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Almost Modular Functions and the Distribution

of n2xModulo One

Jens Marklof

1 Introduction

It is well known that the sequence n2x with n = 1, 2, 3, 4, . . . is equidistributed modulo

one if x is irrational [22]. This means that, for every piecewise smooth function ψ of the

circle S1 = R/Z to C, we have

1

N

N∑
n=1

ψ
(
n2x

) −→ ∫1
0

ψ(t)dt (1.1)

in the limitN → ∞. Interesting choices for ψ are as follows:

(a) ψ(t) = χ[a,b](t), where χ[a,b] is the indicator function of the interval [a, b] + Z

on S1, with (b− a) ≤ 1;
(b) ψ(t) = {t}, where {t} is the fractional part of t;

(c) ψ(t) = e(t) := exp(2πit), leading to theta sums studied in [6, 7, 8, 14, 15];

(d) ψ(t) = log(1 − Ze(−t)), for some Z ∈ C, with |Z| = 1, and the sum in (1.1) be-

comes the logarithm of the polynomial

PN(Z) :=

N∏
n=1

(
1− Ze

(
− n2x

))
. (1.2)

The main objective of this work is to show that, for x uniformly distributed in [0, 1], the
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fluctuations of the error term

Exψ(N) :=

N∑
n=1

ψ
(
n2x

)
−N

∫1
0

ψ(t)dt, (1.3)

normalized by 1/
√
N, have a limit distribution as N → ∞, that is, there is a probability

measure νψ on C such that, for every bounded continuous function g : C → C, we have

lim
N→∞

∫1
0

g

(
Exψ(N)√
N

)
dx =

∫
C

g(w)νψ(dw). (1.4)

The limit distribution can be expressed in terms of an almost modular function; in par-

ticular, it does not fall into the family of the classical stable limit laws. This is in con-

trast to the limit distribution of the error term for lacunary sequences, say 2nxmod 1,

which is normal [9] (this result may in fact be viewed as a special case of the central

limit theorem for dynamical systems [3]). Interestingly, the error term for the linear se-

quence nx + ymod 1, with x, y ∈ [0, 1] random, has a limit distribution for the test func-

tion ψ = χ[a,b] which is Cauchy and thus again stable [10, 11] (the normalization here is

1/ logN, not 1/
√
N).

It is very likely that the limit distribution of the error term of n2x mod 1 follows

a stable limit law if the interval [a, b] is no longer fixed but shrinks with N → ∞. Of

particular interest is the case when (b−a) is of the order of the mean spacing 1/N, where

one expects a Poissonian limit distribution for the number of elements in [a, b] (see [16,

17, 18] for details).

A nongeneric limit distribution has been observed as well for the error term in

the classical circle problem [5] and more general lattice point counting problems in the

plane [1, 2]. The limit distribution is, in these cases, given by almost periodic functions.

Our proof of the limit theorem for almost modular functions in Section 8 is in fact mod-

elled on that for almost periodic functions in [1].

2 Main results

It is natural to consider more general sums of the form

1√
N

∞∑
n=1

f

(
n

N

)
ψ
(
n2x

)
, (2.1)

where f is a piecewise smooth cutoff function with compact support.
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We think of the error term as a function Ξf,ψ : C → C, where

Ξf,ψ(x+ iy) = y1/4
∞∑
n=1

f
(
ny1/2

)
ψ
(
n2x

)
, (2.2)

and y = N−2.

Take ψ ∈ L2(S1) real- or complex-valued with Fourier coefficients

ψ̂k =

∫1
0

ψ(t)e(−kt)dt. (2.3)

We assume in the following that (without loss of generality)

ψ̂0 = 0, (2.4)

and that there are constants β > 1/2 and C(ψ) > 0 such that

∣∣ψ̂k∣∣ ≤ C(ψ)
|k|β

, (2.5)

for all k �= 0. These conditions are clearly satisfied for the examples (a), (b), (c), and (d)

listed above.

We furthermore assume that f ∈ PCr0(R+), the space of piecewise Cr functions

f : R+ → R with compact support suppf (R+ includes the origin). Piecewise Cr means as

usual that suppf can be decomposed into finitely many intervals on each of which f is Cr

and bounded.

For x uniformly distributed in [0, 1), Ξf,ψ(x+ iy) can be viewed as a family of ran-

dom variables (parametrized by y) which are centered at expectation, that is,

∫1
0

Ξf,ψ(x+ iy)dx = 0. (2.6)

We will see in Section 4 that the variance has a limit

lim
y→0

∫1
0

∣∣Ξf,ψ(x+ iy)
∣∣2dx = σ2(f, ψ), (2.7)

where

σ2(f, ψ) =

∞∑
p,q=1

gcd(p,q)=1

∫∞
0

f(pr)f(qr)dr
∫1
0

ψ
(
p2x

)
ψ
(
q2x

)
dx. (2.8)

Our main result is the following.
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Theorem 2.1. Let f ∈ PC∞
0 (R+) and ψ ∈ L2(S1) satisfying (2.4) and (2.5). Then, for x

uniformly distributed in [0, 1), Ξf,ψ(x+ iy) has a limit distribution as y → 0. That is, there

exists a probability measure νf,ψ on C such that, for any bounded continuous function

g : C → C,

lim
y→0

∫1
0

g
(
Ξf,ψ(x+ iy)

)
dx =

∫
C

g(w)νf,ψ(dw). (2.9)

Furthermore, νf,ψ is symmetric with respect tow �→ −w. �

By establishing that Ξf,ψ is almost modular (Section 11), this theorem follows

directly from the limit theorem for almost modular functions (Section 8).

