Almost Modular Functions and the Distribution of n^2x Modulo One

Jens Marklof

1 Introduction

It is well known that the sequence n^2x with $n = 1, 2, 3, 4, \ldots$ is equidistributed modulo one if x is irrational [22]. This means that, for every piecewise smooth function ψ of the circle $S^1 = \mathbb{R}/\mathbb{Z}$ to \mathbb{C}, we have

$$\frac{1}{N} \sum_{n=1}^{N} \psi(n^2x) \to \int_{0}^{1} \psi(t) dt$$

in the limit $N \to \infty$. Interesting choices for ψ are as follows:

(a) $\psi(t) = \chi_{[a,b]}(t)$, where $\chi_{[a,b]}$ is the indicator function of the interval $[a,b] + \mathbb{Z}$ on S^1, with $(b - a) \leq 1$;

(b) $\psi(t) = \{t\}$, where $\{t\}$ is the fractional part of t;

(c) $\psi(t) = e(t) := \exp(2\pi it)$, leading to theta sums studied in [6, 7, 8, 14, 15];

(d) $\psi(t) = \log(1 - Ze(-t))$, for some $Z \in \mathbb{C}$, with $|Z| = 1$, and the sum in (1.1) becomes the logarithm of the polynomial

$$P_N(Z) := \prod_{n=1}^{N} (1 - Ze(-n^2x)).$$

The main objective of this work is to show that, for x uniformly distributed in $[0, 1]$, the
fluctuations of the error term

\[E_x^N(N) := \sum_{n=1}^{N} \psi(n^2x) - N \int_0^1 \psi(t) dt, \tag{1.3} \]

normalized by \(1/\sqrt{N} \), have a limit distribution as \(N \to \infty \), that is, there is a probability measure \(\nu_\psi \) on \(\mathbb{C} \) such that, for every bounded continuous function \(g : \mathbb{C} \to \mathbb{C} \), we have

\[\lim_{N \to \infty} \int_0^1 g \left(\frac{E_x^N(N)}{\sqrt{N}} \right) dx = \int_{\mathbb{C}} g(w) \nu_\psi(dw). \tag{1.4} \]

The limit distribution can be expressed in terms of an almost modular function; in particular, it does not fall into the family of the classical stable limit laws. This is in contrast to the limit distribution of the error term for lacunary sequences, say \(2^n x \mod 1 \), which is normal [9] (this result may in fact be viewed as a special case of the central limit theorem for dynamical systems [3]). Interestingly, the error term for the linear sequence \(nx + y \mod 1 \), with \(x, y \in [0, 1] \) random, has a limit distribution for the test function \(\psi = \chi_{[a,b]} \) which is Cauchy and thus again stable [10, 11] (the normalization here is \(1/\log N \), not \(1/\sqrt{N} \)).

It is very likely that the limit distribution of the error term of \(n^2x \mod 1 \) follows a stable limit law if the interval \([a, b]\) is no longer fixed but shrinks with \(N \to \infty \). Of particular interest is the case when \((b-a)\) is of the order of the mean spacing \(1/N \), where one expects a Poissonian limit distribution for the number of elements in \([a, b]\) (see [16, 17, 18] for details).

A nongeneric limit distribution has been observed as well for the error term in the classical circle problem [5] and more general lattice point counting problems in the plane [1, 2]. The limit distribution is, in these cases, given by almost periodic functions. Our proof of the limit theorem for almost modular functions in Section 8 is in fact modelled on that for almost periodic functions in [1].

2 Main results

It is natural to consider more general sums of the form

\[\frac{1}{\sqrt{N}} \sum_{n=1}^{\infty} f \left(\frac{n}{N} \right) \psi(n^2x), \tag{2.1} \]

where \(f \) is a piecewise smooth cutoff function with compact support.
We think of the error term as a function \(\Xi_{f,\psi} : \mathbb{C} \to \mathbb{C} \), where
\[
\Xi_{f,\psi}(x + iy) = y^{1/4} \sum_{n=1}^{\infty} f(ny^{1/2}) \psi(n^2x),
\]
and \(y = N^{-2} \).

Take \(\psi \in L^2(S^1) \) real- or complex-valued with Fourier coefficients
\[
\hat{\psi}_k = \int_0^1 \psi(t)e(-kt)dt.
\]

We assume in the following that (without loss of generality)
\[
\hat{\psi}_0 = 0,
\]
and that there are constants \(\beta > 1/2 \) and \(C(\psi) > 0 \) such that
\[
|\hat{\psi}_k| \leq \frac{C(\psi)}{|k|^{\beta}},
\]
for all \(k \neq 0 \). These conditions are clearly satisfied for the examples (a), (b), (c), and (d) listed above.

We furthermore assume that \(f \in \mathcal{PC}_r^r(\mathbb{R}_+) \), the space of piecewise \(C^r \) functions \(f : \mathbb{R}_+ \to \mathbb{R} \) with compact support \(\text{supp}_f(\mathbb{R}_+) \) includes the origin). \textit{Piecewise \(C^r \)} means as usual that \(\text{supp}_f \) can be decomposed into finitely many intervals on each of which \(f \) is \(C^r \) and bounded.

For \(x \) uniformly distributed in \([0, 1) \), \(\Xi_{f,\psi}(x + iy) \) can be viewed as a family of random variables (parametrized by \(y \)) which are centered at expectation, that is,
\[
\int_0^1 \Xi_{f,\psi}(x + iy)dx = 0.
\]

We will see in \textit{Section 4} that the variance has a limit
\[
\lim_{y \to 0} \int_0^1 \left| \Xi_{f,\psi}(x + iy) \right|^2 dx = \sigma^2(f, \psi),
\]
where
\[
\sigma^2(f, \psi) = \sum_{p, q=1 \atop \gcd(p,q)=1}^{\infty} \int_0^\infty f(pr)f(qr)dr \int_0^1 \psi(p^2x)\overline{\psi(q^2x)}dx.
\]
Theorem 2.1. Let $f \in PC^\infty_0(\mathbb{R}^+)$ and $\psi \in L^2(S^1)$ satisfying (2.4) and (2.5). Then, for x uniformly distributed in $[0, 1)$, $\Xi_{f, \psi}(x + iy)$ has a limit distribution as $y \to 0$. That is, there exists a probability measure $\nu_{f, \psi}$ on \mathbb{C} such that, for any bounded continuous function $g : \mathbb{C} \to \mathbb{C}$,

$$
\lim_{y \to 0} \int_0^1 g(\Xi_{f, \psi}(x + iy)) \, dx = \int_{\mathbb{C}} g(w) \nu_{f, \psi}(dw).
$$

(2.9)

Furthermore, $\nu_{f, \psi}$ is symmetric with respect to $w \mapsto -w$. □

By establishing that $\Xi_{f, \psi}$ is almost modular (Section 11), this theorem follows directly from the limit theorem for almost modular functions (Section 8).

