
HOROSPHERES AND FAREY FRACTIONS

JENS MARKLOF

Abstract. We embed multidimensional Farey fractions in large horospheres

and explain under which conditions they become uniformly distributed in the

ambient homogeneous space. This question has recently been investigated in
the case of SL(d,Z) to prove the asymptotic distribution of Frobenius numbers.

The present paper extends these studies to general lattices in SL(d,R).

1. Introduction

Let G := SL(d,R) and Γ a lattice in G. The right action

(1.1) Γ\G→ Γ\G, ΓM 7→ ΓMΦt, Φt =

(
e−t1d−1

t0
0 e(d−1)t

)
defines a flow on the homogeneous space Γ\G. The subgroups generated by

(1.2) n+(x) =

(
1d−1

t0
x 1

)
, n−(x) =

(
1d−1

tx
0 1

)
.

parametrize the stable and unstable horospheres of the flow Φt as t → ∞. The
classical equidistribution of large horospheres can be stated as follows; see Section
5 of [2] for a proof of this particular version.

Theorem 1. Let Γ be a lattice in SL(d,R), λ be a Borel probability measure on
Rd−1, absolutely continuous with respect to Lebesgue measure, and let f : Rd−1 ×
Γ\G→ R be bounded continuous. Then

(1.3) lim
t→∞

∫
Rd−1

f
(
x, n−(x)Φt

)
dλ(x) =

∫
Rd−1×Γ\G

f(x,M) dλ(x) dµΓ(M).

Here µΓ denotes the Haar measure on G = SL(d,R), normalized so that it
represents the unique right G-invariant probability measure on the homogeneous
space Γ\G. In the special case Γ = SL(d,Z) we have by Siegel’s volume formula

(1.4) dµSL(d,Z)(M)
dt

t
=
(
ζ(2)ζ(3) · · · ζ(d)

)−1
det(X)−d

d∏
i,j=1

dXij ,

where X = (Xij) = t1/dM ∈ GL+(d,R) with M ∈ G, t > 0; cf. [5].
In [1] I studied the case where the absolutely continuous measure λ is replaced

by equally weighted point masses at the elements of the Farey sequence

(1.5) FQ =

{
p

q
∈ [0, 1)d−1 : (p, q) ∈ Ẑd, 0 < q ≤ Q

}
,
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where Ẑd denotes the set of primitive lattice points

(1.6) Ẑd = {(m1, . . . ,md) ∈ Zd : gcd(m1, . . . ,md) = 1}.
It will be notationally convenient to also allow noninteger Q ∈ R≥1. Note that
FQ = F[Q] where [Q] is the integer part of Q.

The discussion in [1] is restricted to the case Γ = SL(d,Z), and the purpose of
the present note is to describe the situation for a general lattice.

Define the subgroups

H =

{
M ∈ G : (0, 1)M = (0, 1)

}
=

{(
A tb
0 1

)
: A ∈ SL(d− 1,R), b ∈ Rd−1

}
,

(1.7)

and

(1.8) ΓH = SL(d,Z) ∩H =

{(
γ tm
0 1

)
: γ ∈ SL(d− 1,Z), m ∈ Zd−1

}
.

Note that H and ΓH are isomorphic to ASL(d−1,R) and ASL(d−1,Z), respectively.
We normalize the Haar measure µH of H so that it becomes a probability measure
on ΓH\H; explicitly:

(1.9) dµH(M) = dµSL(d−1,Z)(A) db, M =

(
A tb
0 1

)
.

Theorem 2. Let Γ be a lattice in SL(d,R), σ ∈ R, f : [0, 1]d−1 × Γ\G → R be
bounded continuous, and Q = e(d−1)(t−σ).

(A) If Γ is not commensurable with SL(d,Z), then

(1.10) lim
t→∞

1

|FQ|
∑

r∈FQ

f
(
r, n−(r)Φt

)
=

∫
[0,1]d−1×Γ\G

f(x,M) dx dµΓ(M).