3 Decay of correlations

Lemma 3.1. For ψ ∈ L2(S1) with (2.4) and (2.5),

∣∣∣∣ ∫1
0

ψ(ax)ψ(bx)dx
∣∣∣∣ ≤√2ζ(2β)C(ψ)‖ψ‖2 gcd(a, b)β

bβ
, (3.1)

for all a, b ∈ N. (Here ζ denotes the Riemann zeta function.) �

Proof. Put p = a/gcd(a, b) and q = b/gcd(a, b). Then gcd(p, q) = 1, and we have further-

more

∫1
0

ψ(ax)ψ(bx)dx =

∫1
0

ψ(px)ψ(qx)dx. (3.2)

Since ψ ∈ L2(S1) and gcd(p, q) = 1, we have

∫1
0

ψ(px)ψ(qx)dx =
∑
k,l�=0
kp=lq

ψ̂kψ̂l =
∑
r �=0

ψ̂rqψ̂rp. (3.3)

By the Cauchy-Schwartz inequality, the modulus of this last expression is less than or

equal to

(∑
r �=0

∣∣ψ̂rq∣∣2
)1/2(∑

r �=0

∣∣ψ̂rp∣∣2
)1/2

≤ C(ψ)
qβ

(∑
r �=0

|r|−2β

)1/2∥∥ψ∥∥
2
, (3.4)

which proves the claim. �
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Of course equation (3.3) also implies the bound∣∣∣∣ ∫1
0

ψ(ax)ψ(bx)dx
∣∣∣∣ ≤ 2ζ(2β)C(ψ)2

gcd(a, b)2β

(ab)β
(3.5)

which decays faster for a, b large. This, however, will be of no direct advantage, and the

explicit dependence on ‖ψ‖2 in Lemma 3.1 will make the argument more transparent.

4 The variance

Lemma 4.1. There is a constant Kβ > 0 such that

lim sup
N→∞

1

N

∫1
0

∣∣∣∣∣
∞∑
n=1

f

(
n

N

)
ψ
(
n2x

)∣∣∣∣∣
2

dx ≤ sup
(
f2
)∣∣ suppf

∣∣(‖ψ‖22 + KβC(ψ)‖ψ‖2
)
(4.1)

holds uniformly for all f ∈ PC0(R+) and all ψ ∈ L2(S1), satisfying (2.4) and (2.5). �

Proof. We have

∫1
0

∣∣∣∣∣
∞∑
n=1

f

(
n

N

)
ψ
(
n2x

)∣∣∣∣∣
2

dx

=

∞∑
n=1

f

(
n

N

)2
‖ψ‖22 + 2Re

∑
1≤m<n

f

(
m

N

)
f

(
n

N

) ∫1
0

ψ
(
m2x

)
ψ
(
n2x

)
dx

(4.2)

since ∫1
0

ψ
(
n2x

)
ψ
(
n2x

)
dx = ‖ψ‖22. (4.3)

For x ∈ R and S ⊂ R, denote by xS the set {xy : y ∈ S}. For the first term in (4.2), we then

have ∣∣∣∣∣
∞∑
n=1

f

(
n

N

)2∣∣∣∣∣ ≤ sup
(
f2
)
#

{
n ∈ N ∩N suppf

} ≤ sup
(
f2
)
N
∣∣ suppf

∣∣+Of(1). (4.4)

We rewrite the second term in (4.2) as

2Re
∑

1≤p<q
gcd(p,q)=1

∞∑
r=1

f

(
pr

N

)
f

(
qr

N

) ∫1
0

ψ
(
r2p2x

)
ψ
(
r2q2x

)
dx

= 2Re
∑

1≤p<q
gcd(p,q)=1

∞∑
r=1

f

(
pr

N

)
f

(
qr

N

) ∫1
0

ψ
(
p2x

)
ψ
(
q2x

)
dx.

(4.5)
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Now ∣∣∣∣∣
∞∑
r=1

f

(
pr

N

)
f

(
qr

N

)∣∣∣∣∣ ≤ sup
(
f2
)
#

{
r ∈ N ∩

(
N

p
suppf

)
∩
(
N

q
suppf

)}

≤ sup
(
f2
)
#

{
r ∈ N ∩

(
N

q
suppf

)}

≤ sup

(
f2
)N
q

∣∣ suppf
∣∣+Of(1) if q ≤ N	(f),

= 0 if q > N	(f),

(4.6)

where 	(f) is the length of the shortest interval containing suppf. The modulus of (4.5) is

thus less than or equal to

2N sup
(
f2
)∣∣ suppf

∣∣ ∑
1≤p<q≤N�(f)

gcd(p,q)=1

1

q

∣∣∣∣ ∫1
0

ψ
(
p2x

)
ψ
(
q2x

)
dx

∣∣∣∣
+ 2Of(1)