3 Decay of correlations

Lemma 3.1. For $\psi \in L^2(S^1)$ with (2.4) and (2.5),

$$
\left| \int_0^1 \psi(ax) \overline{\psi(bx)} \, dx \right| \leq \sqrt{2\zeta(2\beta)} C(\psi) \|\psi\|_2 \frac{\gcd(a, b)^\beta}{b^\beta},
$$

(3.1)

for all $a, b \in \mathbb{N}$. (Here ζ denotes the Riemann zeta function.) □

Proof. Put $p = a / \gcd(a, b)$ and $q = b / \gcd(a, b)$. Then $\gcd(p, q) = 1$, and we have furthermore

$$
\int_0^1 \psi(ax) \overline{\psi(bx)} \, dx = \int_0^1 \psi(px) \overline{\psi(qx)} \, dx.
$$

(3.2)

Since $\psi \in L^2(S^1)$ and $\gcd(p, q) = 1$, we have

$$
\int_0^1 \psi(px) \overline{\psi(qx)} \, dx = \sum_{k, l \neq 0 \atop kp = lq} \hat{\psi}_k \overline{\hat{\psi}_l} = \sum_{r \neq 0} \hat{\psi}_{rq} \overline{\hat{\psi}_{rp}}.
$$

(3.3)

By the Cauchy-Schwartz inequality, the modulus of this last expression is less than or equal to

$$
\left(\sum_{r \neq 0} |\hat{\psi}_{rq}|^2 \right)^{1/2} \left(\sum_{r \neq 0} |\hat{\psi}_{rp}|^2 \right)^{1/2} \leq \frac{C(\psi)}{q^\beta} \left(\sum_{r \neq 0} |r|^{-2\beta} \right)^{1/2} \|\psi\|_2,
$$

(3.4)

which proves the claim. □
Almost Modular Functions and \(n^2 \times \text{Modulo One} \)

Of course equation (3.3) also implies the bound

\[
\left| \int_0^1 \psi(ax) \overline{\psi(bx)} \, dx \right| \leq 2\zeta(2\beta) C(\psi)^2 \frac{\gcd(a, b)^{2\beta}}{(ab)^{\beta}}
\]

(3.5)

which decays faster for \(a, b \) large. This, however, will be of no direct advantage, and the explicit dependence on \(\|\psi\|_2 \) in Lemma 3.1 will make the argument more transparent.

4 The variance

Lemma 4.1. There is a constant \(K_\beta > 0 \) such that

\[
\limsup_{N \to \infty} \frac{1}{N} \int_0^1 \left| \sum_{n=1}^{\infty} f \left(\frac{n}{N} \right) \psi(n^2x) \right|^2 \, dx \leq \sup(f^2) \|\psi\|_2^2 + K_\beta C(\psi) \|\psi\|_2^2
\]

(4.1)

holds uniformly for all \(f \in PC_0(\mathbb{R}_+) \) and all \(\psi \in L^2(S^1) \), satisfying (2.4) and (2.5).

Proof. We have

\[
\int_0^1 \left| \sum_{n=1}^{\infty} f \left(\frac{n}{N} \right) \psi(n^2x) \right|^2 \, dx = \sum_{n=1}^{\infty} f \left(\frac{n}{N} \right)^2 \|\psi\|_2^2 + 2 \text{Re} \sum_{1 \leq m < n} f \left(\frac{m}{N} \right) f \left(\frac{n}{N} \right) \int_0^1 \psi(m^2x) \overline{\psi}(n^2x) \, dx
\]

(4.2)

since

\[
\int_0^1 \psi(n^2x) \overline{\psi}(n^2x) \, dx = \|\psi\|_2^2.
\]

(4.3)

For \(x \in \mathbb{R} \) and \(S \subset \mathbb{R} \), denote by \(xS \) the set \(\{xy : y \in S\} \). For the first term in (4.2), we then have

\[
\left| \sum_{n=1}^{\infty} f \left(\frac{n}{N} \right) \right|^2 \leq \sup(f^2) \# \{n \in \mathbb{N} \cap N \supp f \} \leq \sup(f^2) N \|\supp f\| + O(1).
\]

(4.4)

We rewrite the second term in (4.2) as

\[
2 \text{Re} \sum_{1 \leq p < q} \sum_{\gcd(p, q) = 1}^{\infty} \int_0^1 \psi(p^2x) \overline{\psi(q^2x)} \, dx
\]

(4.5)

\[
= 2 \text{Re} \sum_{1 \leq p < q} \sum_{\gcd(p, q) = 1}^{\infty} \int_0^1 \psi(p^2x) \overline{\psi(q^2x)} \, dx.
\]
Now
\[
\sum_{r=1}^{\infty} \left| f\left(\frac{pr}{N}\right) f\left(\frac{qr}{N}\right) \right| \leq \sup \left(f^2 \right) \# \left\{ r \in \mathbb{N} \cap \left(\frac{N}{p} \text{supp}_f \right) \cap \left(\frac{N}{q} \text{supp}_f \right) \} \\
\leq \sup \left(f^2 \right) \# \left\{ r \in \mathbb{N} \cap \left(\frac{N}{q} \text{supp}_f \right) \} \left\{ \begin{array}{ll} \leq \sup \left(f^2 \right) \frac{N}{q} | \text{supp}_f | + O_1(1) & \text{if } q \leq N \ell(f), \\
= 0 & \text{if } q > N \ell(f), \end{array} \right.
\]
\]
(4.6)

where \(\ell(f) \) is the length of the shortest interval containing \(\text{supp}_f \). The modulus of (4.5) is thus less than or equal to
\[
2N \sup \left(f^2 \right) | \text{supp}_f | \sum_{1 \leq p < q \leq N \ell(f) \atop \gcd(p, q) = 1} \frac{1}{q} \left| \int_0^1 \psi(p^2x) \overline{\psi}(q^2x) \, dx \right| + 2O_1(1) \sum_{1 \leq p < q \leq N \ell(f) \atop \gcd(p, q) = 1} \left| \int_0^1 \psi(p^2x) \overline{\psi}(q^2x) \, dx \right|.
\]
(4.7)

