
THE VALUE DISTRIBUTION OF INCOMPLETE GAUSS SUMS

EMEK DEMIRCI AKARSU AND JENS MARKLOF

Abstract. It is well known that the classical Gauss sum, normalized by the square-root
number of terms, takes only finitely many values. If one restricts the range of summation to a
subinterval, a much richer structure emerges. We prove a limit law for the value distribution
of such incomplete Gauss sums. The limit distribution is given by the distribution of a
certain family of periodic functions. Our results complement Oskolkov’s pointwise bounds
for incomplete Gauss sums as well as the limit theorems for quadratic Weyl sums (theta sums)
due to Jurkat and van Horne and the second author.

1. Introduction

The present paper investigates the asymptotic distribution of the incomplete Gauss sum

(1.1) gϕ(p, q) =
q−1�

h=0

ϕ

�
h

q

�
eq(ph

2),

where q ∈ N, p ∈ Zq, and eq(x) = e2πix/q; the weight function ϕ is periodic with period one.
The case ϕ = 1 corresponds to the classical Gauss sum. The main example of an incomplete
Gauss sum in the literature is the case when ϕ is the characteristic function of a subinterval
of the unit interval [11, 7, 15, 6, 16, 17].

It is natural to assume that p and q are coprime, i.e, p ∈ Z×
q = {p ≤ q, gcd(p, q) = 1}. Here

Z×
q is the multiplicative group of integers mod q. The order of Z×

q is denoted by φ(q) (Euler’s
totient function). If p, q are not coprime, say gcd(p, q) = r for some r > 1, we set p� = p/r,
q� = q/r, and observe that

(1.2) gϕ(p, q) = gϕr(p
�, q�)

where

(1.3) ϕr(x) =
r−1�

k=0

ϕ

�
x+ k

r

�
.

The case when p, q are not coprime can therefore be reduced to the coprime case.
Functional equations and pointwise estimates of incomplete Gauss sums have been studied

extensively by Oskolkov [15], and the aim of the present paper is to complement his results
by establishing limit theorems for their value distribution at random argument.

The existence of a limit distribution of the classical theta sum

(1.4) SN (x) =
1√
N

N−1�

n=0

e(n2x), e(x) = e2πix,

for x uniformly distributed in T = R/Z has been proved by Jurkat and van Horne [8, 9, 10] (for
its absolute value) and the second author [13] (for its full distribution in the complex plane);
we refer the reader also to the recent study by Cellarosi [2]. A striking feature of the limit
distribution of theta sums is that it has a heavy tail: The probability that |SN (x)| has a value
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greater than R, decays, for large R, as R−4. At rational x, the theta sum of course reduces
to an incomplete Gauss sum where ϕ is the characteristic function of an interval, and we will
see below (Remark 2) that in this case the limit distribution has compact support—the exact
opposite of a heavy tail.

We denote by
�

k∈Z �ϕke(kx) the Fourier series of ϕ. We will focus for the major part of
this paper on Gauss sums with differentiable weight functions ϕ in the space

(1.5) B(T) =
�
ϕ :

�

k∈Z
k2|�ϕk| < ∞

�
,

and only later extend our results to general Riemann integrable functions, under an additional
assumption on q.

The limit distributions of incomplete Gauss sums will be characterized by the following
random variables:

• X takes the four values ±1± i with equal probability.
• Y takes the values ±1 with equal probability.
• Z takes the values 1± i with equal probability.
• G+

ϕ , Gϕ, G−
ϕ are random variables given by the Fourier series

(1.6) G+
ϕ (x) =

�

n∈Z
�ϕ2n e(n2x), Gϕ(x) =

�

n∈Z
�ϕn e(n2x), G−

ϕ (x) =
�

n∈2Z+1

�ϕn e(n2x),

respectively, with x uniformly distributed on T.

Remark 1. Note that, for ϕ ∈ B(T), the functions in (1.6) are differentiable and thus contin-
uous. If ϕ satisfies the functional relation ϕ(x) = ϕ(12 − x), then its Fourier coefficients are
related via ϕ̂−n = (−1)nϕ̂n, and hence G−

ϕ = 0 and G+
ϕ = Gϕ. If �ϕn + �ϕ−n is real-valued for

all n, then ImG±
ϕ (−x) = − ImG±

ϕ (x) and ImGϕ(−x) = − ImGϕ(x). Hence the probability
density describing the distribution of the imaginary part of the random variables G+

ϕ , Gϕ, G−
ϕ

is symmetric. Furthermore, ImG−
ϕ (x+ 1

4) = ReG−
ϕ (x), and thus the real and imaginary part

of G−
ϕ have the same distribution.