∑
1≤p<q≤N�(f)

gcd(p,q)=1

∣∣∣∣ ∫1
0

ψ
(
p2x

)
ψ
(
q2x

)
dx

∣∣∣∣.
(4.7)

By Lemma 3.1, we have for the first sum

∑
1≤p<q≤N�(f)

gcd(p,q)=1

1

q

∣∣∣∣ ∫1
0

ψ
(
p2x

)
ψ
(
q2x

)
dx

∣∣∣∣ ≤√2ζ(2β)C(ψ)‖ψ‖2
∑

1≤p<q
gcd(p,q)=1

1

q1+2β
, (4.8)

which converges for β > 1/2. Similarly, for the second sum in (4.7), assuming, without

loss of generality, that 1/2 < β < 1,

∑
1≤p<q≤N�(f)

gcd(p,q)=1

∣∣∣∣ ∫1
0

ψ
(
p2x

)
ψ
(
q2x

)
dx

∣∣∣∣ ≤√2ζ(2β)C(ψ)‖ψ‖2
∑

1≤p<q≤N�(f)
gcd(p,q)=1

1

q2β

≤ C(ψ)‖ψ‖2Oβ
((
N	(f)

)2−2β)
.

(4.9)

�

Lemma 4.2. Let f ∈ PC0(R+) and ψ ∈ L2(S1), satisfying (2.4) and (2.5). Then

lim
N→∞

1

N

∫1
0

∣∣∣∣∣
∞∑
n=1

f

(
n

N

)
ψ
(
n2x

)∣∣∣∣∣
2

dx = σ2(f, ψ), (4.10)

with

σ2(f, ψ) =

∞∑
p,q=1

gcd(p,q)=1

∫∞
0

f(pr)f(qr)dr
∫1
0

ψ
(
p2x

)
ψ
(
q2x

)
dx. (4.11)

�
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Proof. We have

1

N

∫1
0

∣∣∣∣∣
∞∑
n=1

f

(
n

N

)
ψ
(
n2x

)∣∣∣∣∣
2

dx =

∞∑
p,q=1

gcd(p,q)=1

aN(p, q), (4.12)

with

aN(p, q) =
1

N

∞∑
r=1

f

(
pr

N

)
f

(
qr

N

) ∫1
0

ψ
(
p2x

)
ψ
(
q2x

)
dx. (4.13)

Next

lim
N→∞

1

N

∞∑
r=1

f

(
pr

N

)
f

(
qr

N

)
=

∫∞
0

f(pr)f(qr)dr, (4.14)

for p, q fixed, implies

lim
N→∞ aN(p, q) = a(p, q) :=

∫∞
0

f(pr)f(qr)dr
∫1
0

ψ
(
p2x

)
ψ
(
q2x

)
dx. (4.15)

It follows from the proof of Lemma 4.1 that there is a function g(p, q) such that

∣∣aN(p, q)
∣∣ ≤ g(p, q),

∞∑
p,q=1

gcd(p,q)=1

g(p, q) < ∞. (4.16)

Hence the dominated convergence theorem yields

lim
N→∞

∞∑
p,q=1

gcd(p,q)=1

aN(p, q) =

∞∑
p,q=1

gcd(p,q)=1

a(p, q). (4.17)

�

5 Universal cover of SL(2,R) and discrete subgroups

The action of SL(2,R) on the upper half plane H = {z ∈ C : Im z > 0} is given by fractional

linear transformations, that is,

g : z �−→ gz =
az+ b

cz+ d
, g =

(
a b

c d

)
∈ SL(2,R). (5.1)

We can define the continuous function εg : H → C by εg(z) = (cz + d)/|cz + d|. One easily

verifies that εgh(z) = εg(hz) εh(z). In the following, we will denote by C(H) the space of
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continuous functions H → C. The universal covering group of SL(2,R) is defined as the

set

S̃L(2,R) =
{[
g, βg

]
: g ∈ SL(2,R), βg ∈ C(H) such that eiβg(z) = εg(z)

}
, (5.2)

with multiplication law

[
g, β1g

][
h,β2h

]
=
[
gh, β3gh

]
, β3gh(z) = β1g(hz) + β2h(z). (5.3)

We may identify S̃L(2,R) with H×R via [g, βg] �→ (z, φ) = (gi, βg(i)). The action of S̃L(2,R)

on H × R is then canonically defined by [g, βg](z, φ) = (gz,φ + βg(z)). The Haar measure

of S̃L(2,R) reads, in this parametrization,

dµ(g) =
dxdydφ

y2
. (5.4)

For any integerm > 0, put

Zm =
〈[

− 1, β−1

]m〉
, with β−1(z) = π, (5.5)

that is, Zm is the subgroup generated by the element [−1, β−1]m. The subgroup Zm is

contained in the center of S̃L(2,R), and it is easily seen that PSL(2,R) is isomorphic to

S̃L(2,R)/Z1, and SL(2,R) is isomorphic to S̃L(2,R)/Z2.

