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PAIR CORRELATION DENSITIES OF
INHOMOGENEOUS QUADRATIC FORMS, II

JENS MARKLOF

Abstract
Denote by‖ · ‖ the Euclidean norm inRk. We prove that the local pair correlation
density of the sequence‖m − α‖

k, m ∈ Zk, is that of a Poisson process, under
Diophantine conditions on the fixed vectorα ∈ Rk: in dimension two, vectorsα of
any Diophantine type are admissible; in higher dimensions (k> 2), Poisson statistics
are observed only for Diophantine vectors of typeκ < (k − 1)/(k − 2). Our findings
support a conjecture of M. Berry and M. Tabor on the Poisson nature of spectral
correlations in quantized integrable systems.

1. Introduction

1.1
Berry and Tabor [1] have conjectured that the local correlations of quantum energy
levels of integrable systems are those of independent random numbers from a Poisson
process. We present here a proof of this conjecture for the two-point correlations of
the sequence

0 ≤ λ1 ≤ λ2 ≤ · · · → ∞,

given by the values of

‖m − α‖
2

= (m1 − α1)
2
+ · · · + (mk − αk)

2

at lattice pointsm = (m1, . . . ,mk) ∈ Zk, for fixed α = (α1, . . . , αk) ∈ Rk. These
numbers represent the eigenvalues of the Laplacian

−1 = −
∂2

∂x2
1

− . . .−
∂2

∂x2
k
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on the flat torusTk with quasi-periodicity conditions

ϕ(x + l ) = e−2π iα·lϕ(x), l ∈ Zk,

and may therefore be viewed as energy levels of the quantized geodesic flow. Statis-
tical properties of the above sequence were first studied by Z. Cheng, J. Lebowitz,
and P. Major [3], [4] in dimensionk = 2. We extend here our studies [11], [12] to
dimensionsk ≥ 2.

Previous results on the Berry-Tabor conjecture for flat tori include [6], [8], [13]
in dimensionk = 2 and [18], [17], [19] for k > 2. For more details and references,
see [2], [8], [10], [14].

1.2
We are interested in the local correlations between theλ j on the scale of the mean
spacing. Because the mean density is increasing asλ → ∞, that is,

1

λ
#{ j : λ j ≤ λ} =

1

λ
#{m ∈ Zk

: ‖m − α‖
2

≤ λ} ∼ Bkλ
k/2−1,

where Bk is the volume of the unit ball, it is necessary to rescale the sequence by
setting

X j = λ
k/2
j .

Then
1

X
#{ j : X j ≤ X} =

1

X
#{m ∈ Zk

: ‖m − α‖
k

≤ X} → Bk

for X → ∞, and hence the mean spacing is constant, as required.

1.3
Thepair correlation densityof a sequence with constant mean densityD is defined
as

R2[a,b](X) =
1

DX
#{i 6= j : Xi , X j ∈ [X,2X], Xi − X j ∈ [a,b]}.

We recall the following classical result.

THEOREM 1.4
If the Xj come from a Poisson process with mean density D, one has

lim
X→∞

R2[a,b](X) = D(b − a)

almost surely.



INHOMOGENEOUS QUADRATIC FORMS, II 411

1.5
We prove here a similar result for thedeterministic sequence in Section1.1,
which holds, however, only under Diophantine conditions onα. The vectorα =

(α1, . . . , αk) ∈ Rk is said to beDiophantine of typeκ if there exists a constantC
such that

max
j

∣∣∣α j −
m j

q

∣∣∣ > C

qκ

for all m1, . . . ,mk,q ∈ Z, q > 0. The smallest possible value forκ is κ = 1 + 1/k.
In this case,α is calledbadly approximable.

THEOREM 1.6
Suppose thatα is Diophantine of typeκ < (k − 1)/(k − 2) and that the components
of the vector(α,1) ∈ Rk+1 are linearly independent overQ. Then

lim
X→∞

R2[a,b](X) = Bk(b − a).

The condition in Theorem1.6 is satisfied if, for instance, the components of(α,1)
form a basis of a real algebraic number field of degreek+1. In this case,κ = 1+1/k
(see [15]).

The conditionκ < (k − 1)/(k − 2) in Theorem1.6 is sharp.

THEOREM 1.7
Let k > 2. For any a> 0, there exists a set C⊂ Tk of second Baire category for
which the following holds.
(i) All α ∈ C are Diophantine of typeκ = (k − 1)/(k − 2), and the components

of the vector(α,1) ∈ Rk+1 are linearly independent overQ.
(ii) For α ∈ C, we find arbitrarily large X such that

R2[−a,a](X) ≥
log X

log log logX
.

(iii) For α ∈ C, there exists an infinite sequence L1 < L2 < · · · → ∞ such that

lim
j →∞

R2[−a,a](L j ) = 2πa.

In Theorem1.7(ii), log log log X may be replaced by any slowly increasing positive
functionν(X) ≤ log log logX with ν(X) → ∞ asX → ∞.

Without imposing any Diophantine condition, the rate of divergence may be even
worse.
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THEOREM 1.8
For any a > 0, there exists a set C⊂ Tk of second Baire category for which the
following holds.
(i) For α ∈ C, the components of the vector(α,1) ∈ Rk+1 are linearly indepen-

dent overQ.
(ii) For α ∈ C, we find arbitrarily large X such that

R2[−a,a](X) ≥


log X

log log logX (k = 2),

X(k−2)/k

log log logX (k > 2).

(iii) For α ∈ C, there exists an infinite sequence L1 < L2 < · · · → ∞ such that

lim
j →∞

R2[−a,a](L j ) = 2πa.

Again, log log logX may be replaced by any slowly increasing positive function
ν(X) ≤ log log logX with ν(X) → ∞ asX → ∞.

Theorems1.7and1.8are proved in Section8.

2. Rescaling

2.1
We see in this section how Theorem1.6, which is the central result of this paper,
follows as a straightforward corollary from the asymptotics of the generalized pair
correlation function

R2(ψ, λ) =
1

Bkλk/2

∞∑
i, j =1

ψ
(λi

λ
,
λ j

λ
, λk/2−1(λi − λ j )

)
with ψ ∈ C0(R+

× R+
× R), that is, continuous and of compact support.