(B) If Γ is commensurable with SL(d,Z), then

(1.11) lim
t→∞

1

|FQ|
∑

r∈FQ

f
(
r, n−(r)Φt

)
= d(d− 1)ed(d−1)σ

∫ ∞
σ

∫
[0,1]d−1×ΓH\H

f(x,MΦ−s) dx dµH(M) e−d(d−1)sds

with ∆ := Γ ∩ SL(d,Z) and

(1.12) f(x,M) :=
1

|SL(d,Z) : ∆|
∑

γ∈SL(d,Z)/∆

f(x, γ tM−1).

Note that in the above theorem we place

(1.13) |FQ| ∼
Qd

d ζ(d)
(Q→∞)

points on a horosphere of volume ed(d−1)t. The scaling Q = e(d−1)(t−σ) thus ensures
that the average density of points on the horosphere remains constant as t→∞. If
instead we had taken a scaling such that Qe−(d−1)t → ∞, the Farey points would
equidistribute also in Case (B) on all of Γ\G with respect to dµ.

An interesting application of Case (A) is the following.
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Corollary. Let Γ = SL(d,Z), σ ∈ R, f : [0, 1]d−1 × Γ\G → R be bounded
continuous, and Q = e(d−1)(t−σ). If the matrix A ∈ GL(d − 1,R) has at least one
irrational coefficient, then

(1.14) lim
t→∞

1

|FQ|
∑

r∈FQ

f
(
r, n−(rA)Φt

)
=

∫
[0,1]d−1×Γ\G

f(x,M) dx dµΓ(M).

Note that

(1.15) n−(rA)Φt =

(
tA 0
0 1

)
n−(r)Φt

(
tA−1 0
0 1

)
.

The corollary therefore follows from Theorem 2 by choosing the test function

(1.16) fA(x,M) := f

(
x,

(
tA 0
0 1

)
M

(
tA−1 0
0 1

))
,

which is left invariant under the action of the lattice

(1.17) ΓA =

(
tA 0
0 1

)
SL(d,Z)

(
tA−1 0
0 1

)
.

Since A is irrational, ΓA is not commensurable with SL(d,Z), and hence Case (A)
applies.

The proof of Theorem 2, Case (B) utilizes Theorem 1, and thus follows (as we
will see) the same argument as in [1] for Γ = SL(d,Z). Although the answer looks
simpler in Case (A), the proof is more involved. The central step is the following
equidistribution statement.

Theorem 3. Let Γ,Γ′ be two incommensurable lattices in G = SL(d,R), λ be a
Borel probability measure on Rd−1, absolutely continuous with respect to Lebesgue
measure, and let f : Rd−1 × Γ\G× Γ′\G→ R be bounded continuous. Then

(1.18) lim
t→∞

∫
Rd−1

f
(
x, n−(x)Φt, n−(x)Φt

)
dλ(x)

=

∫
Rd−1×Γ\G×Γ′\G

f(x,M,M ′) dλ(x) dµΓ(M) dµΓ′(M
′).

We will prove Theorem 3 in Section 2, and Theorem 2 in Section 3.
It is well known that the Farey fractions correspond to the cusps of the space of

lattices, SL(d,Z)\ SL(d,R). A further interesting generalization (which we will not
discuss here) is therefore to replace the Farey sequence by

(1.19) FQ =

{
p

q
∈ R : (p, q) ∈ (0, 1)Γ′, 0 < q ≤ Q

}
,

where Γ is a lattice in SL(d,R) with the property that ΓH = H ∩ Γ′ is a lattice in
H. The set R ⊂ Rd−1 is the pre-image of a fundamental domain of ΓH in H under
the map x 7→ n−(x).

2. Proof of Theorem 3

Theorem 3 is a consequence of Shah’s Theorem 1.4 in [4], which in turn follows
from Ratner’s theorem on the classification of measures that are invariant under
unipotent flows [3].
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Theorem 4. Let G̃ be a connected Lie group and let Γ̃ be a lattice in G̃. Suppose
G̃ contains a Lie subgroup H isomorphic to SL(d,R) (we denote the corresponding

embedding by ϕ : SL(d,R) → G̃), such that the set Γ̃\Γ̃H is dense in Γ̃\G̃. Let λ
be a Borel probability measure on Rd−1 which is absolutely continuous with respect
to Lebesgue measure, and let f : Γ̃\G̃→ R be bounded continuous. Then

(2.1) lim
t→∞

∫
Rd−1

f(ϕ(n−(x)Φt))dλ(x) =

∫
Γ̃\G̃

f dµ̃,

where µ̃ is the unique G̃-right-invariant probability measure on Γ̃\G̃.