For any positive integerN, we define the congruence subgroups of SL(2,Z):

Γ1(N) =

{(
a b

c d

)
∈ SL(2,Z) : a ≡ d ≡ 1, c ≡ 0modN

}
, (5.6)

and the following lift to the universal cover (assume nowN is divisible by 4):

∆1(N) =
{[
γ,βγ

]
: γ ∈ Γ1(N), βγ ∈ C(H) such that eiβγ(z)/2 = jγ(z)

}
, (5.7)

where

jγ(z) =

(
c

d

)(
cz+ d

|cz+ d|

)1/2
, γ =

(
a b

c d

)
∈ Γ1(4). (5.8)

Here z1/2 denotes the principal branch of the square root of z, that is, the one for which

−π/2 < arg z1/2 ≤ π/2; and ( c
d
) denotes the generalized quadratic residue symbol (see

Appendix for details).
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It is well known that jγ forms a multiplier system for Γ1(4), that is, jγη(z) =

jγ(ηz)jη(z) for all γ, η ∈ Γ1(4) (and hence for all γ, η ∈ Γ1(N) ⊂ Γ1(4); recall that 4|N).

Therefore ∆1(N) is indeed a subgroup of S̃L(2,R) if 4|N.

We collect a few important properties which will be needed later on. For y > 0,

we define

ay =

(
y1/2 0

0 y−1/2

)
∈ SL(2,R), Ay =

[
ay, 0

] ∈ S̃L(2,R). (5.9)

Lemma 5.1. AssumeN,N1, andN2 are positive integers divisible by 4, and k is any pos-

itive integer. Then

(a) ∆1(N) is a finite index subgroup of ∆1(4);

(b) ∆1(4k) ⊂ A−1
k ∆1(4)Ak;

(c) ∆1(lcm(N1,N2)) ⊂ ∆1(N1) ∩ ∆1(N2);
(d) MN = ∆1(N)\S̃L(2,R) is a noncompact manifold of finite measure (with re-

spect to Haar measure µ). �

Proof. For any integer N ′ divisible by 4, ∆1(N ′) contains the subgroup Z4 = {[1, β1] :

β1(z) = 4πn,n ∈ Z}, and ∆1(N ′)/Z4 is isomorphic to Γ1(N ′). This proves (a).

A short calculation shows that

Ak

[(
a b

c d

)
, β

]
A−1
k =

[(
a kb

c/k d

)
, β̃

]
, (5.10)

with β̃(z) = β(z/k). Hence, if
(
a b
c d

) ∈ Γ1(4k), then ak
(
a b
c d

)
a−1
k =

(
a kb
c/k d

) ∈ Γ1(4). Second,

we need to show that

eiβ̃(z)/2 =

(
(c/k)
d

)(
(c/k)z+ d∣∣(c/k)z+ d

∣∣
)1/2

(5.11)

holds. To this end, note that

eiβ̃(z)/2 = eiβ(z/k)/2 =

(
c

d

)(
cz/k+ d

|cz/k+ d|

)1/2
(5.12)

and that (using multiplicativity)

(
c

d

)
=

(
(c/k)
d

)(
k

d

)
. (5.13)
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Now (k· ) is a character mod 4k and hence, for d ≡ 1mod 4k, we have

(
k

d

)
=

(
k

1

)
= 1. (5.14)

This proves (b). Statement (c) is clear. Since SL(2,R) is isomorphic to S̃L(2,R)/Z2, (d)

follows from its analog for Γ1(N)\ SL(2,R). �

Because Z4 is of index two in Z2,∆1(N)\S̃L(2,R) is in fact a double cover of Γ1(N)\

SL(2,R). A fundamental domain for the action of∆1(N) on H×R is F∆1(N) = FΓ1(N)×[0, 4π)

if FΓ1(N) is a fundamental region of Γ1(N) in H.

6 Equidistribution of closed horocycles

The manifold MN has a finite number of cusps which are represented by the set η1, . . . , ηκ

∈ Q ∪ ∞ on the boundary of H. Let γi ∈ PSL(2,R) be a fractional linear transformation

which maps the cusp at ηi to the standard cusp at ∞ of width one. Thus (zi, φi) = γ̃i(z, φ)

yields a new set of coordinates, where the ith cusp appears as a cusp at ∞, which is

invariant under (zi, φi) �→ (zi+ 1,φi). The variable yi = Im(γiz) measures the height into

the ith cusp.

For any σ ≥ 0, we denote by Bσ(MN) the class of functions F ∈ C(MN) such that,

for all i = 1, . . . , κ,

F(z, φ) = O
(
yσi
)
, yi −→ ∞, (6.1)

where the implied constant is independent of (z, φ). In view of the form of the invariant

measure (5.4), we note that Bσ(MN) ⊂ Lp(MN, µ) if σ < 1/p.