We define �a = 1 if a ≡ 1 mod 4, and �a = i if a ≡ 3 mod 4. The symbol
d−→ denotes

convergence in distribution.

Theorem 1. Fix a subset D ⊂ T with boundary of measure zero, and let ϕ ∈ B(T). For each
q ∈ N, choose p ∈ Z×

q ∩ qD at random with uniform probability. Then, as q → ∞ along an
appropriate subsequence as specified below, we have:

q is not a square q is a square

q ≡ 0 mod 4

�
g1(p, q)√

q
,
gϕ(p, q)

g1(p, q)

�
d−→ (X,G+

ϕ )

�
g1(p, q)√

q
,
gϕ(p, q)

g1(p, q)

�
d−→ (Z,G+

ϕ )

q ≡ 1 mod 2

�
g1(p, q)

�q
√
q

,
gϕ(p, q)

g1(p, q)

�
d−→ (Y,Gϕ)

gϕ(p, q)

�q
√
q

d−→ Gϕ

q/2 is not a square q/2 is a square

q ≡ 2 mod 4

�
g1(2p, q/2)

�q/2
�
q/2

,
gϕ(p, q)

2g1(2p, q/2)

�
d−→ (Y,G−

ϕ )
gϕ(p, q)

�q/2
√
2q

d−→ G−
ϕ

The proof of this theorem is given in Section 4. The key ingredients are functional equations
for incomplete Gauss sums (Section 2) and estimates on (twisted) Kloosterman sums and Salié
sums (Section 3). It is crucial that the exponential sums considered here are quadratic in h.
The case of higher powers is significantly more difficult, cf. [14].
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To illustrate the statement of Theorem 1, let us consider the distribution of the absolute
values of incomplete Gauss sums on the positive axis R≥0.

Corollary 1. Under the assumptions of Theorem 1, as q → ∞,

q ≡ 0 mod 4
|gϕ(p, q)|√

2q
d−→ |G+

ϕ |

q ≡ 1 mod 2
|gϕ(p, q)|√

q
d−→ |Gϕ|

q ≡ 2 mod 4
|gϕ(p, q)|√

2q
d−→ |G−

ϕ |

Since for smooth ϕ the normalized incomplete Gauss sums q−1/2|gϕ(p, q)| are bounded
(cf. Theorem 3 below), the previous corollary implies convergence of the kth moment

(1.7) Mk,ϕ(q) =
1

φ(q)|D|
�

p∈Z×
q ∩qD

|gϕ(p, q)|k.

Corollary 2. Under the assumptions of Theorem 1, we have for any k ≥ 0

q ≡ 0 mod 4 lim
q→∞

Mk,ϕ(q)

(2q)k/2
=

�

T
|G+

ϕ (x)|kdx

q ≡ 1 mod 2 lim
q→∞

Mk,ϕ(q)

qk/2
=

�

T
|Gϕ(x)|kdx

q ≡ 2 mod 4 lim
q→∞

Mk,ϕ(q)

(2q)k/2
=

�

T
|G−

ϕ (x)|kdx

The following technical estimate allows us to extend Theorem 1 to non-smooth ϕ as long
as q has a bounded number of divisors d(q).

Lemma 1. Fix a positive integer N . Then there exists a constant CN > 0 such that, for every
Riemann integrable function ϕ : T → C, we have

(1.8) lim sup
q→∞

d(q)≤N

M2,ϕ(q)

q
≤ CN

|D| �ϕ�
2
2.

Lemma 1 is proved in Section 5. Together with Chebyshev’s inequality it implies the
following extension of Theorem 1.

Theorem 2. Fix a subset D ⊂ T with boundary of measure zero, and let ϕ : T → C be
Riemann integrable. Then the conclusions of Theorem 1 and Corollary 1 remain valid for any
sequence of q → ∞ with a bounded number of divisors.

The proof of Theorem 2 is supplied in Section 6.

Remark 2. For ϕ ∈ B(T), the functions in (1.6) are continuous and bounded. Arkhipov
and Oskolkov [1, 15] prove that boundedness (but not continuity) still holds even if ϕ is the
characteristic function of a subinterval of T. This implies that the limit distribution has
compact support and that therefore Corollary 2 remains valid in this case, subject to the
addtional assumption d(q) ≤ N .