To use this result for the proof of Theorem 3, we take

(2.2) G̃ = G×G, Γ̃ = Γ× Γ′, µ̃ = µΓ × µΓ′ ,

(2.3) H = {(M,M) : M ∈ G}
and ϕ the diagonal embedding. It follows from Ratner’s theory [3] that the closure

of Γ̃\Γ̃H equals Γ̃\Γ̃K for some closed connected subgroup K with H ≤ K ≤ G̃.
If H = K then Γ and Γ′ are commensurable, which contradicts our assumption.

Let us therefore suppose H 6= K. Then K contains a subgroup {1} × L =
K ∩ ({1} ×G) where {1} < L ≤ G. Since

(2.4) (g, g)(1, h)(g, g)−1 = (1, ghg−1)

for all g ∈ G, L is in fact normal in G. Let Z denote the (finite) center of G.
Since G/Z is simple, this implies LZ/Z = G/Z and thus LZ = G. Therefore

{1} × G ⊂ K̃ := KZ̃, where Z̃ = {1} × Z. Together with H ⊂ K this yields

K̃ = G × G = G̃. But since K, G̃ are connected and Z̃ is finite, we have in fact
K = G̃. This completes the proof of Theorem 3 when the test function f(x,M,M ′)
is independent of x. The general case follows from the same argument as in the
proof of Theorem 5.3 in [2].

3. Proof of Theorem 2

In the following set Γ′ = SL(d,Z). The proof is virtually identical to that of
Theorem 6 in [1], except for the application of Theorem 3 rather than Theorem
1 in the incommensurable case. It will in fact be easier to prove the following
generalization of Theorem 2. Theorem 2 is then obtained from Theorem 5 below
by choosing a test function of the form f(x,M) = f(x,M,M ′).

Theorem 5. Let Γ be a lattice in SL(d,R), σ ∈ R, f : [0, 1]d−1×Γ\G×Γ′\G→ R
be bounded continuous, and Q = e(d−1)(t−σ).

(A) If Γ is not commensurable with Γ′, then

(3.1) lim
t→∞

1

|FQ|
∑

r∈FQ

f
(
r, n−(r)Φt, n−(r)Φt

)
= d(d− 1)ed(d−1)σ

∫ ∞
σ

∫
[0,1]d−1×Γ\G×ΓH\H

f̃(x,M,M ′Φ−s)×

× dx dµΓ(M) dµH(M ′) e−d(d−1)sds

with

(3.2) f̃(x,M,M ′) := f(x,M, tM ′
−1

).
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(B) If Γ is commensurable with Γ′, then

(3.3) lim
t→∞

1

|FQ|
∑

r∈FQ

f
(
r, n−(r)Φt, n−(r)Φt

)
= d(d− 1)ed(d−1)σ

∫ ∞
σ

∫
[0,1]d−1×ΓH\H

f(x,MΦ−s,MΦ−s)×

× dx dµH(M) e−d(d−1)sds

with ∆ := Γ ∩ Γ′ and

(3.4) f(x,M,M ′) :=
1

|Γ′ : ∆|
∑

γ∈Γ′/∆

f(x, γ tM−1, tM ′
−1

).

Proof. Step 0: Uniform continuity. By choosing the test function

(3.5) f(x,M,M ′) = f0(x,MΦ−σ,M ′Φ−σ)

with f0 : [0, 1]d−1 × Γ\G × Γ′\G → R bounded continuous, it is evident that we
only need consider the case σ = 0. We may also assume without loss of generality

that f , and thus also f̃ and f , have compact support. That is, there is C ⊂ G

compact such that supp f, supp f̃ ⊂ [0, 1]d−1 × Γ\ΓC × Γ′\Γ′C. The generalization
to bounded continuous functions follows from a standard approximation argument.

Since f is continuous and has compact support, it is uniformly continuous. That
is, given any δ > 0 there exists ε > 0 such that for all (x,M1,M

′
1), (x′,M2,M

′
2) ∈

[0, 1]d−1 ×G×G,

(3.6) ‖x− x′‖ < ε, d(M1,M
′
1) < ε, d(M2,M

′
2) < ε

implies

(3.7)
∣∣f(x,M1,M2)− f(x′,M ′1,M

′
2)
∣∣ < δ.