By Lemma 3.1, we have for the first sum
\[
\sum_{1 \leq p < q \leq N \ell(f) \atop \gcd(p, q) = 1} \frac{1}{q} \left| \int_0^1 \psi(p^2x) \overline{\psi}(q^2x) \, dx \right| \leq \sqrt{2C(2\beta)C(\psi)} \| \psi \|_2 \sum_{1 \leq p < q \leq N \ell(f) \atop \gcd(p, q) = 1} \frac{1}{q^{1+2\beta}},
\]
(4.8)

which converges for \(\beta > 1/2 \). Similarly, for the second sum in (4.7), assuming, without loss of generality, that \(1/2 < \beta < 1 \),
\[
\sum_{1 \leq p < q \leq N \ell(f) \atop \gcd(p, q) = 1} \left| \int_0^1 \psi(p^2x) \overline{\psi}(q^2x) \, dx \right| \leq \sqrt{2C(2\beta)C(\psi)} \| \psi \|_2 \sum_{1 \leq p < q \leq N \ell(f) \atop \gcd(p, q) = 1} \frac{1}{q^{2\beta}} \leq C(\psi) \| \psi \|_2 O_1 \left((N \ell(f))^{2-2\beta} \right).
\]
(4.9)

\[\square\]

Lemma 4.2. Let \(f \in PC_0(\mathbb{R}_+) \) and \(\psi \in L^2(S^1) \), satisfying (2.4) and (2.5). Then
\[
\lim_{N \to \infty} \frac{1}{N} \int_0^1 \left| \sum_{n=1}^{\infty} f \left(\frac{n}{N} \right) \psi(n^2x) \right|^2 \, dx = \sigma^2(f, \psi),
\]
(4.10)

with
\[
\sigma^2(f, \psi) = \sum_{p, q-1 \atop \gcd(p, q) = 1} \int_0^\infty f(pr)f(qr) \, dr \int_0^1 \psi(p^2x) \overline{\psi}(q^2x) \, dx.
\]
(4.11)
\[\square\]
Proof. We have
\[\frac{1}{N} \int_0^1 \left| \sum_{n=1}^{\infty} f \left(\frac{n}{N} \right) \psi(n^2x) \right|^2 \, dx = \sum_{ \text{gcd}(p,q)=1 } a_N(p,q), \tag{4.12} \]
with
\[a_N(p,q) = \frac{1}{N} \sum_{r=1}^{\infty} f \left(\frac{pr}{N} \right) f \left(\frac{qr}{N} \right) \int_0^1 \psi(p^2x) \psi(q^2x) \, dx. \tag{4.13} \]

Next
\[\lim_{N \to \infty} \frac{1}{N} \sum_{r=1}^{\infty} f \left(\frac{pr}{N} \right) f \left(\frac{qr}{N} \right) = \int_0^\infty f(pr)f(qr) \, dr, \tag{4.14} \]
for \(p, q \) fixed, implies
\[\lim_{N \to \infty} a_N(p,q) = a(p,q) := \int_0^\infty f(pr)f(qr) \, dr \int_0^1 \psi(p^2x) \psi(q^2x) \, dx. \tag{4.15} \]

It follows from the proof of Lemma 4.1 that there is a function \(g(p,q) \) such that
\[|a_N(p,q)| \leq g(p,q), \quad \sum_{ \text{gcd}(p,q)=1 } g(p,q) < \infty. \tag{4.16} \]

Hence the dominated convergence theorem yields
\[\lim_{N \to \infty} \sum_{ \text{gcd}(p,q)=1 } a_N(p,q) = \sum_{ \text{gcd}(p,q)=1 } a(p,q). \tag{4.17} \]

5 Universal cover of \(\text{SL}(2, \mathbb{R}) \) and discrete subgroups

The action of \(\text{SL}(2, \mathbb{R}) \) on the upper half plane \(\mathcal{H} = \{ z \in \mathbb{C} : \Im z > 0 \} \) is given by fractional linear transformations, that is,
\[g : z \mapsto gz = \frac{az + b}{cz + d}, \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{R}). \tag{5.1} \]

We can define the continuous function \(\varepsilon_g : \mathcal{H} \to \mathbb{C} \) by \(\varepsilon_g(z) = (cz + d)/|cz + d| \). One easily verifies that \(\varepsilon_{gh}(z) = \varepsilon_g(hz) \varepsilon_h(z) \). In the following, we will denote by \(\mathcal{C}(\mathcal{H}) \) the space of
continuous functions $\mathfrak{h} \to \mathbb{C}$. The universal covering group of $\text{SL}(2, \mathbb{R})$ is defined as the set

$$\tilde{\text{SL}}(2, \mathbb{R}) = \left\{ [g, \beta_g] : g \in \text{SL}(2, \mathbb{R}), \beta_g \in C(\mathfrak{h}) \text{ such that } e^{i\beta_g(z)} = \varepsilon_g(z) \right\}, \quad (5.2)$$

with multiplication law

$$[g, \beta_g][h, \beta_h] = [gh, \beta_{gh}], \quad \beta_{gh}(z) = \beta_g(hz) + \beta_h(z). \quad (5.3)$$

We may identify $\tilde{\text{SL}}(2, \mathbb{R})$ with $\mathfrak{h} \times \mathbb{R}$ via $[g, \beta_g] \mapsto (z, \phi) = (g_z, \phi_g)$. The action of $\tilde{\text{SL}}(2, \mathbb{R})$ on $\mathfrak{h} \times \mathbb{R}$ is then canonically defined by $[g, \beta_g](z, \phi) = (gz, \phi + \beta_g(z))$. The Haar measure of $\tilde{\text{SL}}(2, \mathbb{R})$ reads, in this parametrization,

$$d\mu(g) = \frac{dx \, dy \, d\phi}{y^2}. \quad (5.4)$$

For any integer $m > 0$, put

$$Z_m = \langle [-1, \beta_{-1}]^m \rangle, \quad \text{with } \beta_{-1}(z) = \pi, \quad (5.5)$$

that is, Z_m is the subgroup generated by the element $[-1, \beta_{-1}]^m$. The subgroup Z_m is contained in the center of $\tilde{\text{SL}}(2, \mathbb{R})$, and it is easily seen that $\text{PSL}(2, \mathbb{R})$ is isomorphic to $\tilde{\text{SL}}(2, \mathbb{R})/Z_1$, and $\text{SL}(2, \mathbb{R})$ is isomorphic to $\tilde{\text{SL}}(2, \mathbb{R})/Z_2$.

