the

lattice

PN (u) = Z
2
✓
1 u
0 1

◆ ✓
N �1 0
0 N

◆
.

As in the case of randomly rotated lattices, also here
we have a limit theorem.

Randomly sheared lattices

If u is a uniformly distributed random variable
in [0,1], then the random lattice PN (u)
converges in distribution to the Haar random
lattice Z

2M as N ! 1.

This fact is based on the equidistribution of long
closed horocycles on �\ SL(2,R), which was proved
by Zagier in 1979 in the case of the modular surface,
and for more general discrete subgroups � by Sarnak
in 1981. The most powerful extension of results of
this type (as well as the rotational averages used
for Pólya’s orchard) is due to Ratner in the early
1990s [16]. It describes equidistribution of unipotent
orbits on quotients �\G whereG is now a general Lie
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group. (Horocycles are special examples of unipotent
orbits.) Recent breakthroughs that build on Ratner’s
work include the deep measure classi�cation and
equidistribution theorems for moduli spaces by Eskin,
Mirzakhani and Mohammadi. For an introduction
to dynamics on homogeneous spaces and their
relevance in number theory I recommend the
excellent textbook by Einsiedler and Ward [4].

0 .5 1 .0 1 .5 2 .0 2 .5 3 .0

0 .2

0 .4

0 .6

0 .8

1 .0

Figure 9. The gap distribution for the fractional parts of
nu , with n = 1, . . . ,2000 and u sampled over 2000
randomly chosen points in [0,1]. Theoretical curves are
the exponential density e�s (blue) vs. P (s ) (red).

By the same reasoning we used earlier for
Pólya’s orchard, the convergence of randomly
sheared lattices to Haar distributed random lattices
establishes the convergence of the gap distribution
for the fractional parts of mu . The one di�erence is
we now sum overw = m

N � 1
2 (m = 0, . . . ,N �1) rather

than integrate — but this discrete average can be
treated as a Riemann sum which approximates the
Riemann integral for N large. We can conclude that
the gaps between fractional parts on mu , and thus
the energy level spacings for quantum oscillators,
have the same limit distribution as the free path
length in the periodic Lorentz gas! Figure 9 compares
numerical data with the theoretical prediction.

The explicit form of the level spacing distribution for
quantum oscillators (in Figure 9) was �rst established
by Greenman [7] in 1996, following previous work
on the problem by Berry and Tabor (1977), Bohigas,
Giannoni and Pandey (1989), Bleher (1990-91), Pandey
and Ramaswamy (1992), Mazel and Sinai (1992); see
[10] for details and references. Greenman’s paper
predates Dahlqvist’s and Boca and Zaharescu’s work
on the Lorentz gas; and perhaps more remarkably,
the likeness of the two distributions seems to have
been overlooked even in the recent literature [17]!
That the two are the same is evident of course by
simply staring at the explicit formulas, and perhaps

no surprise given the similarity of their arithmetic
setting. The beauty of using lattices is that we
have a conceptual understanding of why the limit
distributions must coincide: random rotations and
random shears both converge to the same Haar
probability measure — a non-trivial fact!

Other applications

We can construct random lattices that are not only
SL(2,R)-stationary but also translation-stationary
as follows. Take the randomly shifted lattice Z

2 + "
with " uniformly distributed in the unit square [0,1]2
(recall our construction in dimension one), then apply
a linear transformation to obtain the random a�ne
lattice

�
Z
2 + "

�
M with M distributed in F with

respect to Haar measure. This point process is now
translation-stationary and it has intensity one. In
fact, also its second moment coincides with that
of a Poisson point process; again a consequence
of Siegel’s mean value formula [5, App. B]. In 2004,
Elkies and McMullen [6] proved that the limiting
gap distribution for the fractional parts of

p
n, n =

1,2,3, . . . can be derived via a random a�ne lattice.
The proof uses equidistribution of certain nonlinear
horocycles, which is a consequence of Ratner’s
measure classi�cation theorem. The distribution
found by Elkies and McMullen also describes the
limiting distribution for directions in a �xed a�ne
lattice [13].

Random lattices appeared in the probability
literature in Kallenberg’s disproof of the Davidson
conjecture [8] on the classi�cation of line processes
which have (almost surely) no parallel lines.
The counterexamples to the conjecture were
constructed using two-dimensional random a�ne
lattices restricted to a vertical strip, where each
lattice point represents a line via the standard
linear parametrisation. This is particularly impressive
as Kallenberg was unaware of Siegel’s classical
construction in the geometry of numbers, as clari�ed
by Kingman; see the quote at the end of Kallenberg’s
paper.

Other examples where random lattices play an
important role are the value distribution of quadratic
forms, such as in Margulis’ proof of the Oppenheim
conjecture, the Hall distribution describing the
gaps between Farey fractions, random Diophantine
approximation, diameters of random Caley graphs
of abelian groups, the Frobenius problem, hitting
times for integrable dynamical systems, deviations of
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ergodic averages of toral translations, etc. And how
about random lattices in non-Euclidean settings?

But these are stories for another day!

Take home message

• Random lattices are important point
processes with connections to ergodic
theory, geometry, number theory,
combinatorics, probability and physics.

• The level spacing distribution of a quantum
oscillator equals the free path distribution
of the periodic Lorentz gas.
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