Here d denotes a left-invariant Riemannian metric on G. In the following, we choose
d in such a way that

(3.8) d
(
n±(x), n±(x′)

)
≤ ‖x− x′‖,

where ‖ · ‖ the standard euclidean norm.
The plan is now to first establish (3.3) for the set

(3.9) FQ,θ =

{
p

q
∈ [0, 1)d−1 : (p, q) ∈ Ẑd, θQ < q ≤ Q

}
,

for any θ ∈ (0, 1). The constant θ will remain fixed until the very last step of this
proof.

Step 1: Thicken the Farey sequence. The plan is to reduce the statement
to Theorem 1 (in the commensurable case) or Theorem 3 (in the incommensurable
case). To this end, we thicken the set FQ,θ as follows: For ε > 0 (we will in fact
later use the ε from Step 0), let

(3.10) FεQ =
⋃

r∈FQ,θ+Zd−1

{
x ∈ Rd−1 :

∥∥x− r
∥∥ < εe−dt

}
.

Note that FεQ is symmetric with respect to x 7→ −x. A short calculation yields

(3.11) FεQ =
⋃

a∈Ẑd

{
x ∈ Rd−1 : an+(x)Φ−t ∈ Cε

}
,
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where

(3.12) Cε =
{

(y1, . . . , yd) ∈ Rd : ‖(y1, . . . , yd−1)‖ < εyd, θ < yd ≤ 1
}
.

Let

(3.13) Hε =
⋃

a∈Ẑd
Hε(a), Hε(a) =

{
M ∈ G : aM ∈ Cε

}
.

The bijection (cf. [5])

(3.14) ΓH\Γ′ → Ẑd, ΓHγ 7→ (0, 1)γ

allows us to rewrite

(3.15) Hε =
⋃

γ∈ΓH\Γ′
Hε((0, 1)γ) =

⋃
γ∈Γ′/ΓH

γH1
ε , with H1

ε = Hε((0, 1)).

Now

H1
ε =
{
M ∈ G : (0, 1)M ∈ Cε

}
=H

{
My : y ∈ Cε

}(3.16)

with H as in (1.7), and My ∈ G such that (0, 1)My = y. Since y ∈ Cε implies
yd > 0, we may choose

(3.17) My =

(
y
−1/(d−1)
d 1d−1

t0
y′ yd

)
, y′ = (y1, . . . , yd−1).

Step 2: Prove disjointness. We will now prove the following claim: Given a
compact subset C ⊂ G, there exists ε0 > 0 such that

(3.18) γH1
ε ∩H1

ε ∩ Γ′C = ∅

for every ε ∈ (0, ε0], γ ∈ Γ′ − ΓH .
To prove this claim, note that (3.18) is equivalent to

(3.19) Hε((p, q)) ∩H1
ε ∩ Γ′C = ∅

for every (p, q) ∈ Ẑd, (p, q) 6= (0, 1). For

(3.20) M =

(
A tb
0 1

)
My, My =

(
y
−1/(d−1)
d 1d−1

t0
y′ yd

)
,

we have

(3.21) (p, q)M = (pAy
−1/(d−1)
d + (p tb + q)y′, (p tb + q)yd),

and thus M ∈ Hε((p, q)) ∩H1
ε if and only if

(3.22) ‖pAy−1/(d−1)
d + (p tb + q)y′‖ < ε(p tb + q)yd,

(3.23) θ < (p tb + q)yd ≤ 1,

and

(3.24) ‖y′‖ < εyd, θ < yd ≤ 1.

Relations (3.23) and (3.24) imply ‖(p tb+q)y′‖ < ε(p tb+q)yd ≤ ε and so, by (3.22),

‖pAy−1/(d−1)
d ‖ < 2ε(p tb + q)yd ≤ 2ε. That is, ‖pA‖ < 2εy

1/(d−1)
d and hence

(3.25) ‖pA‖ < 2ε.
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Let us now suppose M ∈ Γ′C with C compact. The set

(3.26) C′ = C
{
M−1

y : y ∈ Cε
}

is still compact, by the compactness of Cε (the closure of Cε) in Rd \ {0}. In view
of (3.20) we obtain

(3.27)

(
A tb
0 1

)
∈ Γ′C′,

and so A ∈ SL(d− 1,Z)C0 for some compact C0 ⊂ SL(d− 1,R).
Mahler’s compactness criterion then shows that

(3.28) I := inf
A∈SL(d−1,Z)C0

inf
p∈Zd−1\{0}

‖pA‖ > 0.