For any positive integer N, we define the congruence subgroups of $\text{SL}(2, \mathbb{Z})$:

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z}) : a \equiv d \equiv 1, c \equiv 0 \text{ mod } N \right\}, \quad (5.6)$$

and the following lift to the universal cover (assume now N is divisible by 4):

$$\Delta_1(N) = \left\{ [\gamma, \beta_\gamma] : \gamma \in \Gamma_1(N), \beta_\gamma \in C(\mathfrak{h}) \text{ such that } e^{i\beta_\gamma(z)/2} = j_\gamma(z) \right\}, \quad (5.7)$$

where

$$j_\gamma(z) = \left(\frac{c}{d} \right) \left(\frac{cz + d}{|cz + d|} \right)^{1/2}, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1(4). \quad (5.8)$$

Here $z^{1/2}$ denotes the principal branch of the square root of z, that is, the one for which $-\pi/2 < \arg z^{1/2} \leq \pi/2$; and $(\frac{z}{N})$ denotes the generalized quadratic residue symbol (see Appendix for details).
It is well known that \(j_\gamma \) forms a multiplier system for \(\Gamma_1(4) \), that is, \(j_{\gamma \eta}(z) = j_\gamma(\eta z) j_\eta(z) \) for all \(\gamma, \eta \in \Gamma_1(4) \) (and hence for all \(\gamma, \eta \in \Gamma_1(N) \subset \Gamma_1(4) \); recall that \(4\mid N \)). Therefore \(\Delta_1(N) \) is indeed a subgroup of \(\widetilde{\text{SL}}(2, \mathbb{R}) \) if \(4\mid N \).

We collect a few important properties which will be needed later on. For \(y > 0 \), we define

\[
a_y = \begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix} \in \text{SL}(2, \mathbb{R}), \quad A_y = [a_y, 0] \in \widetilde{\text{SL}}(2, \mathbb{R}).
\] (5.9)

Lemma 5.1. Assume \(N, N_1, \) and \(N_2 \) are positive integers divisible by 4, and \(k \) is any positive integer. Then

(a) \(\Delta_1(N) \) is a finite index subgroup of \(\Delta_1(4) \);

(b) \(\Delta_1(4k) \subset A_k^{-1} \Delta_1(4) A_k \);

(c) \(\Delta_1(\text{lcm}(N_1, N_2)) \subset \Delta_1(N_1) \cap \Delta_1(N_2) \);

(d) \(M_N = \Delta_1(N) \setminus \widetilde{\text{SL}}(2, \mathbb{R}) \) is a noncompact manifold of finite measure (with respect to Haar measure \(\mu \)).

Proof. For any integer \(N' \) divisible by 4, \(\Delta_1(N') \) contains the subgroup \(Z_4 = \{[1, \beta_1] : \beta_1(z) = 4\pi n, n \in \mathbb{Z} \} \), and \(\Delta_1(N')/Z_4 \) is isomorphic to \(\Gamma_1(N') \). This proves (a).

A short calculation shows that

\[
A_k \left[\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \beta \right] A_k^{-1} = \left[\begin{pmatrix} a & kb \\ c/k & d \end{pmatrix}, \tilde{\beta} \right],
\] (5.10)

with \(\tilde{\beta}(z) = \beta(z/k) \). Hence, if \(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_1(4k) \), then \(a_k \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) a_k^{-1} = \left(\begin{array}{cc} a & kb \\ c/k & d \end{array} \right) \in \Gamma_1(4) \). Second, we need to show that

\[
e^{i\tilde{\beta}(z)/2} = \left(\frac{(c/k)}{d} \right) \left(\frac{(c/k)z + d}{|c/kz + d|} \right)^{1/2}
\] (5.11)

holds. To this end, note that

\[
e^{i\tilde{\beta}(z)/2} = e^{i\beta(z/k)/2} = \left(\frac{c}{d} \right) \left(\frac{cz/k + d}{|cz/k + d|} \right)^{1/2}
\] (5.12)

and that (using multiplicativity)

\[
\left(\frac{c}{d} \right) = \left(\frac{(c/k)}{d} \right) \left(\frac{k}{d} \right).
\] (5.13)
Now \((\frac{k}{d})\) is a character mod \(4k\) and hence, for \(d \equiv 1 \text{ mod } 4k\), we have
\[
\left(\frac{k}{d}\right) = \left(\frac{k}{1}\right) = 1.
\]
This proves (b). Statement (c) is clear. Since \(\text{SL}(2, \mathbb{R})\) is isomorphic to \(\tilde{\text{SL}}(2, \mathbb{R})/\mathbb{Z}_2\), (d) follows from its analog for \(\Gamma_1(N) \backslash \text{SL}(2, \mathbb{R})\).

Because \(\mathbb{Z}_4\) is of index two in \(\mathbb{Z}_2\), \(\Delta_1(N) \backslash \tilde{\text{SL}}(2, \mathbb{R})\) is in fact a double cover of \(\Gamma_1(N) \backslash \text{SL}(2, \mathbb{R})\). A fundamental domain for the action of \(\Delta_1(N)\) on \(H \times \mathbb{R}\) is \(F_{\Delta_1(N)} = F_{\Gamma_1(N)} \times [0, 4\pi)\) if \(F_{\Gamma_1(N)}\) is a fundamental region of \(\Gamma_1(N)\) in \(\tilde{\mathcal{H}}\).

6 Equidistribution of closed horocycles

The manifold \(M_N\) has a finite number of cusps which are represented by the set \(\eta_1, \ldots, \eta_\kappa \in \mathbb{Q} \cup \infty\) on the boundary of \(\tilde{\mathcal{H}}\). Let \(\gamma_i \in \text{PSL}(2, \mathbb{R})\) be a fractional linear transformation which maps the cusp at \(\eta_i\) to the standard cusp at \(\infty\) of width one. Thus \((z_i, \phi_i) = \tilde{\gamma}_i(z, \phi)\) yields a new set of coordinates, where the \(i\)th cusp appears as a cusp at \(\infty\), which is invariant under \((z_i, \phi_i) \mapsto (z_i + 1, \phi_i)\). The variable \(y_i = \text{Im}(\gamma_i z)\) measures the height into the \(i\)th cusp.

For any \(\sigma \geq 0\), we denote by \(B_\sigma(M_N)\) the class of functions \(F \in C(M_N)\) such that, for all \(i = 1, \ldots, \kappa\),
\[
F(z, \phi) = O(y_i^\sigma), \quad y_i \to \infty,
\]
where the implied constant is independent of \((z, \phi)\). In view of the form of the invariant measure (5.4), we note that \(B_\sigma(M_N) \subset L^p(M_N, \mu)\) if \(\sigma < 1/p\).

Theorem 6.1. Let \(0 \leq \sigma < 1\). Then, for every \(F \in B_\sigma(M_N)\),
\[
\lim_{y \to 0} \int_0^1 F(x + iy, 0) dx = \frac{1}{\mu(M_N)} \int_{M_N} F d\mu.
\]

Proof. There are several ways to prove this theorem. One possibility is to use Eisenstein series of half-integral weight as in [15] which is based on Sarnak’s approach [19]. The second variant is to use the mixing property of the flow
\[
\Phi^t : \tilde{\text{SL}}(2, \mathbb{R}) \to \tilde{\text{SL}}(2, \mathbb{R}), \quad g \mapsto g \begin{pmatrix} e^{-t/2} & 0 \\ 0 & e^{t/2} \end{pmatrix}
\]
Almost Modular Functions and \(n^2 \times \text{Modulo One} \) as in [4]. A further possibility is to quote Shah’s theorem [20] on the distribution of translates of unipotent orbits. All three methods assume that \(F \) is bounded. The extension to \(F \in B_\sigma(\mathcal{M}_N) \) is achieved by the argument given in [14, the proof of Proposition 4.3]. □

7 Almost modular functions

In the following, we will consider functions \(\Xi : \mathfrak{H} \to \mathbb{C} \) which are periodic, that is, for which \(\Xi(z + 1) = \Xi(z) \).