THEOREM 2.2
Let ψ ∈ C0(R+

× R+
× R). Suppose that the components of(α,1) ∈ Rk+1 are

linearly independent overQ, and assume thatα is Diophantine of typeκ < (k −

1)/(k − 2). Then

lim
λ→∞

R2(ψ, λ) =
k

2

∫
∞

0
ψ(r, r,0)r k/2−1 dr +

k2

4
Bk

∫
R

∫
∞

0
ψ(r, r, s)r k−2 dr ds.
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2.3. Theorem2.2⇒ Theorem1.6.
Let us now show how Theorem2.2 implies Theorem1.6. Forψ1, ψ2 ∈ C0(R+) with
support in the compact intervalI not containing the origin zero, andσ ∈ C0(R), we
define

ψ(r1, r2, s) = ψ1(r
k/2
1 )ψ2(r

k/2
2 )σ

(
ρ(r1, r2)s

)
with

ρ(r1, r2) =
r k/2
1 − r k/2

2

r1 − r2
=


∑k/2
ν=1 r k/2−ν

1 r ν−1
2 (k even),

1
r 1/2
1 +r 1/2

2

∑k
ν=1 r (k−ν)/2

1 r (ν−1)/2
2 (k odd).

It is evident that we can find a constantδ > 0 such that

δ < ρ(r1, r2) <
1

δ

uniformly for all r1, r2 ∈ I .
The assumptions onψ in Theorem2.2are therefore satisfied, giving

lim
λ→∞

1

Bkλk/2

∞∑
i, j =1

ψ1

(λk/2
i

λk/2

)
ψ2

(λk/2
j

λk/2

)
σ(λ

k/2
i − λ

k/2
j )

=
k

2
σ(0)

∫
∞

0
ψ1(r

k/2)ψ2(r
k/2)r k/2−1 dr

+
k2

4
Bk

∫
R

∫
∞

0
ψ1(r

k/2)ψ2(r
k/2)σ

(
ρ(r, r )s

)
r k−2 dr ds.

With ρ(r, r ) = (k/2)r k/2−1 and the substitutionsX = λk/2, x = r k/2, ands 7→

s/ρ(r, r ), we finally have

lim
X→∞

1

Bk X

∞∑
i, j =1

ψ1

( Xi

X

)
ψ2

( X j

X

)
σ(Xi − X j )

= σ(0)
∫

∞

0
ψ1(x)ψ2(x)dx + Bk

∫
R
σ(s)ds

∫
∞

0
ψ1(x)ψ2(x)dx.

The first term on the right-hand side comes obviously from the diagonal termsXi =

X j (use the asymptotics in Sec.1.2), so

lim
X→∞

1

Bk X

∑
i 6= j

ψ1

( Xi

X

)
ψ2

( X j

X

)
σ(Xi − X j ) = Bk

∫
R
σ(s)ds

∫
∞

0
ψ1(x)ψ2(x)dx,

which is a smoothed version of Theorem1.6. We complete the proof by quoting a
standard density argument (cf. [12, proof of Th. 1.8]) in which the characteristic func-
tions of the intervals[1,2], [1,2], and[a,b] are approximated from above and below
by smooth functionsψ1, ψ2, andσ , respectively.
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2.4
It is sufficient to restrict our attention to the following special case of Theorem2.2.
Put

R2(ψ1, ψ2, h, λ) =
1

Bkλk/2

∞∑
i, j =1

ψ1

(λi

λ

)
ψ2

(λ j

λ

)
ĥ
(
λk/2−1(λi − λ j )

)
.

Hereψ1, ψ2 ∈ S (R+) are real valued, andS (R+) denotes the Schwartz class of
infinitely differentiable functions of the half-lineR+ (including the origin) which,
as well as their derivatives, decrease rapidly at+∞; ĥ is the Fourier transform of a
compactly supported functionh ∈ C0(R),

ĥ(s) =

∫
R

h(u)e
(1

2
us

)
du,

with the shorthande(z) := e2π iz.
We prove the following in Section7.

THEOREM 2.5
Letψ1, ψ2 ∈ S (R+), and let h∈ C0(R). Suppose that the components of(α,1) ∈

Rk+1 are linearly independent overQ, and assume thatα is Diophantine of type
κ < (k − 1)/(k − 2). Then

lim
λ→∞

R2(ψ1, ψ2, h, λ) =
k

2
ĥ(0)

∫
∞

0
ψ1(r )ψ2(r )r

k/2−1 dr

+
k2

4
Bk

∫
ĥ(s)ds

∫
∞

0
ψ1(r )ψ2(r )r

k−2 dr.

2.6. Theorem2.5⇒ Theorem2.2.
For any fixedε > 0, we find finite linear combinations (cf. [12, Sec. 8.6])

ψ±(r1, r2, s) =

∑
ν

ψ±

1,ν(r1)ψ
±

2,ν(r2)ĥ
±
ν (s)

of functions satisfying the conditions of Theorem2.5such that

ψ−(r1, r2, s) ≤ ψ(r1, r2, s) ≤ ψ+(r1, r2, s)

and ∫∫ (
ψ+(r, r, s)− ψ−(r, r, s)

)
r k−2 dr ds< ε.

Theorem2.5tells us that

lim
λ→∞

1

Bkλk/2

∑
i 6= j

ψ±

(λi

λ
,
λ j

λ
, λk/2−1(λi − λ j )

)
=

k2

4
Bk

∫∫
ψ±(r, r, s)r k−2 dr ds.
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(Recall that the first term in Th.2.5 comes trivially from the diagonal termsi = j .)
This implies

lim sup
λ→∞

1

Bkλk/2

∑
i 6= j

ψ
(λi

λ
,
λ j

λ
, λk/2−1(λi − λ j )

)
≤

k2

4
Bk

(∫∫
ψ(r, r, s)r k−2 dr ds+ ε

)
and

lim inf
λ→∞

1

Bkλk/2

∑
i 6= j

ψ
(λi

λ
,
λ j

λ
, λk/2−1(λi − λ j )

)
≥

k2

4
Bk

(∫∫
ψ(r, r, s)r k−2dr ds− ε

)
.