Theorem 6.1. Let 0 ≤ σ < 1. Then, for every F ∈ Bσ(MN),

lim
y→0

∫1
0

F(x+ iy, 0)dx =
1

µ
(
MN

) ∫
MN

F dµ. (6.2)

�

Proof. There are several ways to prove this theorem. One possibility is to use Eisenstein

series of half-integral weight as in [15] which is based on Sarnak’s approach [19]. The

second variant is to use the mixing property of the flow

Φt : S̃L(2,R) −→ S̃L(2,R), g �−→ g

(
e−t/2 0

0 et/2

)
(6.3)
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as in [4]. A further possibility is to quote Shah’s theorem [20] on the distribution of trans-

lates of unipotent orbits. All three methods assume that F is bounded. The extension to

F ∈ Bσ(MN) is achieved by the argument given in [14, the proof of Proposition 4.3]. �

7 Almost modular functions

In the following, we will consider functions Ξ : H → C which are periodic, that is, for

which Ξ(z+ 1) = Ξ(z).

Definition 7.1. For any p ≥ 1, let Bp be the class of periodic functions Ξ : H → C with

the property that for every ε > 0, there are an integer N = N(ε) > 0 and a function

Fε ∈ Bσ(MN) with 0 ≤ σ < 1/p so that

lim sup
y→0

∫1
0

∣∣Ξ(x+ iy) − Fε(x+ iy, 0)
∣∣pdx < εp. (7.1)

We will see below that the error term (2.2) falls into the class B2. A further exam-

ple of an almost modular function of this type is

(Im z)1/4 log
∞∏
n=1

(
1− e

(
n2z

))
, (7.2)

which is discussed in more detail in [16].

Definition 7.2. Let H be the class of periodic functions Ξ : H → C with the property that

for every ε > 0, there are an integer N = N(ε) > 0 and a bounded continuous function

Fε ∈ C(MN) such that

lim sup
y→0

∫1
0

min
{
1,
∣∣Ξ(x+ iy) − Fε(x+ iy, 0)

∣∣}dx < ε. (7.3)

We will call functions in Bp or H almost modular functions of class Bp or H,

respectively.

Proposition 7.3. If 1 ≤ q ≤ p, then

Bp ⊂ Bq ⊂ H. (7.4)
�

Proof. Hölder’s inequality implies that if f ∈ Lr(S1), then f ∈ L1(S1) and
∫1
0

|f|dx ≤
(
∫1
0

|f|rdx)1/r. We put f(x) = |Ξ(x+ iy) − Fε(x+ iy, 0)|q and r = p/q. Then

∫1
0

∣∣Ξ(x+ iy) − Fε(x+ iy, 0)
∣∣qdx ≤ ( ∫1

0

∣∣Ξ(x+ iy) − Fε(x+ iy, 0)
∣∣pdx)q/p. (7.5)
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Therefore, if (7.1) holds for p, it also holds for q, in fact with the same ε and Fε.

To prove the second inclusion, it is enough to show that B1 ⊂ H. Hence assume

Ξ ∈ B1; we may then choose F ∈ Bσ(MN) so that

lim sup
y→0

∫1
0

∣∣Ξ(x+ iy) − F(x+ iy, 0)
∣∣dx < ε

2
. (7.6)

We furthermore find a bounded continuous Fε ∈ C(MN) such that

1

µ
(
MN

) ∫
MN

∣∣F− Fε
∣∣dµ < ε

2
. (7.7)

Then

lim sup
y→0

∫1
0

min
{
1,
∣∣Ξ(x+ iy) − Fε(x+ iy, 0)

∣∣}dx
≤ lim sup

y→0
∫1
0

∣∣Ξ(x+ iy) − F(x+ iy, 0)
∣∣dx

+ lim sup
y→0

∫1
0

∣∣F(x+ iy, 0) − Fε(x+ iy, 0)
∣∣dx.

(7.8)

The first term is bounded by (7.6) and the second term converges to (7.7) by Theorem 6.1

since |F− Fε| ∈ Bσ(MN). �

8 Limit theorems for almost modular functions

In this section, we follow Bleher’s approach [1] for almost periodic functions. The main

difference is that the equidistribution of irrational translations on tori is replaced by the

equidistribution of closed horocycles on MN.

Proposition 8.1. If Ξ ∈ Bp and the approximants in Definition 7.1 satisfy

1

µ
(
MN

) ∫
MN

∣∣Fε∣∣pdµ ≤ R (8.1)

for some constant R > 0, then

‖Ξ‖Bp :=

(
lim
y→0

∫1
0

∣∣Ξ(x+ iy)
∣∣pdx)1/p (8.2)

exists. �
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Proof. Minkowski’s inequality and (7.1) yield, for all 0 < y < y0(ε) small enough,( ∫1
0

∣∣Ξ(x+ iy)
∣∣pdx)1/p < ( ∫1

0

∣∣Fε(x+ iy, 0)
∣∣pdx)1/p + ε (8.3)

and also( ∫1
0

∣∣Fε(x+ iy, 0)
∣∣pdx)1/p < ( ∫1

0

∣∣Ξ(x+ iy)
∣∣pdx)1/p + ε. (8.4)

By Theorem 6.1, we then see that

lim sup
y→0

( ∫1
0

∣∣Ξ(x+ iy)
∣∣pdx)1/p < ( 1

µ
(
MN

) ∫
MN

∣∣Fε∣∣pdµ)1/p + ε,

lim inf
y→0

( ∫1
0

∣∣Ξ(x+ iy)
∣∣pdx)1/p > ( 1

µ
(
MN

) ∫
MN

∣∣Fε∣∣pdµ)1/p − ε.