Now choose ε0 such that 0 < 2ε0 < I. Then (3.25) implies p = 0 and therefore
q = 1. The claim is proved.

Step 3: Apply equidistribution of large horospheres. Step 2 implies that,
for C ⊂ G compact, there exists ε0 > 0 such that for every ε ∈ (0, ε0]

(3.29) Hε ∩ Γ′C =
⋃

γ∈Γ′/ΓH

(
γH1

ε ∩ Γ′C
)

is a disjoint union. Hence, if χε and χ1
ε are the characteristic functions of the sets

Hε and H1
ε , respectively, we have

(3.30) χε(M) =
∑

γ∈ΓH\Γ′
χ1
ε(γM),

for all M ∈ ΓC. Evidently H1
ε and thus Hε have boundary of µ-measure zero. We

furthermore set χ̃ε(M) := χε(
tM−1), and note that

(3.31) χε
(
n+(x)Φ−t

)
= χε

(
n+(−x)Φ−t

)
is the characteristic function of the set FεQ; recall (3.11) and the remark after (3.10).
Therefore ∫

FεQ∩[0,1]d−1

f
(
x, n−(x)Φt, n−(x)Φt

)
dx

=

∫
[0,1]d−1

f
(
x, n−(x)Φt, n−(x)Φt

)
χε
(
n+(−x)Φ−t

)
dx

=

∫
[0,1]d−1

f
(
x, n−(x)Φt, n−(x)Φt

)
χ̃ε
(
n−(x)Φt

)
dx.

(3.32)

Case (A): If Γ,Γ′ are not commensurable, Theorem 3 yields

(3.33) lim
t→∞

∫
[0,1]d−1

f
(
x, n−(x)Φt, n−(x)Φt

)
χ̃ε
(
n−(x)Φt

)
dx

=

∫
[0,1]d−1×Γ\G×Γ′\G

f̃(x,M,M ′)χε(M
′) dx dµΓ(M) dµΓ′(M

′).
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Case (B): If Γ,Γ′ are commensurable, then ∆ = Γ ∩ Γ′ is a lattice in G and
Theorem 1 yields

lim
t→∞

∫
[0,1]d−1

f
(
x, n−(x)Φt, n−(x)Φt

)
χ̃ε
(
n−(x)Φt

)
dx

=

∫
[0,1]d−1×∆\G

f(x,M,M)χ̃ε(M) dx dµ∆(M)

=

∫
[0,1]d−1×∆\G

f(x, tM−1, tM−1)χε(M) dx dµ∆(M)

=

∫
[0,1]d−1×Γ′\G

f(x,M,M)χε(M) dx dµΓ′(M),

(3.34)

since dµΓ′(M) = |Γ′ : ∆| dµ∆(M).
Step 4: A volume computation. To evaluate the right hand sides of (3.33)

and (3.34), we set (in order to treat both cases simultaneously)

(3.35) g(M) =

∫
[0,1]d−1×Γ\G

f̃(x, M̃ ,M) dx dµΓ(M̃)

for Case (A), and

(3.36) g(M) =

∫
[0,1]d−1

f(x,M,M) dx

for Case (B). We thus need to evaluate∫
Γ′\G

g(M)χε(M) dµ(M) =

∫
ΓH\G

g(M)χ1
ε(M) dµ(M)

=

∫
ΓH\H1

ε

g(M) dµ(M),

(3.37)

using (3.30). Given y ∈ Rd we pick a matrix My ∈ G such that (0, 1)My = y;
recall (3.17) for an explicit choice of My for yd > 0. The map

(3.38) H × Rd \ {0} → G, (M,y) 7→MMy,

provides a parametrization of G, where in view of (1.4)

(3.39) dµ = ζ(d)−1dµH dy.