Because these inequalities hold for arbitrarily smallε > 0, Theorem2.2 must be
true.

3. Outline of the proof of Theorem2.5
Using the Fourier transform, we may write

R2(ψ1, ψ2, h, λ)

=
1

Bk

∫ (
1

λk/4

∑
j

ψ1

(λ j

λ

)
e
(1

2
λ j λ

k/2−1u
))

×

(
1

λk/4

∑
j

ψ2

(λ j

λ

)
e
(1

2
λ j λk/2−1u

))
h(u)du

=
1

Bkλk/2−1

∫ (
1

λk/4

∑
j

ψ1

(λ j

λ

)
e
(1

2
λ j u

))

×

(
1

λk/4

∑
j

ψ2

(λ j

λ

)
e
(1

2
λ j u

))
h(λ−(k/2−1)u)du.

The sum

θψ (u, λ) =
1

λk/4

∑
j

ψ
(λ j

λ

)
e
(1

2
λ j u

)
is identified as a Jacobi theta sum living on a certain noncompact but finite-volume
manifold6 (see Sec.4). The integration in

R2(ψ1, ψ2, h, λ) =
1

Bk
λ−(k/2−1)

∫
θψ1(u, λ)θψ2(u, λ)h(λ

−(k/2−1)u)du
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amounts to averaging along a unipotent orbit on6, which becomes equidistributed
asλ → ∞ (see Sec.5). Diophantine conditions onα are necessary to secure the
convergence of the limit (see Sec.6).

The equidistribution theorem then yields

1

µ(6)

∫
6

θψ1θψ2 dµ
∫

h(u)du,

whereµ is the invariant measure. The first integral can be calculated quite easily (see
Sec.7), and we see that

1

µ(6)

∫
6

θψ1θψ2 dµ
∫

h(u)du =
k

2
Bk

∫
ψ1(r )ψ2(r ) r

k/2−1 dr
∫

h(u)du,

which finally yields
k

2
Bkĥ(0)

∫
ψ1(r )ψ2(r ) r

k/2−1 dr

(cf. the first term in Th.2.5).
An additional contribution comes from an arc of the orbit, which vanishes into the

cusp. Even though the length of that arc tends to zero, the average over the unbounded
theta function gives a nonvanishing contribution

k2

2
B2

k h(0)
∫
ψ1(r )ψ2(r ) r

k−2 dr =
k2

4
B2

k

∫
ĥ(u)du

∫
ψ1(r )ψ2(r ) r

k−2 dr,

which corresponds to the second term in Theorem2.5.

4. Theta sums

4.1
Consider the semidirect product groupGk

= SL(2,R)n R2k with multiplication law

(M; ξ)(M ′
; ξ ′) = (M M ′

; ξ + Mξ ′),

whereM,M ′
∈ SL(2,R) andξ , ξ ′

∈ R2k; the action of SL(2,R) on R2k is defined
canonically as

Mξ =

(
ax + by
cx + d y

)
, M =

(
a b
c d

)
, ξ =

(
x
y

)
,

wherex, y ∈ Rk. A convenient parametrization of SL(2,R) can be obtained by means
of the Iwasawa decomposition

M =

(
1 u
0 1

) (
v1/2 0

0 v−1/2

) (
cosφ − sinφ
sinφ cosφ

)
,

which is unique forτ = u + iv ∈ H, φ ∈ [0,2π), whereH denotes the upper half-
planeH = {τ ∈ C : Im τ > 0}.
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4.2
For any Schwartz functionf ∈ S (Rk), we define theJacobi theta sum2 f by

2 f (τ, φ; ξ) = vk/4
∑

m∈Zk

fφ
(
(m − y)v1/2) e

(1

2
‖m − y‖2u + m · x

)
,

where

fφ(w) =

∫
Rk

Gφ(w,w
′) f (w′)dw′

with the integral kernel

Gφ(w,w
′) = e

(
−

kσφ
8

)
| sinφ|

−k/2e
[ (1/2)(‖w‖

2
+ ‖w′

‖
2) cosφ − w · w′

sinφ

]
,

whereσφ = 2ν + 1 whenνπ < φ < (ν + 1)π , ν ∈ Z. The operatorsUφ
: f 7→ fφ

are unitary (see [7], [9] for details). Note, in particular,U0
= id.

The proofs of the remaining statements in this section are found in [12, Sec. 4].

LEMMA 4.3
Let fφ = Uφ f with f ∈ S (Rk). Then, for any R> 1, there is a constant cR such
that for all w ∈ Rk, φ ∈ R, we have

| fφ(w)| ≤ cR(1 + ‖w‖)−R.

4.4
Let us consider the following discrete subgroup inGk:

0k
=

{((
a b
c d

)
;

(
abs
cds

)
+ m

)
:

(
a b
c d

)
∈ SL(2,Z), m ∈ Z2k

}
⊂ Gk

with s = (1/2,1/2, . . . ,1/2) ∈ Rk.

LEMMA 4.5
0k is generated by the elements((

0 −1
1 0

)
; 0

)
,

((
1 1
0 1

)
;

(
s
0

))
,

((
1 0
0 1

)
; m

)
, m ∈ Z2k.

PROPOSITION4.6
The left action of the group0k on Gk is properly discontinuous. A fundamental do-
main of0k in Gk is given by

F0k = FSL(2,Z) × {φ ∈ [0, π)} ×

{
ξ ∈

[
−

1

2
,

1

2

)2k}
.
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whereFSL(2,Z) is the fundamental domain inH of the modular groupSL(2,Z), given
by {τ ∈ H : u ∈ [−1/2,1/2), |τ | > 1}.

PROPOSITION4.7
For f, g ∈ S (Rk),2 f (τ, φ; ξ)2g(τ, φ; ξ) is invariant under the left action of0k.