(8.5)

With condition (8.1), the upper and lower limit are arbitrarily close to the same constant

≤ R < ∞. �

Theorem 8.2. Let Ξ ∈ H. Then, for x uniformly distributed in [0, 1), Ξ(x + iy) has a limit

distribution as y → 0. That is, there exists a probability measure νΞ on C such that, for

every bounded continuous function g : C → C,

lim
y→0

∫1
0

g
(
Ξ(x+ iy)

)
dx =

∫
C

g(w)νΞ(dw). (8.6)
�

We split the proof into two lemmas. We denote by ρy the distribution of the ran-

dom variable Ξ(x + iy), where y is fixed and x is uniformly distributed in [0, 1). We need

to show that ρy converges weakly to some probability measure νΞ.

Lemma 8.3. The family {ρy : 0 < y ≤ 1} is relatively compact. (I.e., every sequence of ρy

has a weakly convergent subsequence.) �

Proof. We need to show that the family is tight, that is, for every ε > 0, there is a constant

Kε > 0 such that∫
|w|>Kε

ρy(dw) =
∣∣{x ∈ [0, 1) :

∣∣Ξ(x+ iy)
∣∣ > Kε}∣∣ < ε (8.7)

uniformly for 0 < y ≤ 1. To prove this, we start with the inequality∣∣{x ∈ [0, 1) :
∣∣Ξ(x+ iy)

∣∣ > Kε}∣∣
≤ ∣∣{x ∈ [0, 1) :

∣∣Fε(x+ iy, 0)
∣∣ > Kε − 1

}∣∣
+
∣∣{x ∈ [0, 1) :

∣∣Ξ(x+ iy) − Fε(x+ iy, 0)
∣∣ ≥ 1}∣∣,

(8.8)
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where Fε is an approximant as in Definition 7.2. So for the choice Kε = 1 + supMN
Fε, the

first term is not present. From (7.3), we have, for all 0 < y < y1(ε) small enough,

∫1
0

min
{
1,
∣∣Ξ(x+ iy) − Fε(x+ iy, 0)

∣∣}dx < ε, (8.9)

which gives the desired upper bound for the second term in (8.8). In the range y1(ε) ≤
y ≤ 1, relation (8.7) follows simply from the measurability of Ξ(· + iy). So (8.7) indeed

holds uniformly for 0 ≤ y ≤ 1.
The lemma now follows from the Helly-Prokhorov theorem [21] which asserts

that every tight family is relatively compact. �

Lemma 8.4. For every g ∈ C∞
0 (C), the limit

I(g) := lim
y→0

∫1
0

g
(
Ξ(x+ iy)

)
dx (8.10)

exists. �

Proof. Since g ∈ C∞
0 (C), we have

∣∣g(w) − g(w ′)
∣∣ ≤ Cmin

{
1, |w−w ′|

}
(8.11)

for some C > 0. Hence

∫1
0

∣∣g(Ξ(x+ iy)
)

− g
(
Fε(x+ iy, 0)

)∣∣dx
≤ C

∫1
0

min
{
1,
∣∣Ξ(x+ iy) − Fε(x+ iy, 0)

∣∣}dx < Cε (8.12)

for y < y1(ε), as in (8.9).

Next we observe that, since g ◦ Fε ∈ B0(MN), Theorem 6.1 says that the sequence

∫1
0

g
(
Fε(x+ iy, 0)

)
dx (8.13)

converges as y → 0 and is therefore a Cauchy sequence. So for all 0 < y ′, y ′′ < y2(ε, Fε)

small enough, we have

∣∣∣∣ ∫1
0

g
(
Fε(x+ iy ′, 0)

)
dx−

∫1
0

g
(
Fε(x+ iy ′′, 0)

)
dx

∣∣∣∣ < ε. (8.14)
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Together with (8.12), this yields

∣∣∣∣ ∫1
0

g
(
Ξ(x+ iy ′)

)
dx−

∫1
0

g
(
Ξ(x+ iy ′′)

)
dx

∣∣∣∣ < (2C+ 1)ε, (8.15)

for 0 < y ′, y ′′ < min{y1(ε), y2(ε, Fε)}, and thus
∫1
0
g
(
Ξ(x + iy)

)
dx is a Cauchy sequence.

�

Proof of Theorem 8.2. For g ∈ C∞
0 (C), Lemma 8.3 shows that the limit in Lemma 8.4 is

I(g) =

∫
C

g(w)νΞ(dw). (8.16)

The theorem now follows for more general bounded continuous g from a standard ap-

proximation argument. �

9 Shale-Weil representation and theta sums

For every g ∈ SL(2,R), we have the unique Iwasawa decomposition

g = nxaykφ = (z, φ), (9.1)

where z = x+ iy ∈ H, φ ∈ [0, 2π),

nx =

(
1 x

0 1

)
, ay =

(
y1/2 0

0 y−1/2

)
, kφ =

(
cosφ − sinφ

sinφ cosφ

)
. (9.2)

This can be extended to an Iwasawa decomposition of S̃L(2,R), which of course corre-

sponds to the parametrization introduced after (5.3). We have, for any element M =