Remark 3. It seems plausible that the hypothesis on the number of divisors of q can be
removed from Theorem 2, at least in the case of weights ϕ of bounded variation—or indeed
all Riemann integrable functions.
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Figure 1. The histogram on the left shows the value distribution of the real

part of gϕ(p,q)
g1(p,q)

− 1√
7
where ϕ is the characteristic function of the interval [0, 1√

7
],

q = 5012 = 22 × 7 × 179 and p uniformly distributed in Z×
q . There are thus

φ(q) = 2136 sample points distributed across 40 bins, which means we have on
average 53.4 values in each bin. The histogram seems consistent with fluctua-
tions of the order of the square-root of that number, i.e., approximately 14% of
the height of each bin. The histogram on the right shows the imaginary part
of the corresponding quantities. The continuous curves represent a numerical
approximation to the real and imaginary part of the probability density of the
random variable G+

ϕ (x).

�0.4 �0.2 0.0 0.2 0.4 0.6

0.5

1.0

1.5

2.0

2.5

�0.4 �0.2 0.0 0.2 0.4 0.6
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Figure 2. Same as Figure 1, now for q = 5013 = 32 × 557. The number of
sample points is now φ(q) = 3336. The continuous curves represent a numerical
approximation to the real and imaginary part of the probability density of the
random variable Gϕ(x).

To illustrate Theorem 2, we have computed numerically the value distribution of the real
and imaginary parts of incomplete Gauss sums for different values of q, see Figures 1–3 and
Section 7.

2. Functional equations for incomplete Gauss sums

Legendre’s quadratic residue symbol is defined for an odd prime b by

(2.1)
�a
b

�
=






+1 if b � a and a is a quadratic residue

0 if b | a
−1 if b � a and a is a quadratic non residue.

Following Jacobi, we extend the definition to arbitrary odd integers b multiplicatively: Let
b a positive odd integer with prime factorization

�s
i=1 p

ri
i . For a ∈ Z we define (a1 ) = 1
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Figure 3. The histogram on the left shows the value distribution of the real

part of gϕ(p,q)
2g1(2p,q/2)

with the same ϕ as in Figure 1 and q = 5014 = 2× 23× 109,

p uniformly distributed in Z×
q , where φ(q) = 2376. The histogram on the right

shows the imaginary part of the corresponding quantities. The continuous
curves represent a numerical approximation to the real and imaginary part of
the probability density of the random variable G−

ϕ (x).

and (ab ) =
�s

i=1(
a
pi
)ri . The generalized quadratic residue symbol (or Jacobi symbol)

�
a
b

�
is

characterized by the following properties (cf. [18]):

(i)
�
a
b

�
= 0 if gcd(a, b) �= 1.

(ii) If b is an odd prime,
�
a
b

�
coincides with the ordinary quadratic residue symbol.

(iii) If b > 0,
� ·
b

�
defines a character modulo b.

(iv) If a �= 0,
�
a
·
�
defines a character modulo a divisor of 4a, whose conductor is the

conductor of Q(
√
a) over Q.

(v)
�

a
−1

�
= sgn a.

(vi)
�

0
±1

�
= 1.

In particular
�
a
b

�2
=1, if gcd(a, b) = 1.

We assume from now on that gcd(p, q) = 1.
The classical Gauss sum

(2.2) g1(p, q) =
�

h mod q

eq(ph
2).

can be evaluated explicitly in terms of the Jacobi symbol:

(2.3) g1(p, q) =






(1 + i) �−1
p ( qp)

√
q if q ≡ 0 mod 4

�q(
p
q )

√
q if q ≡ 1 mod 2

0 if q ≡ 2 mod 4,

with �a as defined before Theorem 1.
The following theorem is implicit in the papers of Fiedler, Jurkat and Körner [7] and

Oskolkov [15]

Theorem 3. For ϕ ∈ B(T),

(2.4) gϕ(p, q) =






g1(p, q)G+
ϕ

�
− p

q

�
if q ≡ 0 mod 4

g1(p, q)Gϕ
�
− 4p

q

�
if q ≡ 1 mod 2

2g1(2p, q/2)G−
ϕ

�
− 8p

q/2

�
if q ≡ 2 mod 4.

(In the first and second case, x denotes the inverse of x mod q, in the third the inverse mod
q/2.)
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Proof. Since the Fourier series of ϕ is absolutely convergent, we may assume without loss
of generality that ϕ(x) = e(kx) with k ∈ Z fixed. The proof is a then simple exercise in
completing the square (cf. [7]):

(i) q ≡ 0 mod 4: For k = 2n even,

(2.5)
�

h mod q

eq(ph
2 + 2nh) =

�

h mod q

eq
�
p(h+ np)2 − p(np)2

�
= g1(p, q) eq(−p n2).