PROPOSITION4.8
Let f, g ∈ S (Rk). For any R> 1, we have

2 f

(
τ, φ;

(
x
y

))
2g

(
τ, φ;

(
x
y

))
= vk/2

∑
m∈Zk

fφ
(
(m − y)v1/2)gφ((m − y)v1/2

)
+ OR(v

−R)

uniformly for all (τ, φ; ξ) ∈ Gk with v > 1/2. In addition,

2 f

(
τ, φ;

(
x
y

))
2g

(
τ, φ;

(
x
y

))
= vk/2 fφ

(
(n − y)v1/2)gφ((n − y)v1/2

)
+ OR(v

−R)

uniformly for all (τ, φ; ξ) ∈ Gk with v > 1/2, y ∈ n + [−1/2,1/2]
k, andn ∈ Zk.

LEMMA 4.9
The subgroup

0θ n Z2k,

where

0θ =

{(
a b
c d

)
∈ SL(2,Z) : ab ≡ cd ≡ 0 mod 2

}
is the theta group, is of index three in0k.

LEMMA 4.10
0k is of finite index inSL(2,Z)n ((1/2)Z)2k.

4.11
Note: The theta sum defined in this section is related to the sumθψ1(u, λ) in Section
3 by

θψ1(u, λ)θψ2(u, λ) = 2 f

(
u + i

1

λ
,0;

(
0
α

))
2g

(
u + i

1

λ
,0;

(
0
α

))
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with
f (w) = ψ1(‖w‖

2), g(w) = ψ2(‖w‖
2).

5. Equidistribution
THEOREM 5.1
Let0 be a subgroup ofSL(2,Z)nZ2k of finite index, and assume that the components
of the vector(y,1) ∈ Rk+1 are linearly independent overQ. Let h be a continuous
functionR → R+ with compact support. Then, for any bounded continuous function
F on0\Gk and anyσ ≥ 0, we have

lim
v→0

vσ
∫

R
F

(
u + iv,0;

(
0
y

))
h(vσu)du =

1

µ(0\Gk)

∫
0\Gk

F dµ
∫

h(w)dw,

whereµ is the Haar measure of Gk.

Proof
For σ = 0, the above statement is proved in [12, Th. 5.7] (see also N. Shah’s more
general [16, Th. 1.4]). The case whereσ > 0 is easier and, in fact, follows from the
result forσ = 0 since the translate of the unipotent orbit is expanding at a faster rate.

As in [12, Sec. 5], we define the unipotent flow9 t
: 0\Gk

→ 0\Gk by right
translation with

9 t
0 =

((
1 t
0 1

)
; 0

)
,

and, furthermore, we define the flow8t
: 0\Gk

→ 0\Gk by right translation with

8t
0 =

((
e−t/2 0

0 et/2

)
; 0

)
.

By [12, Th. 5.7], the orbit segment

0

{(
u + ie−t ,0;

(
0
y

))
: u ∈ [−1,1]

}
is dense in0\Gk in the limit t → ∞. Hence we find a sequence{ut }t∈R+

with
ut ∈ [−1,1] such that

0gt := 0

(
ut + ie−t ,0;

(
0
y

))
= 0

(
1;

(
0
y

))
9ut8t

converges in the limitt → ∞ to a generic point in0\Gk. Theorem 2 in [5] implies
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then that for any constantB 6= 0,

1

Beσ t

∫ Beσ t

0
F

(
ut + u + ie−t ,0;

(
0
y

))
du =

1

Be(1+σ)t

∫ Be(1+σ)t

0
F(gt9

u)du

→
1

µ(0\Gk)

∫
0\Gk

F dµ

ast → ∞. BecauseF is bounded andut is contained in a compact interval, note that

1

Beσ t

∫ Beσ t

0
F

(
ut + u + ie−t ,0;

(
0
y

))
du

=
1

Beσ t

∫ Beσ t
+ut

ut

F

(
u + ie−t ,0;

(
0
y

))
du

=
1

Beσ t

∫ Beσ t

0
F

(
u + ie−t ,0;

(
0
y

))
du + O(e−σ t ).

Therefore, for any constants−∞ < A < B < ∞,

lim
t→∞

1

eσ t

∫ Beσ t

Aeσ t
F

(
u + ie−t ,0;

(
0
y

))
du =

(B − A)

µ(0\Gk)

∫
0\Gk

F dµ.

The theorem now follows from a standard approximation argument. (Approximateh
from above and below by step functions.)

6. Diophantine conditions

6.1
In order to extend the equidistribution results to unbounded test functions such as
2 f2g, let us study the following model functions, whose asymptotics in the cusp
is similar to that of2 f2g. Let G = Gk, and let0 = SL(2,Z) n Z2k. Define,
furthermore, the subgroup

0∞ =

{(
1 m
0 1

)
: m ∈ Z

}
⊂ SL(2,Z),

put

vγ := Im(γ τ) =
v

|cτ + d|2
for γ =

(
a b
c d

)
,

and putyγ := cx + d y. LetχR be the characteristic function of the interval[R,∞),

χR(t) =

{
1 (t ≥ R),

0 (t < R).
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For any f ∈ C(Rk) of rapid decay (i.e.,f (w) decays rapidly for‖w‖ → ∞), the
function

FR(τ ; ξ) =

∑
γ∈0∞\ SL(2,Z)

∑
m∈Zk

f
(
(yγ + m)v1/2

γ

)
vβγ χR(vγ ), R> 1,

is invariant under the action of0. If τ lies in the fundamental domain of SL(2,Z),
given byFSL(2,Z) = {τ ∈ H : u ∈ [−1/2,1/2), |τ | > 1}, then FR(τ ; ξ) has the
representation

FR(τ ; ξ) =

∑
m∈Zk

{
f
(
(y + m)v1/2)

+ f
(
(−y + m)v1/2)}vβχR(v).

The remaining sum overm is rapidly converging sincef is of rapid decay.

6.2
The L1-norm of FR over0\G is, for f ≥ 0,

µ(FR) =

∫
0\G

FR(τ ; ξ) dµ(τ, φ; ξ)

with Haar measure

dµ(τ, φ; ξ) =
du dv dφ dx dy

v2
.

We therefore have

µ(FR) = 2π
∫

Rk
f (w)dw

∫
∞

R
vβ−k/2−2 dv = 2π

R−(k/2+1−β)

k/2 + 1 − β

∫
Rk

f (w)dw

for β < k/2 + 1, andµ(FR) = ∞ otherwise. In the following we are especially
interested inβ = k/2, for which

µ(FR) = 2πR−1
∫

Rk
f (w)dw.