[g, βg] ∈ S̃L(2,R),

M =
[
g, βg

]
= NxAyKφ =

[
nx, 0

][
ay, 0

][
kφ, βkφ

]
. (9.3)

The Shale-Weil representation is usually defined as a projective representation

of SL(2,R), which becomes a true representation on the metaplectic (i.e., double) cover

of SL(2,R). Therefore it is also a proper representation of the universal cover S̃L(2,R). In

view of the decomposition (9.3), it is sufficient to define the representation on the three

factors. For any Schwartz function f ∈ S(R), we set (cf. [12])

[
R
(
Nx
)
f
]
(t) = e

(
t2x
)
f(t),

[
R
(
Ay
)
f
]
(t) = y1/4f

(
y1/2t

)
, (9.4)
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and [
R
(
Kφ
)
f
]
(t)

=




e
(
−
σφ

8

)
f(t) (φ = 0mod 2π),

e
(
−
σφ

8

)
f(−t) (φ = πmod 2π),

e
(
−
σφ

8

)
21/2| sinφ|−1/2

∫
R

e

[(
t2 + t ′2

)
cosφ− tt ′

sinφ

]
f(t ′)dt ′ (φ �= 0modπ),

(9.5)

where

σφ =


2ν if φ = νπ,

2ν+ 1 if νπ < φ < (ν+ 1)π.
(9.6)

For f ∈ S(R) and (z, φ) ∈ H × R  S̃L(2,R), we define the theta sum by

Θf(z, φ) := Θf(M) :=
∑
n∈Z

[
R(M)f

]
(n), (9.7)

withM = NxAyKφ. More explicitly,

Θf(z, φ) = y1/4
∑
n∈Z

fφ
(
ny1/2

)
e
(
n2x

)
, (9.8)

where fφ = R(Kφ)f.

Using integration by parts, one finds that for any T > 1, there is a constant cT

such that for all t ∈ R, φ ∈ R, we have

∣∣fφ(t)
∣∣ ≤ cT (1+ |t|

)−T
. (9.9)

The series in (9.7) and (9.8) converges therefore rapidly and uniformly for (z, φ) with z in

any compact set in H.

It is well known that Θf is invariant under the discrete subgroup ∆1(4) (see, e.g.,

[14, Proposition 3.1]), that is,

Θf(γM) = Θf(M), (9.10)

for all γ ∈ ∆1(4). We may therefore view Θf as a smooth function on the manifold M4.

Proposition 9.1. If f ∈ S(R), then Θf ∈ B1/4(M4). �
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Proof. The manifold M4 has three cusps at z = 0, 1/2 and ∞. We have the bounds (cf. [14,

Proposition 3.2])

Θf(z, φ) =




eiπ/4 fφ0
(0)y1/40 +OT

(
y−T
0

) (
y0 ≥ 1

)
,

OT
(
y−T
1/2

) (
y1/2 ≥ 1

)
,

fφ∞ (0)y1/4∞ +OT
(
y−T∞ ) (

y∞ ≥ 1),
(9.11)

for any T > 1, with the cuspidal coordinates

(
z0, φ0

)
=
(

− (4z)−1, φ+ arg z
)
,(

z1/2, φ1/2
)

=

(
−(4z− 2)−1, φ+ arg

(
z−

1

2

))
,(

z∞ , φ∞ ) = (z, φ).

(9.12)

�

10 Smoothed error terms

We will now construct functions Ef,ψ on MN which represent smoothed error terms. For

real-valued f ∈ S(R) and ψ ∈ C∞ (S1) with ψ̂0 = 0 and only finitely many Fourier coeffi-

cients nonzero, put

Ef,ψ(z, 0) =
1

2
y1/4

∑
n∈Z

f
(
ny1/2

)
ψ
(
n2x

)
. (10.1)

The building blocks of Ef,ψ are theta sums. It is easily seen that we have the expansion

Ef,ψ(z, 0) =
1

2

∑
k �=0

ψ̂kΘf(kx+ iy, 0). (10.2)

The following theorem tells us that Ef,ψ(z, 0) can be extended to values φ �= 0, yielding a

smooth function on MN of moderate growth in the cusps.

Theorem 10.1. Let f ∈ S(R) and ψ ∈ C∞ (S1) with ψ̂k �= 0 only if 0 < |k| ≤ K, for some

integer K. Then there is a function Ef,ψ ∈ B1/4(MN) withN = 4 lcm(2, 3, . . . , K) such that

Ef,ψ(z, 0) =
1

2
y1/4

∑
n∈Z

f
(
ny1/2

)
ψ
(
n2x

)
. (10.3)

�
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Proof. We can write Ef,ψ(z, φ) = E+
f,ψ(z, φ) + E−

f,ψ(z, φ), where

E+
f,ψ(z, 0) =

1

2

∑
k>0

ψ̂kΘf(kx+ iy, 0),

E−
f,ψ(z, 0) =

1

2

∑
k>0

ψ̂−kΘf(kx+ iy, 0).
(10.4)

SinceNkx = AkNxA
−1
k , we find

Θf(kx+ iy, 0) =
∑
n∈Z

[
R
(
NkxAy

)
f
]
(n) =

∑
n∈Z

[
R
(
AkNxAyA

−1
k

)
f
]
(n). (10.5)