For k odd,

�

h mod q

eq(ph
2 + kh) =

�

h mod q

eq

�
p

�
h+

q

2

�2

+ k

�
h+

q

2

��

= −
�

h mod q

eq(ph
2 + kh),

(2.6)

and therefore must be zero.
(ii) q ≡ 1 mod 2: For q odd, we may use the inverse of 2 mod q:

(2.7)
�

h mod q

eq(ph
2 + kh) =

�

h mod q

eq
�
p(h+ 2p k)2 − p(2p k)2

�
= g1(p, q) eq(−4p k2).

(iii) q ≡ 2 mod 4: We deduce claim (iii) from the previous case: Define q0 = q/2 and
p0 =

1
4(2p− q). Clearly q0 = 1 mod 2, gcd(p0, q0) = 1 and p

q = p0
q0

+ 1
2 . Then

(2.8)
�

h mod q

eq(ph
2 + kh) =

�

h mod 2q0

eq0

�
p0h

2 +
q0h2

2
+

kh

2

�
=

�

h mod 2q0

eq0

�
p0h

2 +
(k + q0)h

2

�
.

Hence, for k odd, k + q0 is even and eq. (2.7) yields that the right hand side of (2.8) equals

2g1(p0, q0)eq0

�
− 4p0

�
k + q0

2

�2�
= 2g1(p0, q0)eq0

�
− 16p0 (k + q0)

2
�

= 2g1(p0, q0)eq0
�
− 16p0 k

2
�

= 2g1(2p, q/2)eq/2
�
− 8p k2

�
.

(2.9)

Furthermore, g1(2p, q/2) = g1(2p, q/2), since ( 2
q/2) = ( 2

q/2). If k is even,

�

h mod 2q0

eq0

�
p0h

2 +
(k + q0)h

2

�
=

�

h mod 2q0

eq0

�
p0(h+ q0)

2 +
(k + q0)(h+ q0)

2

�

= −
�

h mod 2q0

eq0

�
p0h

2 +
(k + q0)h

2

�
.

(2.10)

This term therefore vanishes. �

3. Equidistribution mod q

The functional equations of incomplete Gauss sums stated in Theorem 3 lead us to consider
the joint distribution of p

q and p
q on the torus T2. The following statement is the second main

ingredient in the proof of Theorem 1.

Theorem 4. Let f ∈ C(T2). Then the following convergence holds uniformly in t ∈ Z×
q as

q → ∞:

(i) For any sequence of q,

(3.1)
1

φ(q)

�

p∈Z×
q

f

�
p

q
,
tp

q

�
→

�

T2
f(x)dx.
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(ii) If q ≡ 0 mod 4 is not a square then, for every σ ∈ {±1,±i},

(3.2)
1

φ(q)

�

p∈Z×
q

�p(
q
p )=σ

f

�
p

q
,
tp

q

�
→ 1

4

�

T2
f(x)dx.

(iii) If q ≡ 0 mod 4 then, for every σ ∈ {±1},

(3.3)
1

φ(q)

�

p∈Z×
q

p≡σ mod 4

f

�
p

q
,
tp

q

�
→ 1

2

�

T2
f(x)dx.

(iv) If q ≡ 1 mod 2 is not a square then, for every σ ∈ {±1},

(3.4)
1

φ(q)

�

p∈Z×
q

( pq )=σ

f

�
p

q
,
tp

q

�
→ 1

2

�

T2
f(x)dx.

Remark 4. The statement of Theorem 4 also holds for the test function

(3.5) f(x1, x2) = χD(x1)g(x2),

where χD is the characteristic function of a subset D ⊂ T with boundary of measure zero and
g ∈ C(T). This follows from a standard approximation argument.

Remark 5. The proof of Theorem 4 exploits the classic Weil bounds on (twisted) Kloosterman
and Salié sums. These directly yield explicit bounds on the rate of convergence in Theorem 4
for smooth test functions f .

The following two lemmas will be helpful in proving Theorem 4.

Lemma 2. Assume q ∈ N is not a square. Then there exists r ∈ Z such that r ≡ 1 mod 4
and ( qr ) = −1.

Proof. Let q = at00 a
t1
1 ...a

ts
s be the prime factorization of q, with a0 = 2. Since q is not a square,

at least one of the ti is odd. Suppose now this happens for index j, i.e., tj is odd, for some
0 ≤ j ≤ s.