6.3
As in [12, Sec. 6.4], we may write the sum inFR(τ ; ξ) explicitly as

FR(τ ; ξ)

=

∑
m∈Zk

{
f
(
(y + m)v1/2)

+ f
(
(−y + m)v1/2)}vβχR(v)

+

∑
m∈Zk

{
f
(
(x + m)

v1/2

|τ |

)
+ f

(
(−x + m)

v1/2

|τ |

)} vβ

|τ |2β
χR

( v

|τ |2

)
+

∑
(c,d)∈Z2

gcd(c,d)=1
c,d 6=0

∑
m∈Zk

f
(
(cx + d y + m)

v1/2

|cτ + d|

) vβ

|cτ + d|2β
χR

( v

|cτ + d|2

)
.
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In what follows we restrict our attention to the case whereβ = k/2 andξ =
( 0

y
)
.

PROPOSITION6.4
Let y be Diophantine of typeκ. Then, for anyε, ε′ with 0 < ε < 1 and 0 < ε′ <

1/(κ − 1),

lim sup
v→0

vk/2−1
∫

|u|>v1−ε

FR

(
u + iv;

(
0
y

))
h(vk/2−1u)du

�ε,ε′ R−(1/(κ−1)−k+2)/2
+ R−ε′/2.

Note that the above expression vanishes, forR → ∞, whenκ < (k − 1)/(k − 2).
The second term is obviously relevant only in dimensionk = 2 since fork > 2 we
may chooseε′ in such a way that 1/(κ − 1) < ε′ + k − 2.

The key ingredient in the proof is the following lemma.

LEMMA 6.5
Letα be Diophantine of typeκ, and let f ∈ C(Rk) of rapid decay. Then, for any fixed
A > 1 andε > 0 with ε < 1/(κ − 1),

D∑
d=1

∑
m∈Zk

f
(
T(dα + m)

)
�


T−A (D ≤ Tε),

1 (Tε ≤ D ≤ T1/(κ−1)),

D T−1/(κ−1) (D ≥ T1/(κ−1)),

uniformly for all D, T > 1.

Proof
Let us divide the sum overd into blocks of the form∑

0≤d≤T1/(κ−1)

∑
m∈Zk

f
(
T((b + d)α + m)

)
.

The number of such blocks is� DT−1/(κ−1)
+ 1. Sinceα is of typeκ, there is a

constantC such that for all 0< |q| ≤ T1/(κ−1), we have

C

|q|T
≤

C

|q|κ
≤ max

j

∣∣∣α j −
m j

q

∣∣∣,
and thus

max
j

|qα j − m j | ≥
C

T
.
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Forb fixed, the minimal distance between the points(b+d)α+m (0 ≤ d ≤ T1/(κ−1),
m ∈ Zk) is bounded from below by

min
0<|q|≤T1/(κ−1),m∈Zk

‖qα + m‖ ≥ min
0<|q|≤T1/(κ−1),m∈Zk

max
j

|qα j − m j | ≥
C

T
.

Hence any rectangular box with sides� 1/T contains at most a bounded number of
points. Becausef is rapidly decreasing, we therefore find∑

0≤d≤T
1
κ−1

∑
m∈Zk

f
(
T((b + d)α + m)

)
� 1,

independently ofb. This explains the second and third bound. The first bound is ob-
tained from

‖dα + m‖ ≥ max
j

|dα j − m j | ≥
C

dκ−1
≥

C

Dκ−1
,

which holds for alld = 1, . . . , D. Since f is rapidly decreasing, we have

D∑
d=1

∑
m∈Zk

f
(
T(dα + m)

)
� D

( Dκ−1

T

)B

for any B > 1.

6.6. Proof of Proposition6.4
Let us assume, without loss of generality, thatf is positive and even, that is, that
f ≥ 0, f (−w) = f (w).

It follows from the expansion in Section6.3that forv < 1 the first term involving
χR(v) vanishes, and hence we are left with

FR

(
τ ;

(
0
y

))
= 2

∑
m∈Zk

f
(

m
v1/2

|τ |

)vk/2

|τ |k
χR

( v

|τ |2

)
+ 2

∑
(c,d)∈Z2

gcd(c,d)=1
c>0,d 6=0

∑
m∈Zk

f
(
(d y + m)

v1/2

|cτ + d|

) vk/2

|cτ + d|k
χR

( v

|cτ + d|2

)
.



424 JENS MARKLOF

6.6.1
With regard to the first term in the above expansion, a change of variableu = vt
yields

vk/2−1
∫

|u|>v1−ε

2
∑

m∈Zk

f
(

m
v1/2

|τ |

)vk/2

|τ |k
χR

( v

|τ |2

)
h(vk/2−1u)du

= 2
∑

m∈Zk

∫
|t |>v−ε

f
( m
v1/2(t2 + 1)1/2

) 1

(t2 + 1)k/2
χR

( 1

v(t2 + 1)

)
h(vk/2t)dt

∼ 2 f (0) h(0)
∫

|t |>v−ε

dt

(t2 + 1)k/2
→ 0

asv → 0.

6.6.2
An upper bound for the remaining terms is obtained by dropping the condition|u| >

v1−ε in the integral. We then need to estimate

S(v) =

∑
(c,d)∈Z2

gcd(c,d)=1
c>0,d 6=0

∑
m∈Zk

J(v, c,d,m)

with

J(v, c,d,m)

= vk/2−1
∫

R
f
(
(d y + m)

v1/2

|cτ + d|

) vk/2

|cτ + d|k
χR

( v

|cτ + d|2

)
h(vk/2−1u)du.

Replacingu by t = v−1(u + d/c) gives

1

ck

∫
R

f
(
(d y + m)

1√
c2v(t2 + 1)

) 1

(t2 + 1)k/2

× χR

( 1

c2v(t2 + 1)

)
h

(
vk/2−1

(
vt −

d

c

))
dt.