Definition 7.1. For any \(p \geq 1 \), let \(B^p \) be the class of periodic functions \(\Xi : \mathfrak{H} \to \mathbb{C} \) with the property that for every \(\varepsilon > 0 \), there are an integer \(N = N(\varepsilon) > 0 \) and a function \(F_\varepsilon \in B_\sigma(\mathcal{M}_N) \) with \(0 \leq \sigma < 1/p \) so that

\[
\limsup_{y \to 0} \int_0^1 \left| \Xi(x + iy) - F_\varepsilon(x + iy, 0) \right|^p dx < \varepsilon^p.
\]

We will see below that the error term (2.2) falls into the class \(B^2 \). A further example of an almost modular function of this type is

\[
(\text{Im } z)^{1/4} \log \prod_{n=1}^\infty (1 - e(n^2 z)),
\]

which is discussed in more detail in [16].

Definition 7.2. Let \(\mathcal{H} \) be the class of periodic functions \(\Xi : \mathfrak{H} \to \mathbb{C} \) with the property that for every \(\varepsilon > 0 \), there are an integer \(N = N(\varepsilon) > 0 \) and a bounded continuous function \(F_\varepsilon \in C(\mathcal{M}_N) \) such that

\[
\limsup_{y \to 0} \int_0^1 \min \left\{ 1, \left| \Xi(x + iy) - F_\varepsilon(x + iy, 0) \right| \right\} dx < \varepsilon.
\]

We will call functions in \(B^p \) or \(\mathcal{H} \) almost modular functions of class \(B^p \) or \(\mathcal{H} \), respectively.

Proposition 7.3. If \(1 \leq q \leq p \), then

\[
B^p \subset B^q \subset \mathcal{H}.
\] □

Proof. Hölder’s inequality implies that if \(f \in L^r(S^1) \), then \(f \in L^1(S^1) \) and \(\int_0^1 |f|^r dx \leq (\int_0^1 |f|^r dx)^{1/r} \). We put \(f(x) = |\Xi(x + iy) - F_\varepsilon(x + iy, 0)|^q \) and \(r = p/q \). Then

\[
\int_0^1 |\Xi(x + iy) - F_\varepsilon(x + iy, 0)|^q dx \leq \left(\int_0^1 |\Xi(x + iy) - F_\varepsilon(x + iy, 0)|^p dx \right)^{q/p}.
\]
Therefore, if (7.1) holds for \(p \), it also holds for \(q \), in fact with the same \(\varepsilon \) and \(F_\varepsilon \).

To prove the second inclusion, it is enough to show that \(\mathcal{B}^1 \subset \mathcal{H} \). Hence assume \(\Xi \in \mathcal{B}^1 \); we may then choose \(F \in \mathcal{B}_\sigma (\mathcal{M}_N) \) so that

\[
\limsup_{y \to 0} \int_0^1 |\Xi(x + iy) - F(x + iy, 0)| \, dx < \frac{\varepsilon}{2}.
\]

(7.6)

We furthermore find a bounded continuous \(F_\varepsilon \in C(\mathcal{M}_N) \) such that

\[
\frac{1}{\mu(\mathcal{M}_N)} \int_{\mathcal{M}_N} |F - F_\varepsilon| \, d\mu < \frac{\varepsilon}{2}.
\]

(7.7)

Then

\[
\limsup_{y \to 0} \int_0^1 \min \{1, |\Xi(x + iy) - F_\varepsilon(x + iy, 0)|\} \, dx \\
\leq \limsup_{y \to 0} \int_0^1 |\Xi(x + iy) - F(x + iy, 0)| \, dx \\
+ \limsup_{y \to 0} \int_0^1 |F(x + iy, 0) - F_\varepsilon(x + iy, 0)| \, dx.
\]

(7.8)

The first term is bounded by (7.6) and the second term converges to (7.7) by Theorem 6.1 since \(|F - F_\varepsilon| \in \mathcal{B}_\sigma (\mathcal{M}_N) \).

8 Limit theorems for almost modular functions

In this section, we follow Bleher’s approach [1] for almost periodic functions. The main difference is that the equidistribution of irrational translations on tori is replaced by the equidistribution of closed horocycles on \(\mathcal{M}_N \).

Proposition 8.1. If \(\Xi \in \mathcal{B}^p \) and the approximants in Definition 7.1 satisfy

\[
\frac{1}{\mu(\mathcal{M}_N)} \int_{\mathcal{M}_N} |F_\varepsilon| \, d\mu \leq R
\]

(8.1)

for some constant \(R > 0 \), then

\[
\|\Xi\|_{\mathcal{B}^p} := \left(\lim_{y \to 0} \int_0^1 |\Xi(x + iy)|^p \, dx \right)^{1/p}
\]

(8.2)

exists.
Proof. Minkowski’s inequality and (7.1) yield, for all $0 < y < y_0(\epsilon)$ small enough,
\[
\left(\int_0^1 |\Xi(x + iy)|^p \, dx \right)^{1/p} < \left(\int_0^1 |F_\epsilon(x + iy, 0)|^p \, dx \right)^{1/p} + \epsilon
\]
(8.3)
and also
\[
\left(\int_0^1 |F_\epsilon(x + iy, 0)|^p \, dx \right)^{1/p} < \left(\int_0^1 |\Xi(x + iy)|^p \, dx \right)^{1/p} + \epsilon.
\]
(8.4)
By Theorem 6.1, we then see that
\[
\limsup_{y \to 0} \left(\int_0^1 |\Xi(x + iy)|^p \, dx \right)^{1/p} \leq \left(\frac{1}{\mu(M_N)} \int_{M_N} |F_\epsilon|^p \, d\mu \right)^{1/p} + \epsilon,
\]
(8.5)
\[
\liminf_{y \to 0} \left(\int_0^1 |\Xi(x + iy)|^p \, dx \right)^{1/p} \geq \left(\frac{1}{\mu(M_N)} \int_{M_N} |F_\epsilon|^p \, d\mu \right)^{1/p} - \epsilon.
\]
With condition (8.1), the upper and lower limit are arbitrarily close to the same constant $\leq R < \infty$.