Fix an integer c0 such that, if j = 0 then c0 ≡ 5 mod 8 and otherwise c0 ≡ 1 mod 8. Then�
2
c0

�
= −1 if j = 0 and otherwise

�
2
c0

�
= 1. In both cases of course c0 ≡ 1 mod 4.

Furthermore, let c1, . . . , cs be integers so that for i �= j, ci is a quadratic residue mod ai,
and for i = j, it is not. Hence

� ci
ai

�
= −1 if i = j and

� ci
ai

�
= 1 otherwise.

By the Chinese Remainder Theorem there is an integer r ≡ 1 mod 4 such that
�
2
r

�
=

�
2
c0

�

and
�

r
ai

�
=

� ci
ai

�
. Using quadratic reciprocity, we have for i �= 0

(3.6)

�
r

ai

�
= (−1)

r−1
2

ai−1
2

�
ai
r

�
=

�
ai
r

�
,

since r ≡ 1 mod 4. Using the multiplicativity of the Jacobi symbol we obtain

(3.7)

�
q

r

�
=

�
2

r

�t0�a1
r

�t1

· · ·
�
as
r

�ts

=

�
aj
r

�tj

= −1.

�
Lemma 3. (i) If q ≡ 0 mod 4 is not a square and σ ∈ {±1,±i}, then

�

p∈Z×
q

�p(
q
p )=σ

1 =
1

4
φ(q).
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(ii) If q ≡ 0 mod 4 and σ ∈ {±1}, then
�

p∈Z×
q

p≡σ mod 4

1 =
1

2
φ(q).

(iii) If q ≡ 1 mod 2 is not a square and σ ∈ {±1}, then
�

p∈Z×
q

( pq )=σ

1 =
1

2
φ(q).

Proof. (i) We have

(3.8)
�

p∈Z×
q

�p(
q
p )=σ

1 =
1

4

�

k∈Z4

σ−k
�

p∈Z×
q

�kp

�
q

p

�k

.

For k = 0, we have of course,

(3.9)
�

p∈Z×
q

1 = φ(q).

In the case k = 1, we need to show that

(3.10)
�

p∈Z×
q

�p

�
q

p

�
= 0.

By Lemma 2, we can find an r such that ( qr ) = −1 and r ≡ 1 mod 4. Since ( qr ) = −1 we have
r ∈ Z×

q and thus for every p ∈ Z×
q there is p̃ ∈ Z×

q such that rp̃ = p. Therefore,

�

p∈Z×
q

�p

�
q

p

�
=

�

p̃∈Z×
q

�rp̃

�
q

r

��
q

p̃

�

= −
�

p̃∈Z×
q

�rp̃

�
q

p̃

�
.

(3.11)

Since r ≡ 1 mod 4, we have �rp̃ = �p̃. Hence,

(3.12)
�

p∈Z×
q

�p

�
q

p

�
= −

�

p̃∈Z×
q

�p̃

�
q

p̃

�
= 0.

The case k = −1 is the complex conjugate of the case k = 1. For k = 2,

(3.13)
�

p∈Z×
q

�2p

�
q

p

�2

=
�

p∈Z×
q

�2p = 0,

since �2p = 1 or −1 if p ≡ 1 or 3 mod 4, respectively.
(ii) The proof follows from the k = 2 part of the proof for (i), since the assumption that q

is not a square is not relevant in this case.
(iii) We have for σ = ±1,

(3.14)
�

p∈Z×
q

( pq )=σ

1 =
1

2

�

k∈Z2

σ−k
�

p∈Z×
q

�
p

q

�k

.
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For k = 0, the sum is obviously equal to φ(q). The case k = 1 corresponds to the well known
identity

(3.15)
�

p∈Z×
q

�
p

q

�
= 0.

�

Proof of Theorem 4. We start with the most difficult case (ii). To prove this claim, it
suffices (in view of Lemma 3 (ii) and Weyl’s criterion) to show that

(3.16) lim
q→∞

1

φ(q)

�

p∈Z×
q

�p(
q
p )=σ

e

�
mp+ ntp

q

�
= 0

for every fixed (m,n) ∈ Z2 \ {(0, 0)}, uniformly in t ∈ Z×
q . We have

(3.17)
�

p∈Z×
q

�p(
q
p )=σ

e

�
mp+ ntp

q

�
=

�

k∈Z4

σ−k
�

p∈Z×
q

�kp

�
q

p

�k

e

�
mp+ ntp

q

�
.