The range of integration is bounded by

R<
1

c2v(t2 + 1)
, that is, |t | �

1

c
√
vR
.

Therefore|vt | � v1/2c−1R−1/2 is uniformly close to zero, and hence, because of the
compact support ofh, we find|d| � cv−(k/2−1). So

S(v) �

∞∑
c=1

∑
0<|d|�cv−(k/2−1)

∑
m∈Zk

K (v, c,d,m)
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with

K (v, c,d,m)

=
1

ck

∫
R

f
(
(d y + m)

1√
c2v(t2 + 1)

) 1

(t2 + 1)k/2
χR

( 1

c2v(t2 + 1)

)
dt.

6.6.3
To apply Lemma6.5with D = cv−(k/2−1), T = (c2v(t2

+ 1))−1/2 >
√

R> 1, split
the range of integration into the ranges

(1) : cv−(k/2−1)
≤

(
c2v(t2

+ 1)
)−ε/2

,

(2) :
(
c2v(t2

+ 1)
)−ε/2

≤ cv−(k/2−1)
≤

(
c2v(t2

+ 1)
)−δ/2

,

(3) : cv−(k/2−1)
≥

(
c2v(t2

+ 1)
)−δ/2

,

with δ = 1/(κ − 1). Denote the corresponding integrals byK1(v, c,d,m),
K2(v, c,d,m), andK3(v, c,d,m), respectively.

6.6.4
BecauseR−1/2

≥ T−1, we find in the first range,D ≤ Tε , that∑
c>0

∑
d�cv−(k/2−1)

∑
m∈Zk

K1(v, c,d,m)

� R−A/2
∑
c>0

1

ck

∫
(1)

1

(t2 + 1)k/2
χR

( 1

c2v(t2 + 1)

)
dt

� R−A/2
∑
c>0

1

ck

∫
R

1

(t2 + 1)k/2
dt

� R−A/2.

6.6.5
For an upper bound, the second range,Tε ≤ D ≤ Tδ, may be extended toTε ≤ D,
that is,

c1+ε(t2
+ 1)ε/2 ≥ vk/2−1−ε/2.
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We therefore have∑
c>0

∑
d�cv−(k/2−1)

∑
m∈Zk

K2(v, c,d,m)

�

∑
c>0

1

ck

∫
(2)

dt

(t2 + 1)k/2

�

∑
c>0

1

ck

{
c1+εv−(k/2−1−ε/2)}(k/2−1)2/ε

∫
R

dt

t2 + 1

� vA
∑
c>0

c−B

with

A = −

(k

2
− 1 −

ε

2

)(k

2
− 1

)2

ε

and

B = −

(k

2
− 1 − ε

)2

ε
= 1 −

(k

2
− 1 −

ε

2

)2

ε
.

If we chooseε in such a way thatk − 2< ε < δ = 1/(κ − 1), we find that fork > 2
we haveA > 0 andB > 1. Hence∑

c>0

∑
d�cv−(k/2−1)

∑
m∈Zk

K2(v, c,d,m) → 0

for smallv. In the case wherek = 2, we exploit the inclusionRε/2 < Tε ≤ D � c,
which yields∑

c>0

∑
d�c

∑
m∈Z2

K2(v, c,d,m) �

∑
c>Rε/2

c−2
∫

dt

t2 + 1
� R−ε/2

(cf. [12]).
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6.6.6
In the third range, we have forv sufficiently small,∑

c>0

∑
d�cv−(k/2−1)

∑
m∈Zk

K3(v, c,d,m)

�

∑
c>0

1

ck
cv−(k/2−1)

∫
(3)

cδvδ/2(t2
+ 1)(δ−k)/2χR

( 1

c2v(t2 + 1)

)
dt

= v(δ−k)/2+1
∑
c>0

cδ−k+1
∫
(3)
(t2

+ 1)(δ−k)/2χR

( 1

c2v(t2 + 1)

)
dt

� v(δ−k)/2+1
∫

R

{ ∞∑
c=1

cδ−k+1χR

( 1

c2v(t2 + 1)

)}
(t2

+ 1)(δ−k)/2 dt

< v(δ−k)/2+1
∫

R

{ ∫
∞

0
xδ−k+1χR

( 1

x2v(t2 + 1)

)
dx

}
(t2

+ 1)(δ−k)/2 dt

=

∫
R

{ ∫
∞

0
xδ−k+1χR

( 1

x2

)
dx

}
(t2

+ 1)−1 dt

=

∫
R

{ xδ−k+2

δ − k + 2

}R−1/2

0
(t2

+ 1)−1 dt

= π
R−(δ−k+2)/2

δ − k + 2
.

The proof of Proposition6.4 is complete.

6.7
Let us define the characteristic function on0\Gk:

XR(τ ) =

∑
γ∈{0∞∪(−1)0∞}\ SL(2,Z)

χR(vγ ),

whereχR is the characteristic function of[R,∞). Proposition6.4 allows us now to
extend the equidistribution theorem, Theorem5.1, to unbounded functions that are
dominated byFR; that is, for some fixed constantL > 1 we have

|F(τ, φ; ξ)|XR(τ ) ≤ L + FR(τ ; ξ)

for all sufficiently largeR> 1, uniformly for all(τ, φ; ξ) ∈ Gk.

THEOREM 6.8
Let0 be a subgroup ofSL(2,Z)n Z2k of finite index. Let h be a continuous function
R → R+ with compact support. Suppose the continuous function F≥ 0 is dominated
by FR. Fix somey ∈ Tk such that the components of the vector(y,1) ∈ Rk+1 are
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linearly independent overQ. Then, for anyε with 0< ε < 1,

lim inf
v→0

vk/2−1
∫

|u|>v1−ε

F

(
u + iv,0;

(
0
y

))
h(vk/2−1u)du

≥
1

µ(0\Gk)

∫
0\Gk

F dµ
∫

h.

Assume, furthermore, thaty is Diophantine of typeκ < (k − 1)/(k − 2). Then, for
anyε > 0,

lim sup
v→0

vk/2−1
∫

|u|>v1−ε

F

(
u + iv,0;

(
0
y

))
h(vk/2−1u)du

≤
1

µ(0\Gk)

∫
0\Gk

F dµ
∫

h.

