CORRECTION TO "PAIR CORRELATION DENSITIES OF INHOMOGENEOUS QUADRATIC FORMS, II"

JENS MARKLOF

The set $C \subset \mathbb{T}^k$ in [1, Th. 1.7] is wrongly characterized as a set of second Baire category since we explicitly restrict *C* to Diophantine vectors of type (k-1)/(k-2). *C* is instead only a dense subset in \mathbb{T}^k . The correct statement of [1, Th. 1.7] is as follows.

THEOREM 1.7

Let k > 2. For any a > 0, there exists a dense set $C \subset \mathbb{T}^k$ for which the following hold.

- (i) All $\boldsymbol{\alpha} \in C$ are Diophantine of type $\kappa = (k-1)/(k-2)$, and the components of the vector $(\boldsymbol{\alpha}, 1) \in \mathbb{R}^{k+1}$ are linearly independent over \mathbb{Q} .
- (ii) For $\alpha \in C$, we find arbitrarily large X such that

$$R_2[-a,a](X) \ge \frac{\log X}{\log \log \log X}.$$

(iii) For $\alpha \in C$, there exists an infinite sequence $L_1 < L_2 < \cdots \rightarrow \infty$ such that

$$\lim_{j \to \infty} R_2[-a, a](L_j) = 2\pi a.$$

Proof

One follows the argument in [1, pp. 432–433] (cf. also [2, Sec. 9]) to show that for each fixed badly approximable (k - 2)-tuple $(\alpha_1, \ldots, \alpha_{k-2})$ there is a set of second Baire category of $(\alpha_{k-1}, \alpha_k) \in \mathbb{T}^2$ such that conditions (i), (ii), and (iii) of Theorem 1.7 hold for $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_k)$. Because the set of badly approximable (k - 2)-tuples is dense in \mathbb{T}^{k-2} , and the set of second Baire category of (α_{k-1}, α_k) is dense in \mathbb{T}^2 , the set *C* of $\boldsymbol{\alpha}$ satisfying conditions (i), (ii), and (iii) of Theorem 1.7 is dense in \mathbb{T}^k . \Box

DUKE MATHEMATICAL JOURNAL Vol. 120, No. 1, © 2003 Received 19 June 2003. 2000 Mathematics Subject Classification. Primary 11P21; Secondary 11F27, 22E40, 58F11.

References

[1]	J. Marklof, Pair correlation densities of inhomogeneous quadratic forms, II, Duke
	Math. J. 115 (2002), 409-434. CMP 1 940 408 227
[2]	, Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math

(2) **158** (2003), 419–471. 227

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom; j.marklof@bristol.ac.uk