For k = 0 the inner sum is the Kloosterman sum

(3.18) K(m,nt, q) =
�

p∈Z×
q

e

�
mp+ ntp

q

�
,

for which we have the classical Weil bound |K(m,nt, q)| ≤ gcd(m,nt, q)1/2q1/2τ(q), see [5].
Since m and n are fixed and gcd(t, q) = 1, gcd(m,nt, q)1/2 = gcd(m,n, q)1/2 is bounded
above. Furthermore τ(q) �� q� for any � > 0. Since φ(q) �� q1−� for any � > 0, we see that
φ(q)−1K(m,nt, q) tends to zero, uniformly in t ∈ Z×

q as q → ∞, as required.
The case k = 1 (k = −1) leads to the twisted Kloosterman sum

(3.19) Sθ(m,nt, q) =
�

p∈Z×
q

�p

�
q

p

�
e

�
mp+ ntp

q

�

(and the complex conjugate of Sθ(−m,−nt, q)). Here we have the same bound as for Kloost-
erman sums, |Sθ(m,nt, q)| ≤ gcd(m,n, q)1/2q1/2τ(q), see [3] (but also the more recent [4]). We
conclude that the contribution of the k = ±1 term also tends to zero uniformly in t.

The case k = 2 leads to

(3.20)
�

p∈Z×
q

�2pe

�
mp+ ntp

q

�
=

�

p∈Z×
q

e

�
p− 1

4
+

mp+ ntp

q

�
= −iK

�
m+

q

4
, nt, q

�

and is thus reduced to Kloosterman sums. This proves the case (ii).
Case (iii) reduces to the same estimates as in case (ii) k = 2.
Case (iv) is analogous, but here the estimates reduce to bounds on Salié sums

(3.21) S(m,nt, q) =
�

p∈Z×
q

�
p

q

�
e

�
mp+ ntp

q

�
,

which are the same as the above for the (twisted) Kloosterman sums.
Case (i) of course follows from the classical Weil bound for Kloosterman sums. �
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4. Proof of Theorem 1

Case 1a: q ≡ 0 mod 4, q not a square. We need to show that for any bounded continuous
F : C → C we have

(4.1)
1

φ(q)

�

p∈Z×
q

�p(
q
p )=σ

χD

�
p

q

�
F

�
gϕ(p, q)

g1(p, q)

�
→ |D|

4

�

T
F (G+

ϕ (x))dx.

In view of Theorem 3, this is equivalent to

(4.2)
1

φ(q)

�

p∈Z×
q

�p(
q
p )=σ

χD

�
p

q

�
F

�
G+

ϕ

�
− p

q

��
→ |D|

4

�

T
F (G+

ϕ (x))dx.

Since G+
ϕ and F are continuous, the latter statement follows from Theorem 4 (ii) and subse-

quent remark, if we choose the test function

(4.3) f(x1, x2) = χD(x1)F (G+
ϕ (−x2)).

Case 1b: q ≡ 0 mod 4, q is a square. We proceed as in Case 1b, and note that the condition
�p = 1 (�p = i) is equivalent to p ≡ 1 mod 4 (p ≡ −1 mod 4). The statement follows from
Theorem 4 (iii).

Case 2a: q ≡ 1 mod 2, q not a square. In this case, the statement to be proved reduces
(again using Theorem 3) to

(4.4)
1

φ(q)

�

p∈Z×
q

( pq )=σ

χD

�
p

q

�
F

�
Gϕ

�
− 4p

q

��
→ |D|

2

�

T
F (Gϕ(x))dx.

which follows from Theorem 4 (iv) with t = 4.
Case 2b: q ≡ 1 mod 2, q is a square. Analogous to Case 2a, except that we employ

Theorem 4 (i).
Case 3a: q ≡ 2 mod 4, q not a square. Following the same strategy as above, we deduce

that the claim of the theorem is equivalent to

(4.5)
1

φ(q)

�

p∈Z×
q

( 2p
q/2 )=σ

χD

�
p

q

�
F

�
G−

ϕ

�
− 8p

q/2

��
→ |D|

2

�

T
F (G−

ϕ (x))dx.