Proof
The theorem follows from Theorem5.1 and Proposition6.4 in the same manner as
[12, Th. 7.3].

6.9
The subgroup0 = 0k is a subgroup of finite index in SL(2,Z) n ((1/2)Z)2k rather
than SL(2,Z) n Z2k (see Lem.4.10). We therefore need to rephrase Theorem6.8
slightly. Define the dominating function̂FR on0\Gk by F̂R(τ ; ξ) = FR(τ ; 2ξ), with
FR as in Section6.7.

COROLLARY 6.10
Let0 be a subgroup ofSL(2,Z)n((1/2)Z)2k of finite index, let h,y be as in Theorem
6.8, and let F : 0\Gk

→ C be a continuous function that is dominated byF̂R. If y is
Diophantine of typeκ < (k − 1)/(k − 2), then, for anyε with 0< ε < 1,

lim
v→0

vk/2−1
∫

|u|>v1−ε

F

(
u + iv,0;

(
0
y

))
h(vk/2−1u)du

=
1

µ(0\Gk)

∫
0\Gk

F dµ
∫

h.

Proof
The proof is analogous to that of [12, Cor. 7.6].

7. The main theorem
THEOREM 7.1 (Main theorem)
Suppose f(w) = ψ1(‖w‖

2) and g(w) = ψ2(‖w‖
2), withψ1, ψ2 ∈ S (R+) real val-
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ued. Let h be a continuous functionR → C with compact support. Assume that the
components of(y,1) ∈ Rk+1 are linearly independent overQ and thaty is Diophan-
tine of typeκ < (k − 1)/(k − 2). Then

lim
v→0

vk/2−1
∫

R
2 f

(
u + iv,0;

(
0
y

))
2g

(
u + iv,0;

(
0
y

))
h(vk/2−1u)du

=
k2

2
B2

k h(0)
∫

∞

0
ψ1(r )ψ2(r )r

k−2 dr

+
k

2
Bk

∫
R

h(u)du
∫

∞

0
ψ1(r )ψ2(r )r

k/2−1 dr,

where Bk is the volume of the k-dimensional unit ball.

We need the following two lemmas.

LEMMA 7.2
We have

1

µ(0k\Gk)

∫
0k\Gk

2 f (τ, φ; ξ)2g(τ, φ; ξ)dµ =

∫
Rk

f (w)g(w)dw.

Note that if f (w) = ψ1(‖w‖
2) andg(w) = ψ2(‖w‖

2), we have∫
f (w)g(w)dw =

k

2
Bk

∫
∞

0
ψ1(r )ψ2(r )r

k/2−1 dr.

Proof
A short calculation shows that∫

T2k
2 f (τ, φ; ξ)2g(τ, φ; ξ)dξ =

∫
fφ(w)gφ(w)dw.

Since fφ = Uφ f with Uφ unitary, we have∫
fφ(w)gφ(w)dw =

∫
f (w)g(w)dw.
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LEMMA 7.3
Suppose f(w) = ψ1(‖w‖

2) and g(w) = ψ2(‖w‖
2). For any1/2< γ < 1, we have

lim
v→0

vk/2−1
∫

|u|<vγ
2 f

(
u + iv,0;

(
0
y

))
2g

(
u + iv,0;

(
0
y

))
h(vk/2−1u)du

=
k2

2
B2

k h(0)
∫

∞

0
ψ1(r )ψ2(r ) r

k−2 dr.

Proof
From Proposition4.8we know that

2 f

(
−

1

τ
,argτ ;

(
−y
0

))
2g

(
−

1

τ
,argτ ;

(
−y
0

))
=
vk/2

|τ |k
fargτ (0)gargτ (0)+ OR

(( v

|τ |2

)−R
)

holds uniformly for|u| < v1/2 < 1. The remainder vanishes for|u| < vγ < 1. Now

fargτ (0)gargτ (0)

=
|τ |k

vk

{∫
e
(1

2
‖w‖

2 u

v

)
f (w)dw

}{∫
e
(1

2
‖w‖2 u

v

)
g(w)dw

}
=

|τ |k

vk

k2

4
B2

k

∫
∞

0
e
( (r1 − r2)u

2v

)
ψ1(r1)ψ2(r2) r

k/2−1
1 dr1 r k/2−1

2 dr2

(replacew by polar coordinates), and so, asv → ∞,∫
|u|<vγ

vk/2−12 f

(
u + iv,0;

(
0
y

))
2g

(
u + iv,0;

(
0
y

))
h(vk/2−1u)du

∼ v−1 k2

4
B2

k

∫
|u|<vγ

∫
∞

0
e
( (r1 − r2)u

2v

)
ψ1(r1)ψ2(r2)

× r k/2−1
1 dr1 r k/2−1

2 dr2h(vk/2−1u)du

∼
k2

2
B2

k h(0)
∫

2|u|<vγ−1

∫
∞

0
e
(
(r1 − r2)u

)
× ψ1(r1)ψ2(r2) r

k/2−1
1 dr1 r k/2−1

2 dr2 du

∼
k2

2
B2

k h(0)
∫

R

∫
∞

0
e
(
(r1 − r2)u

)
ψ1(r1)ψ2(r2)

× r k/2−1
1 dr1 r k/2−1

2 dr2 du

=
k2

2
B2

k h(0)
∫

∞

0
ψ1(r )ψ2(r ) r

k−2 dr
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by Parseval’s equality.

Proof of the main theorem
We may assume, without loss of generality, that in Theorem7.1 h is positive. Split
the integration on the left-hand side of Theorem7.1 into∫

R
=

∫
|u|<v1−ε

+

∫
|u|>v1−ε

for some smallε > 0. The first integral gives, by virtue of Lemma7.3, the contribu-
tion

k2

2
B2

k h(0)
∫

∞

0
ψ1(r )ψ2(r ) r

k−2 dr.

Corollary 6.10, together with Lemma7.2, yields the second term on the right-hand
side of Theorem7.1(cf. [12, Sec. 8.4] for more details).

