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Abstract
We present a one-parameter family of quantum maps whose spectral statistics
are of the same intermediate type as observed in polygonal quantum billiards.
Our central result is the evaluation of the spectral two-point correlation
form factor at small argument, which in turn yields the asymptotic level
compressibility for macroscopic correlation lengths.

PACS numbers: 05.45.Mt, 03.65.Sq

1. Introduction

The classification of quantum systems according to universal statistical properties is one
of the central objectives in the study of quantum chaos. It is generally believed that the
spectral statistics of systems with chaotic classical limit are governed by random matrix
ensembles, while systems with integrable classical dynamics follow the statistical properties of
independent random variables from a Poisson process [1–3]. Interestingly, certain billiards in
rational polygons fall into neither of the two universality classes: the energy level correlations
are conjectured to be of intermediate type [4–8]. In particular, this means that the consecutive
level spacing distribution P(s) exhibits level repulsion similar to random matrix eigenvalues,
but has an exponential tail as for independent random variables. Furthermore, the spectral
form factor K2(τ ) is intermediate between 0 and 1 in the limit τ → 0. One standard example
for a statistics of this type is the semi-Poisson distribution, for which P(s) = 4s exp(−2s)

and K2(τ → 0) = 1/2.
In this letter we present a one-parameter family of quantum maps whose spectral statistics

are of a similar intermediate type as observed in polygonal billiards, cf figures 1 and 2. The
main result of our investigation is the evaluation of the spectral form factor K2(τ ) at small
argument. It is based on a number-theoretic analysis which turns out to be considerably easier
than the geometric approach required for billiards [7].

Consider the following map of the 2-torus T
2 = R

2/Z
2,

�f : T
2 → T

2

(
p

q

)
�→

(
p + f (q)

q + 2(p + f (q))

)
(1)
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Figure 1. The consecutive level spacing distribution for Hilbert space dimension N = 7001 and
α = 1/2 (left) and α = 2/3 (right). The Poisson distribution corresponds to P(s) = exp(−s),
semi-Poisson to P(s) = 4s exp(−2s) and COE to the level spacing distributions of the circular
orthogonal random matrix ensembles.
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Figure 2. The consecutive level spacing distribution for Hilbert space dimension N = 7001 and
α = 3/5 (left) and α = 5/8 (right).

where f is some one-periodic function. The map is a concatenation �f = �0 ◦ ρf of free
motion �0 and kick ρf ,

�0 :

(
p

q

)
�→

(
p

q + 2p

)
ρf :

(
p

q

)
�→

(
p + f (q)

q

)
. (2)

The quantization of a torus map associates with it a unitary operator acting on the
N-dimensional Hilbert space of functions ψ : ZN → C with inner product 〈ψ |φ〉 =
N−1 ∑N−1

Q=0 ψ∗(Q)φ(Q). Here ZN = Z/NZ denotes the integers modulo N, and N has
the physical interpretation of an inverse Planck’s constant. The quantum evolution operators
U(�0) and U(ρf ) corresponding to �0 and ρf , respectively, are defined by the matrix elements
(cf [9–12])

〈Q′|U(�0)|Q〉 = 1

N

N−1∑
P=0

eN(−P 2 + P(Q′ − Q)) (3)

〈Q′|U(ρf )|Q〉 = 〈Q′|Q〉e
(

−NV

(
Q

N

))
(4)
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Figure 3. The consecutive level spacing distribution for α = (
√

5 − 1)/2 and Hilbert space
dimensions N = 6997 (left) and N = 5867 (right) corresponding to values of ε

√
N 	 32.1 and

ε
√

N = 0.41, respectively.

where V (q) is a periodic function defined by f (q) = −V ′(q), and eN(x) = exp(2π ix/N)

and e(x) = exp(2π ix). Furthermore U(�f ) = U(�0)U(ρf ) and thus

〈Q′|U(�f )|Q〉 = 〈Q′|U(�0)|Q〉e
(

−NV

(
Q

N

))
. (5)

We are interested in the special case of the piecewise linear sawtooth potential V (q) = −α{q}
for some real constant α, where {q} denotes the fractional part of q. In this case f (q) = α.
The corresponding classical map �α := �f is uniquely ergodic for irrational α (in particular,
there are no periodic orbits) but not mixing. For rational α, the motion can be identified with
an interval-exchange transformation. Note that in the momentum representation |P 〉, with
〈Q|P 〉 = N−1/2eN(PQ), the operator U(�α) has the representation

〈P ′|U(�α)|P 〉 = 1

N
eN(−P ′2)

1 − e(Nα)

1 − eN(P − P ′ + Nα)
(6)

if Nα /∈ Z and

〈P ′|U(�α)|P 〉 = eN(−P ′2)〈P ′|P + Nα〉 (7)

otherwise.
Since U(�α) is unitary its eigenvalues are of the form exp(iθj ) with eigenphases