As in the proof of Theorem 3 (iii), we substitute q = 2q0 and p = 2p0 + q0, i.e., q0 = q/2 and
p0 =

1
4(2p− q). Note that this map describes a bijection Z×

q → Z×
q0 . Hence (4.5) is equivalent

to

(4.6)
1

φ(q)

�

p∈Z×
q0

(
p0
q0

)=σ

χD

�
p0
q0

+
1

2

�
F

�
G−

ϕ

�
− 16p0

q0

��
→ |D|

2

�

T
F (G−

ϕ (x))dx,

which is again implied by Theorem 4 (iv).
Case 3b: q ≡ 2 mod 4, q is a square. Analogous to Case 3a, except that we use Theorem

4 (i). �

5. Mean-square estimates

The key step in the proof of Theorem 2 is the estimate on the mean-square given in Lemma
1.
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Proof of Lemma 1. We have

M2,ϕ(q) ≤
1

|D|φ(q)
�

m∈Zq

|gϕ(m, q)|2

≤ q

|D|φ(q)
�

h,h�∈Zq

h2≡h�2 mod q

����ϕ
�
h

q

�
ϕ

�
h�

q

�����.
(5.1)

Take ψ ∈ B(T) such that |ϕ(x)| ≤ ψ(x) for all x ∈ T. Then

M2,ϕ(q) ≤
q

|D|φ(q)
�

h,h�∈Zq

h2≡h�2 mod q

ψ

�
h

q

�
ψ

�
h�

q

�

=
1

|D|φ(q)
�

m∈Zq

|gψ(m, q)|2

=
1

|D|φ(q)
�

r|q

�

p∈Z×
q/r

|gψr(p, q/r)|2

(5.2)

where (recall (1.2))

(5.3) ψr(x) =
r−1�

k=0

ψ

�
x+ k

r

�
.

The Fourier series of this function is

(5.4) ψr(x) = r
�

n∈Z

�ψrne(nx),

where �ψk are the Fourier coefficients of ψ. We have thus shown that

(5.5) M2,ϕ(q) ≤
1

|D|φ(q)
�

r|q

φ

�
q

r

�
M (D=T)

2,ψr

�
q

r

�
≤ q

|D|φ(q)
�

r|q

1

r
M (D=T)

2,ψr

�
q

r

�
.

By Corollary 2, for every fixed r,

(5.6) lim
q→∞

1

q
M2,ψr

�
q

r

�
≤ 2r

�
| �ψ0|2 +

∞�

n=1

| �ψrn + �ψ−rn|2
�

≤ 2r

�
| �ψ0|2 +

∞�

n=1

| �ψn + �ψ−n|2
�
.

The right hand side is bounded by 4r�ψ�22. The convergence is uniform in r, if we assume ψ
has a finite Fourier series. In this case, we therefore have

(5.7) lim sup
q→∞

d(q)≤N

M2,ϕ(q)

q
≤ CN

|D| �ψ�
2
2.

Since ϕ is Riemann integrable, given any � > 0, there exist ψ with finite Fourier series such
that (a) |ϕ| < ψ (as required in (5.2)) and (b) �|ϕ|−ψ�2 < �. This proves that the right hand
side of (5.7) is arbitrarily close to CN

|D| �ϕ�
2
2. �

6. Proof of Theorem 2

The following lemma says that the sequence probability measures defined by the value
distribution of incomplete Gauss sums is tight. By the Helly-Prokhorov theorem, this means
that the sequence is relatively compact, i.e., every sequence contains a convergent subsequence.
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Lemma 4. Fix N . For every � > 0 there exists K� > 0 such that

(6.1) lim sup
q→∞

d(q)≤N

1

φ(q)

��{p ∈ Z×
q : q−1/2|gϕ(p, q)| > K�}

�� < ��ϕ�22

for any Riemann integrable ϕ : T → C.

Proof. We have, by Chebyshev’s inequality

(6.2)
1

φ(q)

��{p ∈ Z×
q : q−1/2|gϕ(p, q)| > K}

�� < M2,ϕ(q)

K2q
.

The claim now follows from Lemma 1. �

Chebyshev’s inequality (6.2) also implies the following.

Lemma 5. Fix N . Let ϕ : T → C be Riemann integrable. Then, for every � > 0, δ > 0 there
exists ψ ∈ B(T) and such that

(6.3) lim sup
q→∞

d(q)≤N

1

φ(q)

��{p ∈ Z×
q : q−1/2|gϕ(p, q)− gψ(p, q)| > δ}

�� < �.