Theorem 8.2. Let $\Xi \in \mathcal{H}$. Then, for x uniformly distributed in $[0, 1)$, $\Xi(x + iy)$ has a limit distribution as $y \to 0$. That is, there exists a probability measure ν_Ξ on \mathbb{C} such that, for every bounded continuous function $g : \mathbb{C} \to \mathbb{C}$,
\[
\lim_{y \to 0} \int_0^1 g(\Xi(x + iy)) \, dx = \int_{\mathbb{C}} g(w) \nu_\Xi(\, dw). \tag{8.6}
\]

We split the proof into two lemmas. We denote by ρ_y the distribution of the random variable $\Xi(x + iy)$, where y is fixed and x is uniformly distributed in $[0, 1)$. We need to show that ρ_y converges weakly to some probability measure ν_Ξ.

Lemma 8.3. The family $(\rho_y : 0 < y \leq 1)$ is relatively compact. (I.e., every sequence of ρ_y has a weakly convergent subsequence.)

Proof. We need to show that the family is tight, that is, for every $\epsilon > 0$, there is a constant $K_\epsilon > 0$ such that
\[
\int_{|w| > K_\epsilon} \rho_y(\, dw) = \left| \left\{ x \in [0, 1) : |\Xi(x + iy)| > K_\epsilon \right\} \right| < \epsilon
\]
(8.7)
uniformly for $0 < y \leq 1$. To prove this, we start with the inequality
\[
\left| \left\{ x \in [0, 1) : |\Xi(x + iy)| > K_\epsilon \right\} \right|
\leq \left| \left\{ x \in [0, 1) : |F_\epsilon(x + iy, 0)| > K_\epsilon - 1 \right\} \right|
+ \left| \left\{ x \in [0, 1) : |\Xi(x + iy) - F_\epsilon(x + iy, 0)| \geq 1 \right\} \right|,
\]
(8.8)
where F_ε is an approximant as in Definition 7.2. So for the choice $K_\varepsilon = 1 + \sup_{M_N} F_\varepsilon$, the first term is not present. From (7.3), we have, for all $0 < y < y_1(\varepsilon)$ small enough,

$$\int_0^1 \min \{1, |\Xi(x + iy) - F_\varepsilon(x + iy, 0)|\} \, dx < \varepsilon,$$

which gives the desired upper bound for the second term in (8.8). In the range $y_1(\varepsilon) \leq y \leq 1$, relation (8.7) follows simply from the measurability of $\Xi(\cdot + iy)$. So (8.7) indeed holds uniformly for $0 \leq y \leq 1$.

The lemma now follows from the Helly-Prokhorov theorem [21] which asserts that every tight family is relatively compact.

Lemma 8.4. For every $g \in C_0^\infty(\mathbb{C})$, the limit

$$I(g) := \lim_{y \to 0} \int_0^1 g(\Xi(x + iy)) \, dx$$

exists.

Proof. Since $g \in C_0^\infty(\mathbb{C})$, we have

$$|g(w) - g(w')| \leq C \min \{1, |w - w'|\}$$

for some $C > 0$. Hence

$$\int_0^1 |g(\Xi(x + iy)) - g(F_\varepsilon(x + iy, 0))| \, dx$$

$$\leq C \int_0^1 \min \{1, |\Xi(x + iy) - F_\varepsilon(x + iy, 0)|\} \, dx < C\varepsilon$$

for $y < y_1(\varepsilon)$, as in (8.9).

Next we observe that, since $g \circ F_\varepsilon \in B_0(M_N)$, Theorem 6.1 says that the sequence

$$\int_0^1 g(F_\varepsilon(x + iy, 0)) \, dx$$

converges as $y \to 0$ and is therefore a Cauchy sequence. So for all $0 < y', y'' < y_2(\varepsilon, F_\varepsilon)$ small enough, we have

$$\left| \int_0^1 g(F_\varepsilon(x + iy', 0)) \, dx - \int_0^1 g(F_\varepsilon(x + iy'', 0)) \, dx \right| < \varepsilon.$$
Almost Modular Functions and \(n^2 \times \text{Modulo One} \)

Together with (8.12), this yields
\[
\left| \int_0^1 g(\Xi(x + iy')) \, dx - \int_0^1 g(\Xi(x + iy'')) \, dx \right| < (2C + 1)\varepsilon,
\] (8.15)
for \(0 < y', y'' < \min\{y_1(\varepsilon), y_2(\varepsilon, F_\varepsilon)\} \), and thus \(\int_0^1 g(\Xi(x + iy)) \, dx \) is a Cauchy sequence.

Proof of Theorem 8.2. For \(g \in C_0^\infty(\mathbb{C}) \), Lemma 8.3 shows that the limit in Lemma 8.4 is
\[
I(g) = \int_{\mathbb{C}} g(w) \nu_{\Xi}(dw).
\] (8.16)
The theorem now follows for more general bounded continuous \(g \) from a standard approximation argument.

9 Shale-Weil representation and theta sums

For every \(g \in \text{SL}(2, \mathbb{R}) \), we have the unique Iwasawa decomposition
\[
g = n_x a_y k_\phi = (z, \phi),
\] (9.1)
where \(z = x + iy \in \mathfrak{h}, \phi \in [0, 2\pi) \),
\[
n_x = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \quad a_y = \begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix}, \quad k_\phi = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}.
\] (9.2)

This can be extended to an Iwasawa decomposition of \(\tilde{\text{SL}}(2, \mathbb{R}) \), which of course corresponds to the parametrization introduced after (5.3). We have, for any element \(M = [g, \beta_g] \in \tilde{\text{SL}}(2, \mathbb{R}) \),
\[
M = [g, \beta_g] = N_x A_y K_\phi = [n_x, 0] [a_y, 0] [k_\phi, \beta_\phi].
\] (9.3)

The Shale-Weil representation is usually defined as a projective representation of \(\text{SL}(2, \mathbb{R}) \), which becomes a true representation on the metaplectic (i.e., double) cover of \(\text{SL}(2, \mathbb{R}) \). Therefore it is also a proper representation of the universal cover \(\tilde{\text{SL}}(2, \mathbb{R}) \). In view of the decomposition (9.3), it is sufficient to define the representation on the three factors. For any Schwartz function \(f \in \mathcal{S}(\mathbb{R}) \), we set (cf. [12])
\[
[R(N_x)f](t) = e(t^2x)f(t), \quad [R(A_y)f](t) = y^{1/4}f(y^{1/2}t), \quad [R(k_\phi)f](t) = e^{-t^2}(\cos \phi t - \sin \phi t).
\] (9.4)
and

$$\left[R(K_\phi)f \right](t) = \begin{cases} e \left(-\frac{\sigma_\phi}{8} \right) f(t) & (\phi = 0 \mod 2\pi), \\ e \left(-\frac{\sigma_\phi}{8} \right) f(-t) & (\phi = \pi \mod 2\pi), \\ e \left(-\frac{\sigma_\phi}{8} \right) 2^{1/2} \sin \phi |^{1/2} \int_\mathbb{R} e \left(\frac{(t^2 + t'^2) \cos \phi - tt'}{\sin \phi} \right) f(t') dt' & (\phi \neq 0 \mod \pi), \end{cases}$$