Hence (3.37) equals, in view of (3.16),

(3.40)
1

ζ(d)

∫
ΓH\H×Cε

g
(
MMy

)
dµH(M)dy.

For

(3.41) D(yd) =

(
y
−1/(d−1)
d 1d−1

t0
0 yd

)
,

we have, in view of (3.8),
(3.42)

d
(
My, D(yd)

)
= d
(
D(yd)n+(y−1

d y′), D(yd)
)

= d
(
n+(y−1

d y′), 1d
)
≤ y−1

d ‖y
′‖.
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We recall that y−1
d ‖y′‖ < ε for y ∈ Cε. Therefore, with the choice of δ, ε made in

Steps 0 and 2, we have

(3.43)

∣∣∣∣(3.40)− 1

ζ(d)

∫
ΓH\H×Cε

g
(
MD(yd)

)
dµH(M)dy

∣∣∣∣ < δ

ζ(d)

∫
Cε

dy.

Now,

∫
Cε

g
(
MD(yd)

)
dy = vol(Bd−1

1 ) εd−1

∫ 1

θ

g
(
MD(yd)

)
yd−1
d dyd

= (d− 1) vol(Bd−1
1 ) εd−1

∫ | log θ|/(d−1)

0

g
(
MΦ−s

)
e−d(d−1)sds,

(3.44)

and

(3.45)

∫
Cε

dy =
1

d
vol(Bd−1

1 ) εd−1(1− θd),

where Bd−1
1 denotes the unit ball in Rd−1. So (3.43) becomes

(3.46)∣∣∣∣(3.40)− (d− 1) vol(Bd−1
1 ) εd−1

ζ(d)

∫ | log θ|/(d−1)

0

∫
ΓH\H

g
(
MΦ−s

)
dµH(M) e−d(d−1)sds

∣∣∣∣
<

vol(Bd−1
1 ) δ εd−1

d ζ(d)
(1− θd).

Step 5: Distance estimates. Since (3.29) is a disjoint union, we have further-
more (this is in effect another way of writing (3.32) using (3.30))

(3.47)

∫
FεQ∩[0,1]d−1

f
(
x, n−(x)Φt, n−(x)Φt

)
dx

=
∑

r∈FQ,θ+Zd−1

∫
{x∈[0,1]d−1:‖x−r‖<εe−dt}

f
(
x, n−(x)Φt, n−(x)Φt

)
dx.

Note that n−(x)Φt = Φtn−(edtx). By (3.8), for any g ∈ G,

(3.48) d
(
gn−(x)Φt, gΦt

)
= d
(
gΦtn−(edtx), gΦt

)
= d
(
n−(edtx), 1d

)
≤ edt‖x‖.

Eq. (3.48) implies that

(3.49) d
(
n−(x)Φt, n−(r)Φt

)
≤ edt‖x− r‖ < ε.

Because f is uniformly continuous we therefore have, for the same δ, ε as above:

(3.50)∣∣∣∣ ∫
‖x−r‖<εe−dt

f
(
x, n−(x)Φt, n−(x)Φt

)
dx−vol(Bd−1

1 )εd−1

ed(d−1)t
f
(
r, n−(r)Φt, n−(r)Φt

)∣∣∣∣
<

vol(Bd−1
1 ) δ εd−1

ed(d−1)t
,

uniformly for all t ≥ 0.
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Step 6: Conclusion. The approximations (3.46) and (3.50) hold uniformly for
any δ > 0. Passing to the limit δ → 0, we obtain

(3.51) lim
t→∞

1

ed(d−1)t

∑
r∈FQ,θ

f
(
r, n−(r)Φt, n−(r)Φt

)
=
d− 1

ζ(d)

∫ | log θ|/(d−1)

0

∫
ΓH\H

g
(
MΦ−s

)
dµH(M) e−d(d−1)sds.

The asymptotics (1.13) shows that (recall that Qd = ed(d−1)t)

(3.52) lim sup
t→∞

|FQ \ FQ,θ|
ed(d−1)t

≤ θd

d ζ(d)
,

which allows us to take the limit θ → 0 in (3.51). This concludes the proof for
σ = 0 and f compactly supported, in both Case (A) and (B). For the extension to
general σ and f , recall the remarks in Step 0. �
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