0 � θ1 � θ2 � · · · � θN < 2π ; it is convenient to set θ0 := θN − 2π . The spacing
distribution for consecutive levels is described by the probability density

P(s) = 1

N

N∑
j=1

δ

(
s − N

2π
(θj − θj−1)

)
(8)

where the factor of N/2π ensures that s measures spacings on the scale of the mean level
spacing 2π/N . Figures 1–3 display the spacing distribution P(s) of the eigenphases of the
matrix U(�α) for both rational (figures 1 and 2) and irrational (figure 3) values of α, and N a
prime number. In the case of rational α = a/b one should avoid Hilbert space dimensions N
divisible by b, since the matrix (7) has highly singular statistics [18, 19]. For irrational α, we
find in figure 3 (left) a spacing distribution which resembles those of random matrices from
the circular orthogonal ensemble (COE). COE statistics are normally expected for systems
with chaotic classical limit and time-reversal symmetry [2, 3]. In our case the time-reversal
transformation which anti-commutes with U(�α) is T ′ = U(�0)

1/2T U(�0)
−1/2, where T
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denotes the complex conjugation operator T ψ := ψ∗. Localized spacing distributions of the
type seen in figure 3 (right) occur when ε, defined as the oriented distance of Nα to the nearest
integer, is of the order 1/

√
N . Such correlations arise as the perturbation of a rigid spectrum,

and will be described in section 3.
The map �α has in fact a further classical symmetry: it commutes with ρ1/2 for any

α. In the case N ≡ 0 mod 4 the corresponding operators U(�α) and U(ρ1/2) commute
and the eigenstates of U(�α) fall into two parity classes according to U(ρ1/2)ϕj = ϕj or
U(ρ1/2)ϕj = −ϕj , respectively. Our numerical experiments suggest that the level statistics
for each subspectrum are of the same type as those displayed in figures 1–3.

A statistics which is more accessible from an analytical point of view is the two-point
correlation density (which describes the distribution of all spacings)

R2(s) = 1

N

N∑
j,k=1

∑
m∈Z

δ

(
s − N

2π
(θj − θk + 2πm)

)
. (9)

The Poisson summation formula applied to the m-sum yields

R2(s) = 1

N2

∑
n∈Z

|Tr[U(�α)n]|2eN(ns). (10)

The spectral form factor is defined as the Fourier transform of R2(s),

K2(τ ) = 1

N
|Tr[U(�α)n]|2 τ = n/N. (11)

In the following section, we will calculate

K2(0) := lim
n→∞ lim

Nν→∞
1

n

n∑
n′=1

K2(n
′/Nν) (12)

where the limit is taken along suitable subsequences N1, N2, . . . → ∞ of integers. To illustrate
the relevance of this quantity, let us consider the counting function N (L, ξ) for the number of
eigenphases in the interval

[
ξ − πL

N
, ξ + πL

N

]
(mod 2π ). The number variance is defined by

�2(L) = 1

2π

∫ 2π

0
[N (L, ξ) − L]2 dξ (13)

= L

N

N∑
j,k=1

∑
m∈Z

ζ

(
N

2πL
(θj − θk + 2πm)

)
− L2 (14)

with ζ(x) = ∫
R

χ(x − y)χ(y) dy = max{1 − |x|, 0}, where χ is the indicator function of
the interval

[− 1
2 , 1

2

]
. In view of (9), (10) and (14), the number variance and form factor are

related by

�2(L) = L2

N2

∑
n=0

|Tr[U(�α)n]|2χ̂
(

L

N
n

)2

(15)

where χ̂ (y) = sin(πy)/(πy) is the Fourier transform of χ . It then follows from (12) and a
standard probabilistic argument that, for macroscopic intervals of size L = �N (with � > 0
fixed as Nν → ∞), we have

lim
�→0

lim
Nν→∞
L=�Nν

�2(L)

L
= K2(0) (16)

since �
∑

k =0 χ̂ (k�)2 → ∫
χ̂ (y)2 dy = 1, as � → 0. The ratio �2(L)/L is called the level

compressibility [8].
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2. Spectral form factor at small argument

To calculate the value of K2(τ ) at small but non-zero values of τ , we replace the trace
Tr U(�α)n by Tr U

(
�n

α

)
. As we shall see, this simple heuristics yields good agreement with

numerical data for N sufficiently large. The accuracy of the approximation can be estimated by
representing the respective traces as Gutzwiller-type sums over periodic orbit and diffractive
orbit contributions; this will be discussed in detail elsewhere [22].