(9.5)

where

$$\sigma_\phi = \begin{cases} 2\nu & \text{if } \phi = \nu\pi, \\ 2\nu + 1 & \text{if } \nu\pi < \phi < (\nu + 1)\pi. \end{cases}$$

(9.6)

For \(f \in S(\mathbb{R}) \) and \((z, \phi) \in \mathcal{H} \times \mathbb{R} \simeq \tilde{\text{SL}}(2, \mathbb{R})\), we define the \textit{theta sum} by

$$\Theta_f(z, \phi) := \Theta_f(M) := \sum_{n \in \mathbb{Z}} \left[R(M)f \right](n),$$

(9.7)

with \(M = N_\chi A_y K_\phi \). More explicitly,

$$\Theta_f(z, \phi) = y^{1/4} \sum_{n \in \mathbb{Z}} f_\phi(ny^{1/2}) e(n^2 \chi),$$

(9.8)

where \(f_\phi = R(K_\phi)f \).

Using integration by parts, one finds that for any \(T > 1 \), there is a constant \(c_T \) such that for all \(t \in \mathbb{R}, \phi \in \mathbb{R} \), we have

$$|f_\phi(t)| \leq c_T (1 + |t|)^{-T}. \quad (9.9)$$

The series in (9.7) and (9.8) converges therefore rapidly and uniformly for \((z, \phi)\) with \(z\) in any compact set in \(\mathcal{H}\).

It is well known that \(\Theta_f \) is invariant under the discrete subgroup \(\Delta_1(4) \) (see, e.g., [14, Proposition 3.1]), that is,

$$\Theta_f(\gamma M) = \Theta_f(M), \quad (9.10)$$

for all \(\gamma \in \Delta_1(4) \). We may therefore view \(\Theta_f \) as a smooth function on the manifold \(\mathcal{M}_4 \).

\textbf{Proposition 9.1.} If \(f \in S(\mathbb{R}) \), then \(\Theta_f \in B_{1/4}(\mathcal{M}_4) \). \(\square \)
Proof. The manifold \mathcal{M}_4 has three cusps at $z = 0, 1/2$ and ∞. We have the bounds (cf. [14, Proposition 3.2])

$$\Theta_f(z, \phi) = \begin{cases}
 e^{i\pi/4} f_{\phi_0}(0) y_0^{1/4} + O_T(y_0^{-T}) & (y_0 \geq 1), \\
 O_T(y_{1/2}^{-T}) & (y_{1/2} \geq 1), \\
 f_{\phi_{\infty}}(0) y_{\infty}^{1/4} + O_T(y_{\infty}^{-T}) & (y_{\infty} \geq 1),
\end{cases} \quad (9.11)$$

for any $T > 1$, with the cuspidal coordinates

$$(z_0, \phi_0) = (- (4z)^{-1}, \phi + \arg z),$$

$$(z_{1/2}, \phi_{1/2}) = (-(4z - 2)^{-1}, \phi + \arg \left(z - \frac{1}{2}\right)), \quad (9.12)$$

$$(z_{\infty}, \phi_{\infty}) = (z, \phi).$$

10 Smoothed error terms

We will now construct functions $E_{f, \psi}$ on \mathcal{M}_N which represent smoothed error terms. For real-valued $f \in S(\mathbb{R})$ and $\psi \in C^\infty(S^1)$ with $\hat{\psi}_0 = 0$ and only finitely many Fourier coefficients nonzero, put

$$E_{f, \psi}(z, 0) = \frac{1}{2} y^{1/4} \sum_{n \in \mathbb{Z}} f(ny^{1/2}) \psi(n^2 x). \quad (10.1)$$

The building blocks of $E_{f, \psi}$ are theta sums. It is easily seen that we have the expansion

$$E_{f, \psi}(z, 0) = \frac{1}{2} \sum_{k \neq 0} \hat{\psi}_k \Theta_f(kx + iy, 0). \quad (10.2)$$

The following theorem tells us that $E_{f, \psi}(z, 0)$ can be extended to values $\phi \neq 0$, yielding a smooth function on \mathcal{M}_N of moderate growth in the cusps.

Theorem 10.1. Let $f \in S(\mathbb{R})$ and $\psi \in C^\infty(S^1)$ with $\hat{\psi}_k \neq 0$ only if $0 < |k| \leq K$, for some integer K. Then there is a function $E_{f, \psi} \in B_{1/4}(\mathcal{M}_N)$ with $N = 4 \text{lcm}(2, 3, \ldots, K)$ such that

$$E_{f, \psi}(z, 0) = \frac{1}{2} y^{1/4} \sum_{n \in \mathbb{Z}} f(ny^{1/2}) \psi(n^2 x). \quad (10.3)$$
Proof. We can write \(E_{f,\psi}(z, \phi) = E_{f,\psi}^+(z, \phi) + E_{f,\psi}^-(z, \phi) \), where

\[
E_{f,\psi}^+(z, 0) = \frac{1}{2} \sum_{k > 0} \hat{\psi}_k \Theta_f(kx + iy, 0),
\]

\[
E_{f,\psi}^-(z, 0) = \frac{1}{2} \sum_{k > 0} \hat{\psi}_{-k} \Theta_f(kx + iy, 0).
\]

Since \(N_{kx} = A_k N_x A_k^{-1} \), we find

\[
\Theta_f(kx + iy, 0) = \sum_{n \in \mathbb{Z}} [R(N_{kx}A_y)f](n) = \sum_{n \in \mathbb{Z}} [R(A_kN_xA_yA_k^{-1})f](n).
\]

We extend (10.5) to \(\phi \neq 0 \) by setting

\[
\Theta_f^{(k)}(z, \phi) := \Theta_f^{(k)}(M) := \Theta_f(A_kMA_k^{-1}),
\]

where \(M = N_xA_yK_\phi \). The invariance of \(\Theta_f \) under \(\Delta_1(4) \) implies that

\[
\Theta_f^{(k)}(\gamma M) = \Theta_f^{(k)}(M)k,
\]

for all \(\gamma \in A_k^{-1}\Delta_1(4)A_k \), and hence for all \(\gamma \in \Delta_1(4k) \), recall Lemma 5.1(b). The functions

\[
E_{f,\psi}^+(M) = \frac{1}{2} \sum_{k > 0} \hat{\psi}_k \Theta_f^{(k)}(M), \quad E_{f,\psi}^-(M) = \frac{1}{2} \sum_{k > 0} \hat{\psi}_{-k} \Theta_f^{(k)}(M)
\]

are therefore invariant under the group

\[
\bigcap_{k=1}^{K} \Delta_1(4k),
\]

which contains \(\Delta_1(N) \) with \(N = 4 \text{lcm}(2, 3, \ldots, K) \) (see Lemma 5.1(c)).