We extend (10.5) to φ �= 0 by setting

Θ
(k)
f (z, φ) := Θ

(k)
f (M) := Θf

(
AkMA

−1
k

)
, (10.6)

whereM = NxAyKφ. The invariance of Θf under ∆1(4) implies that

Θ
(k)
f (γM) = Θ

(k)
f (M)k, (10.7)

for all γ ∈ A−1
k ∆1(4)Ak, and hence for all γ ∈ ∆1(4k), recall Lemma 5.1(b). The functions

E+
f,ψ(M) =

1

2

∑
k>0

ψ̂kΘ
(k)
f (M), E−

f,ψ(M) =
1

2

∑
k>0

ψ̂−kΘ
(k)
f (M) (10.8)

are therefore invariant under the group

K⋂
k=1

∆1(4k), (10.9)

which contains ∆1(N) withN = 4 lcm(2, 3, . . . , K) (see Lemma 5.1(c)).

The bound (6.1) on the growth of Ef,ψ in the cusps follows from (9.11) and the

fact that Ef,ψ is a finite linear combination of theta sums. (The implied constant in (6.1)

may depend on K.) �

Lemma 10.2. With f, ψ as in Theorem 10.1,

Ef,ψ(z, φ+ π) = −i
(
E+
f,ψ(z, φ) − E−

f,ψ(z, φ)
)
. (10.10)

�

Note that this implies in particular Ef,ψ(z, φ+ 2π) = −Ef,ψ(z, φ).
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Proof. We have fφ+π(t) = −ifφ(−t) (compare (9.5)) and thus

Θ
(k)
f (z, φ+ π) = −iΘ(k)

f (z, φ). (10.11)

The lemma follows from (10.8). �

11 Error terms are almost modular

The central observation of our investigation is that the original error term Ξf,ψ intro-

duced in (2.2) is an almost modular function.

Theorem 11.1. If f ∈ PC∞
0 (R+) and if ψ ∈ L2(S1) satisfies conditions (2.4) and (2.5), then

Ξf,ψ ∈ B2. �

Proof. The aim is to apply Lemma 4.1. Suppose that the largest jump at a discontinuity

of f is D = supt∈R+
|f(t + 0) − f(t − 0)|. We can now approximate f by an even function

fε ∈ C∞
0 (R) so that supt∈R+

|f(t) − fε(t)| ≤ D and supp(f−f+
ε ) is arbitrarily small; here f+ε

denotes the restriction of fε to R+. Similarly, the function

ψε(x) =
∑

0<|k|≤K
ψ̂ke(kx) (11.1)

approximates ψ arbitrarily well in the L2 norm, for K large enough. At the same time,

C(ψ−ψε) in (2.5) is independent of K since

∣∣ψ̂k − ψ̂k,ε
∣∣ ≤ C(ψ)

|k|β
. (11.2)

This allows us to chooseC(ψ−ψε) = C(ψ). Hence for any ε > 0, we can find approximants

fε, ψε such that

sup
((
f− f+ε

)2)∣∣ supp(f−f+
ε )

∣∣(‖ψ‖22 + KβC(ψ)‖ψ‖2
)
<
(ε
2

)2
,

sup
(
f2
)∣∣ suppf

∣∣(∥∥ψ−ψε
∥∥2
2

+ KβC
(
ψ−ψε

)∥∥ψ−ψε
∥∥
2

)
<
(ε
2

)2
.

(11.3)

Now fε, ψε also satisfy the conditions of Theorem 10.1, so

Efε,ψε(z, 0) =
1

2
y1/4

∑
n∈Z

fε
(
ny1/2

)
ψε
(
n2x

)
(11.4)

can be extended to φ �= 0 to yield a function Efε,ψε ∈ B1/4(MN). If we set y = N−2, the

theorem follows from Lemma 4.1 (compare Definition 7.1). �
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Proof of Theorem 2.1. Since the error term is almost modular of class B2 (Theorem 11.1),

Theorem 2.1 is a special case of Theorem 8.2. The symmetry of the limit distribution is a

consequence of the observation after Lemma 10.2. �

Appendix

Generalized quadratic residue symbol

For any integer x and any prime p, the standard quadratic residue symbol ( x
p
) is 1 if x is

a square modulo p, and −1 otherwise. The generalized quadratic residue symbol (a
b
) is,

for any integer a and any odd integer b, characterized by the following properties (see

[12, pages 160–161]):

(i) (a
b
) = 0 if gcd(a, b) �= 1,

(ii) ( a−1 ) = sgna,

(iii) if b > 0, b =
∏
i bi, bj primes (not necessarily distinct), then (a

b
) =

∏
i(
a
bi

),

(iv) ( a−b ) = ( a−1 )(
a
b
),

(v) ( 0±1 ) = 1.

It follows from these properties that the symbol is bimultiplicative

(
a1a2

b

)
=

(
a1

b

)(
a2

b

)
,

(
a

b1b2

)
=

(
a

b1

)(
a

b2

)
. (A.1)

Furthermore, if b > 0, then ( ·
b
) defines a character modulo b; if a �= 0, then (a· ) defines a

character modulo 4a.
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