The advantage of the choice of �α over other piecewise linear maps is that there is an
explicit formula for the nth iterate. (We have observed intermediate statistics also for the
closely related ‘triangle maps’ introduced by Casati and Prosen [13]; the classical analysis of
these maps is however considerably more involved.) Here, a short calculation shows that

�n
α = ρ(n−1)α/2 ◦ �n

0 ◦ ρ(n+1)α/2. (17)

The corresponding quantum evolution is therefore given by

〈Q′|U(
�n

α

)|Q〉 = e

(
N

(
n − 1

2

)
α

{
Q′

N

})
〈Q′|U(

�n
0

)|Q〉e
(

N

(
n + 1

2

)
α

{
Q

N

})
(18)

and so

Tr U
(
�n

α

) = 1

N

N−1∑
P=0

eN(−nP 2) ×
N−1∑
Q=0

e(nαQ) (19)

where the first sum is a classical Gauss sum and the second a geometric sum. Let
m := 2n/gcd(2n,N) and M := N/gcd(2n,N), then∣∣∣∣∣

N−1∑
P=0

eN(−nP 2)

∣∣∣∣∣ = N

M

∣∣∣∣∣
M−1∑
P=0

exp
(
π iP 2 m

M

)∣∣∣∣∣ (20)

which evaluates to N/
√

M if Mm is divisible by 2, and vanishes otherwise. The geometric
sum is O(1) for irrational α and n = 0 and hence K2(n/N) ∼ 0 for all bounded n in this case.
For rational α = a/b, the geometric sum equals N if n is divisible by b and is O(1) otherwise.
Thus K2(n/N) ∼ gcd(2n,N) provided n is divisible by b and 2Nn/gcd(2n,N)2 is divisible
by 2; K2(n/N) ∼ 0 in all other cases.

If we restrict ourselves to a subsequence of the values of N which are prime numbers then
gcd(2n,N) = 1 for n < N , and the time averaged form factor is

K2(0) := lim
n→∞ lim

N→∞
N prime

1

n

n∑
n′=1

K2(n
′/N) = 1

b
. (21)

These values of K2(0) are consistent with those expected for intermediate statistics [7]. The
case b = 2 and N prime, for which K2(0) = 1/2, does however not agree with the Poisson
statistics seen numerically in figure 1 (left), where K2(0) = 1. The solution to this apparent
paradox is that P(s) displays correlations on the scale of the mean level spacing, whereas
K2(0) involves correlations on much larger scales of order N. Similar discrepancies between
a random matrix-like P(s) and a non-universal K2(τ ≈ 0) have been observed for non-
arithmetic Hecke triangles [14, 15], compact hyperbolic triangles and tetrahedra [16] and cat
maps coupled to a spin 1/2 [17].

If N is twice a prime, i.e. N = 2R with R an odd prime, then gcd(2n,N) = 2 for n < R,
and 2Nn/4 = Rn is divisible by 2 if and only if n is even. Hence only terms with n divisible
by lcm(2, b) contribute, and so

K2(0) := lim
n→∞ lim

N→∞
N/2 prime

1

n

n∑
n′=1

K2(n
′/N) = 2

lcm(2, b)
. (22)
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The situation is different for N = ρR, where ρ is a fixed odd prime, and R runs again
over all odd primes. Now gcd(2n,N) = gcd(n, ρ) for n < R, and 2Nn/gcd(n, ρ)2 is always
divisible by 2. Since ρ is prime, gcd(n, ρ) = 1 if n is not divisible by ρ and gcd(n, ρ) = ρ if
it is. In this case

K2(0) := lim
n→∞ lim

N→∞
N/ρ prime

1

n

n∑
n′=1

K2(n
′/N) = 1

b
+

ρ − 1

lcm(ρ, b)
. (23)

Figure 4 (left) illustrates the asymptotic relation (16) between the level compressibility
and K2(0) for large values of N: a prime (N = 7001), twice a prime (N = 6998) and three
times a prime (N = 6999). Figure 4 (right) compares the numerical form factor, obtained by
diagonalizing the matrices U(�α), with the model [7]

K2(τ ) = λ2 − 2λ + 4π2τ 2

λ2 + 4π2τ 2
(24)

with λ equal to 2/(1 − K2(0)). If N is divisible by b, the operator U(�α) coincides with an
alternative quantization U0(�α) := U(�A/N) of �α proposed in [18], where α is replaced by
a rational approximation A/N so that |α − A/N | < 1/N . The spectral statistics of U0(�α)

are well known to be highly singular and are not of intermediate type [19]. It has been noted in
[20, 21] that U0(�α) may be coupled to a spin 1/2 precession in such a way that intermediate
statistics are seen numerically; the construction is analogous to the one for cat maps with spin
1/2 [17].