Proof of Theorem2.5
By construction, we have

R2(ψ1, ψ2, h, λ)

=
1

Bk
vk/2−1

∫
R
2 f

(
u + i

1

λ
,0;

(
0
α

))
2g

(
u + i

1

λ
,0;

(
0
α

))
h(vk/2−1u)du

with v = λ−1. Recall that 2h(0) =
∫

ĥ(s)ds by Fourier inversion; and thus we have
finally

∫
h(u)du = ĥ(0).

8. Counter examples
We assume throughout this section thatk > 2. The case wherek = 2 is studied in
[12, Sec. 9].

8.1
Suppose thatαk−1, αk are both rational, and suppose that(α1, . . . , αk−2) is a badly
approximable(k − 2)-tuple. In this case, we find a constantC such that

max
1≤ j ≤k

∣∣∣α j −
m j

q

∣∣∣ ≥ max
1≤ j ≤k−2

∣∣∣α j −
m j

q

∣∣∣ > C

q1+1/(k−2)
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for all m1, . . . ,m j ,q ∈ Z, q > 0, and soα is of typeκ = (k − 1)/(k − 2). On the
other hand, we have

#
{
(m, n) ∈ Zk

× Zk
: m 6= n,

‖m − α‖
k

≤ X, ‖n − α‖
k

≤ X, ‖m − α‖
k

= ‖n − α‖
k}

≥ #
{
(m, n) ∈ Zk

× Zk
: m 6= n, (m1, . . . ,mk−2) = (n1, . . . ,nk−2),

‖m − α‖
k

≤ X, ‖n − α‖
k

≤ X, ‖m − α‖
2

= ‖n − α‖
2}.

This is easily seen to be bounded from below by

� X(k−2)/k#
{
(mk−1,mk,nk−1,nk) ∈ Z4

:

|mk−1|, |mk|, |nk−1|, |nk| � X1/k, (mk−1,mk) 6= (nk−1,nk),

(mk−1 − αk−1)
2
+ (mk − αk)

2
= (nk−1 − αk−1)

2
+ (nk − αk)

2}
∼ X(k−2)/k

× c̃α X2/k log X,

asX → ∞, for some constant̃cα > 0 (cf. [12, Sec. 9]). We conclude that, forX large
enough,

1

X
#
{
(m, n) ∈ Zk

× Zk
: m 6= n, ‖m − α‖

k
≤ X, ‖n − α‖

k
≤ X,

‖m − α‖
k

= ‖n − α‖
k}

≥ cα log X

for some constantcα > 0.

8.2
By a similar argument, one has forα ∈ Qk,

1

X
#
{
(m, n) ∈ Zk

× Zk
: m 6= n, ‖m − α‖

k
≤ X, ‖n − α‖

k
≤ X,

‖m − α‖
k

= ‖n − α‖
k}

∼ cα X(k−2)/k

for X → ∞. This can be derived, for example, in the case whereα = 0, from the
asymptotics ∫ 1

0
2 f

(
u + i

1

λ
,0; 0

)
2g

(
u + i

1

λ
,0; 0

)
du ∼ bλk/2−1

(cf., e.g., [9, Th. 6.1]).

Proof of Theorem1.7
Let B be a countable dense set of badly approximable(k − 2)-tuples. Enumerate the



INHOMOGENEOUS QUADRATIC FORMS, II 433

quadratic forms‖x − α j ‖
2 with α j ∈ B × Q2 as P1, P2, P3, . . . . Because of the

bound derived in Section8.1, given anyX > 1, there exists anM j > X such that

R
α j
2 [0,0](M j ) ≥

log M j

log log logM j
.

We find a smallε j = ε j (M j ) > 0 such that

Rα
2 [−a,a](M j ) ≥ R

α j
2 [0,0](M j )

for all α ∈ B j , whereB j is the open set of allα with ‖α − α j ‖ < ε j . Individually,
the setsB j shrink to a point asX → ∞, but the union⋃

j :M j ≥X

B j

is open and dense inTk. Therefore

B =

∞⋂
X=1

⋃
j :M j ≥X

B j

is of second Baire category. So ifα ∈ B, then, given anyX, there exists someM ≥ X,
such that

Rα
2 [−a,a](M) ≥

log M

log log logM
.

Note that the proof remains valid if log log log is replaced by any slowly increas-
ing positive functionν ≤ log log log withν(X) → ∞ (X → ∞).

Property (iii) follows from Theorem1.6by the same string of arguments used in
[12, Sec. 9.3].

Proof of Theorem1.8
The proof follows from the relation in Section8.2. It is otherwise identical to the
proof of [12, Th. 1.13].

References

[1] M. V. BERRY andM. TABOR, Level clustering in the regular spectrum, Proc. Roy. Soc.
London Ser. A356(1977), 375 – 394.409

[2] P. BLEHER, “Trace formula for quantum integrable systems, lattice-point problem, and
small divisors” inEmerging Applications of Number Theory (Minneapolis, 1996),
IMA Vol. Math. Appl. 109, Springer, New York, 1999, 1 – 38.MR 2000f:11130
410

[3] Z. CHENGandJ. L. LEBOWITZ, Statistics of energy levels in integrable quantum
systems, Phys. Rev. A (3)44 (1991), R3399 – R3402.410

http://www.ams.org/mathscinet-getitem?mr=2000f:11130


434 JENS MARKLOF

[4] Z. CHENG, J. L. LEBOWITZ,andP. MAJOR, On the number of lattice points between two
enlarged and randomly shifted copies of an oval, Probab. Theory Related Fields
100(1994), 253 – 268.MR 95j:60037 410

[5] S. G. DANI andG. A. MARGULIS, “Limit distributions of orbits of unipotent flows and
values of quadratic forms” inI. M. Gelfand Seminar, Adv. Soviet Math.16, Part
1, Amer. Math. Soc., Providence, 1993, 91 – 137.MR 95b:22024 419

[6] A. ESKIN, G. MARGULIS,andS. MOZES, Quadratic forms of signature(2,2) and
eigenvalue spacings on rectangular2-tori, preprint, 1998,
http://math.uchicago.edu/˜eskin410

[7] G. LION andM. VERGNE, The Weil Representation, Maslov Index and Theta Series,
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