Proof. This follows immediately from (6.2); note that gϕ(p, q) − gψ(p, q) = gϕ−ψ(p, q) and
ϕ− ψ is Riemann integrable. �

We now turn to the proof of Theorem 2. We restrict ourselves to Case 1a where q ≡ 0 mod 4;
the other cases are analogous. The relative compactness implied by Lemma 4 can be stated
as follows. Any sequence of q → ∞ with d(q) ≤ N contains a subsequence {qj} with the
property: there is a probability measure ν on {±1 ± i} × C such that for any σ ∈ {±1 ± i}
and any bounded continuous function F : C → C we have

(6.4) lim
j→∞

1

|D|φ(qj)
�

p∈Z×
qj∩qjD

�p(
qj
p )=σ

F

�
gϕ(p, qj)

g1(p, qj)

�
=

�

C
F (z)ν(σ, dz).

The probability measure ν may depend on the choice of subsequence, ϕ and on D.
Let us now show that for every F ∈ C∞

0 (C) (infinitely differentiable and of compact support)
the limit

(6.5) Iϕ(F ) := lim
q→∞

d(q)≤N

1

|D|φ(q)
�

p∈Z×
q ∩qD

�p(
q
p )=σ

F

�
gϕ(p, q)

g1(p, q)

�

exists. Iϕ(F ) must then be equal to the right hand side of (6.4), which in fact means that ν
is unique and the full sequence of q converges.

To prove the existence of Iϕ(F ), note first of all that since F ∈ C∞
0 (C) we have |F (w) −

F (z)| ≤ Cmin{1, |w − z|} for some constant C > 0. Therefore, for ψ, δ, � as in Lemma 5, we
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have

1

|D|φ(q)
�

p∈Z×
q ∩qD

�p(
q
p )=σ

����F
�
gϕ(p, q)

g1(p, q)

�
− F

�
gψ(p, q)

g1(p, q)

�����

≤ C

|D|φ(q)
�

p∈Z×
q ∩qD

�p(
q
p )=σ

min

�
1,

����
gϕ(p, q)

g1(p, q)
−

gψ(p, q)

g1(p, q)

����

�

≤ C

|D|φ(q)
�

p∈Z×
q

min

�
1,

����
gϕ(p, q)

g1(p, q)
−

gψ(p, q)

g1(p, q)

����

�

≤ C

|D|(2
1/2δ + �).

(6.6)

Since the limit Iψ(F ) exists by Theorem 1, the sequence

(6.7)
1

|D|φ(q)
�

p∈Z×
q ∩qD

�p(
q
p )=σ

F

�
gψ(p, q)

g1(p, q)

�

defines a Cauchy sequence. Using this fact, the bound (6.6) and the triangle inequality, we
see that

(6.8)
1

|D|φ(q)
�

p∈Z×
q ∩qD

�p(
q
p )=σ

F

�
gϕ(p, q)

g1(p, q)

�

is a Cauchy sequence, too, and hence Iϕ(F ) exists. As mentioned earlier, this means that
Iϕ(F ) must then be equal to the right hand side of (6.4), which in fact means that ν is unique
and the full sequence of q converges for every bounded continuous F .

The bound (6.6) furthermore implies that Iψ(F ) → Iϕ(F ), as ψ → ϕ in L2(T). This
completes the proof of Theorem 2.

7. Numerics

The computations used in Figures 1–3 were carried out with Mathematica. We encoded the

real and imaginary part of the incomplete Gauss sum gϕ(p,q)
g1(p,q)

− T
q (where ϕ is the characteristic

function of the interval [0, Tq ] ⊂ [0, 1]) as

ReGauss[p_, q_, T_] :=

If[GCD[p, q] == 1,

Re[Sum[Exp[2*Pi*I*h^2*p/q], {h, 1, T}]/

Sum[Exp[2*Pi*I*h^2*p/q], {h, 1, q}]] - T/q, Infinity]

ImGauss[p_, q_, T_] :=

If[GCD[p, q] == 1,

Im[Sum[Exp[2*Pi*I*h^2*p/q], {h, 1, T}]/

Sum[Exp[2*Pi*I*h^2*p/q], {h, 1, q}]], Infinity]

and formed a table comprising the values for all integers p < q. Whenever gcd(p, q) �= 1 the
value ∞ is assigned, which is ignored by Mathematica’s Histogram command.

The probability density of real/imaginary part of G+
ϕ and Gϕ in Figures 1 and 2 was plotted

via the SmoothHistogram command, where we truncated the Fourier series G+
ϕ (x) and Gϕ(x)

at n = 4000 and sampled x at 300,000 random points in [0, 1]. As the distribution of real
and imaginary part of G−

ϕ are the same, we only computed ImG−
ϕ in Figure 3, truncated at

n = 5000 and with 500,000 sample points.
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