3. Localized level spacing distributions

The above analysis yields trivially for irrational α

K2(0) := lim
n→∞ lim

N→∞
1

n

n∑
n′=1

K2(n
′/N) = 0 (25)

consistent with the COE statistics seen in figure 3 (left). In contrast, figure 3 (right) illustrates
a class of statistics different from random matrix theory, which occur for subsequences of N,
for which the quantity

ε :=
{{Nα} if {Nα} � 1/2
{Nα} − 1 otherwise

(26)

(the oriented distance of Nα to the nearest integer) is at most of the order of 1/
√

N . Note that
if we take A/N to be the successive approximants in the continued fraction expansion of α

irrational, we have ε = O(1/N). On the other hand, for rational α = a/b with N not divisible
by b, we have |ε| � 1/b; the following considerations clearly do not apply in the latter case,
where we may expect to see generic intermediate statistics.

We shall now explain the localized level correlations observed for ε = O(1/
√

N) by
means of classical perturbation theory. The eigenphases θ

(0)
1 , . . . , θ

(0)
N ∈ [0, 2π) of U0(�α)

and the corresponding orthonormal basis of eigenstates ϕ
(0)
1 , . . . , ϕ

(0)
N are known explicitly,

cf [18], proposition 5.1. Since

〈Q′|U(�α)|Q〉 = 〈Q′|U0(�α)|Q〉eN(εQ) (27)

the Born expansion of the eigenphases θj of U(�α) is θj = θ
(0)
j + εθ

(1)
j + O(ε2) with the

first-order correction given by

θ
(1)
j = π + 2π

〈
ϕ

(0)
j

∣∣�∣∣ϕ(0)
j

〉
(28)
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Figure 4. Left: level compressibility �2(L)/L with L = 100 for rational α = a/b (×), versus
K2(0) (�). From top to bottom: N = 7001 (equation (21)), N = 6998 (equation (22)), and
N = 6999 (equation (23)). Right: numerical value of the form factor and theoretical plot (24)
with K2(0) given by K2(0), for the same N and α = 1/4.

where �(φ) = {φ} − 1/2 is the sawtooth function. The term π is irrelevant for the
spacing distribution since it is independent of j . As to the second term, quantum
unique ergodicity of U0(�α), proved in [18], implies that in the limit N → ∞ we have〈
ϕ

(0)
j

∣∣�∣∣ϕ(0)
j

〉 → ∫ 1
0 �(φ) dφ = 0 for all j . The eigenstates ϕ

(0)
j have a particularly simple

form for N a prime number [18], which we will assume in the following. In this case it can
be shown that the level spacing distribution P(s) for the θj is asymptotically given by the
distribution of

G(φ) = 1 + ε
√

N
∑
k∈Z
k =0

1 − eN(−A−1k)

2π ik
e(kφ + βk,N) (29)

where φ is a uniformly distributed random variable in [0, 1), A−1 the inverse of A modulo
N and βk,N some explicitly known phase factor (see appendix). The variance of the above
distribution is ε2A−1(1 − A−1/N), with the choice A−1 ∈ [0, N − 1]. Figure 5 compares
the numerical computation of the integrated level-spacing distribution I (s) = ∫ s

0 P(s ′) ds ′
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for the eigenvalues θj of U(�α) (solid line) to the distribution of the random variable G(φ)

(dashed line).
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Appendix

Let us define βk,N by

e(βk,N ) = eN


A2

A−1k∑
r=1

r2 − Ak

N

N∑
r=1

r2


 1√

N

N−1∑
ν=0

eN(Akν2 + (A + k)kν). (30)

It can be shown that the variable ξj := √
N

〈
ϕ

(0)
j

∣∣�∣∣ϕ(0)
j

〉
is equal to ξj = h(A−1j/N), where

h is the one-periodic function

h(x) =
∑
k∈Z

�̂−ke(kx + βk,N) (31)

where �̂0 = 0, �̂k = i/2πk (k = 0) are the Fourier coefficients of �(φ). For N prime, the
spectrum of U0(�α) is totally rigid [18], that is θ

(0)
j = 2πj/N + CN for j = 1, . . . , N ,

where CN is some overall shift. The corresponding level spacing distribution is hence
P (0)(s) = δ(s − 1). For ε small enough, the perturbation does not change the ordering
of the levels. The level spacing distribution P(s) for the θj is then given by the distribution
of the (N/2π)(θj − θj−1) ≈ 1 + ε

√
N(ξj − ξj−1), which is equal to G(A−1j/N), where G is

the function defined by

G(φ) = 1 + ε
√

N
∑
k∈Z

�̂−ke(βk,N )[1 − eN(−A−1k)]e(kφ). (32)

For random j ∈ {1, . . . , N} and N large the distribution of P(s) is asymptotically given
by the distribution of G(φ), where φ is now a uniformly distributed random variable in
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[0, 1). The variance of the above distribution is (2ε
√

N)2 ∑
k∈Z

|�̂k|2 sin2(πA−1k/N) =
ε2A−1(1 − A−1/N), provided we choose A−1 ∈ [0, N − 1].
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