The bound (6.1) on the growth of \(E_{f,\psi} \) in the cusps follows from (9.11) and the fact that \(E_{f,\psi} \) is a finite linear combination of theta sums. (The implied constant in (6.1) may depend on \(K \).)

Lemma 10.2. With \(f, \psi \) as in Theorem 10.1,

\[
E_{f,\psi}(z, \phi + \pi) = -i(E_{f,\psi}^+(z, \phi) - E_{f,\psi}^-(z, \phi)).
\]

Note that this implies in particular \(E_{f,\psi}(z, \phi + 2\pi) = -E_{f,\psi}(z, \phi) \).
Almost Modular Functions and \(n^2 \times \text{Modulo One} \)

Proof. We have \(f_{\phi+\pi}(t) = -if_{\phi}(-t) \) (compare (9.5)) and thus

\[
\Theta_f^{(k)}(z, \phi + \pi) = -i\Theta_f^{(k)}(z, \phi).
\]

(10.11)

The lemma follows from (10.8).

\[\square\]

11 Error terms are almost modular

The central observation of our investigation is that the original error term \(\Xi_{f, \psi} \) introduced in (2.2) is an almost modular function.

Theorem 11.1. If \(f \in PC_\infty^\infty(\mathbb{R}_+) \) and if \(\psi \in L^2(S^1) \) satisfies conditions (2.4) and (2.5), then \(\Xi_{f, \psi} \in B^2 \).

Proof. The aim is to apply Lemma 4.1. Suppose that the largest jump at a discontinuity of \(f \) is \(D = \sup_{t \in \mathbb{R}_+} |f(t + 0) - f(t - 0)| \). We can now approximate \(f \) by an even function \(f_\varepsilon \in C_0^\infty(\mathbb{R}) \) so that \(\sup_{t \in \mathbb{R}_+} |f(t) - f_\varepsilon(t)| \leq D \) and \(\text{supp}(f-f_\varepsilon) \) is arbitrarily small; here \(f_\varepsilon \) denotes the restriction of \(f_\varepsilon \) to \(\mathbb{R}_+ \). Similarly, the function

\[
\psi_\varepsilon(x) = \sum_{0 < |k| \leq K} \hat{\psi}_k e(kx)
\]

(11.1)

approximates \(\psi \) arbitrarily well in the \(L^2 \) norm, for \(K \) large enough. At the same time, \(C(\psi - \psi_\varepsilon) \) in (2.5) is independent of \(K \) since

\[
|\hat{\psi}_k - \hat{\psi}_{k, \varepsilon}| \leq \frac{C(\psi)}{|k|^\beta}.
\]

(11.2)

This allows us to choose \(C(\psi - \psi_\varepsilon) = C(\psi) \). Hence for any \(\varepsilon > 0 \), we can find approximants \(f_\varepsilon, \psi_\varepsilon \) such that

\[
\sup ((f-f_\varepsilon)^2) \text{supp}_{(f-f_\varepsilon)} \left|\left|\psi\right|\right|^2 + K_\beta C(\psi) \|\psi\|_2 < \left(\frac{\varepsilon}{2}\right)^2,
\]

\[
\sup (f^2) \text{supp}_{f} \left|\left|\psi - \psi_\varepsilon\right|\right|^2 + K_\beta C(\psi - \psi_\varepsilon) \|\psi - \psi_\varepsilon\|_2 < \left(\frac{\varepsilon}{2}\right)^2.
\]

(11.3)

Now \(f_\varepsilon, \psi_\varepsilon \) also satisfy the conditions of Theorem 10.1, so

\[
E_{f_\varepsilon, \psi_\varepsilon}(z, 0) = \frac{1}{2} y^{1/4} \sum_{n \in \mathbb{Z}} f_\varepsilon(ny^{1/2}) \psi_\varepsilon(n^2x)
\]

(11.4)

can be extended to \(\phi \neq 0 \) to yield a function \(E_{f_\varepsilon, \psi_\varepsilon} \in B_{1/4}((\Re(N)) \). If we set \(y = N^{-2} \), the theorem follows from Lemma 4.1 (compare Definition 7.1).

\[\square\]
Proof of Theorem 2.1. Since the error term is almost modular of class \mathcal{B}^2 (Theorem 11.1), Theorem 2.1 is a special case of Theorem 8.2. The symmetry of the limit distribution is a consequence of the observation after Lemma 10.2.

Appendix

Generalized quadratic residue symbol

For any integer x and any prime p, the standard quadratic residue symbol $(\frac{x}{p})$ is 1 if x is a square modulo p, and -1 otherwise. The generalized quadratic residue symbol $(\frac{a}{b})$ is, for any integer a and any odd integer b, characterized by the following properties (see [12, pages 160–161]):

(i) $(\frac{a}{b}) = 0$ if gcd$(a, b) \neq 1$,
(ii) $(\frac{a}{b}) = \text{sgn} a$,
(iii) if $b > 0$, $b = \prod b_i$, b_i primes (not necessarily distinct), then $(\frac{a}{b}) = \prod (\frac{a}{b_i})$,
(iv) $(\frac{-a}{b}) = (\frac{a}{b})$,
(v) $(\frac{0}{b}) = 1$.

It follows from these properties that the symbol is bimultiplicative

$$(\frac{a_1 a_2}{b}) = (\frac{a_1}{b}) (\frac{a_2}{b}), \quad (\frac{a}{b_1 b_2}) = (\frac{a}{b_1}) (\frac{a}{b_2}). \quad (A.1)$$

Furthermore, if $b > 0$, then $(\frac{a}{b})$ defines a character modulo b; if $a \neq 0$, then $(\frac{a}{b})$ defines a character modulo $4a$.

Acknowledgments

I would like to thank Z. Rudnick and A. Strömbergsson for very helpful discussions. This research has been supported by an EPSRC Advanced Research Fellowship, the Nuffield Foundation (Grant NAL/00351/G), and the EC Research Training Network (Mathematical Aspects of Quantum Chaos) HPRN-CT-2000-00103.

References

[2] ———, *Trace formula for quantum integrable systems, lattice-point problem, and small divisors*, Emerging Applications Of Number Theory (Minneapolis, Minn, 1996) (D. A. Hejhal,

Jens Marklof: School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
E-mail address: j.marklof@bristol.ac.uk