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Summary. One of the central aims in quantum chaos is to classify quantum systems
according to universal statistical properties. It has been conjectured that the energy
levels of generic integrable quantum systems have the same statistical properties as
random numbers from a Poisson process (Berry & Tabor 1977), and chaotic quantum
systems the same as eigenvalues of random matrices from suitably chosen ensembles
(Bohigas, Giannoni & Schmit 1984). I review some recent developments concerning
simple classes of integrable systems, where the study of eigenvalue correlations leads
to subtle lattice point counting problems which, in some instances, can be solved by
ergodic theoretic techniques. In a special example (the so-called “boxed oscillator”)
energy level statistics are related to the statistical distribution of the fractional
parts of the sequence n2α. We will see that the error term of this distribution can
be identified with an almost modular function, and that the fluctuations of the error
term are governed by a general limit theorem for such functions.
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1 Introduction

The classification of quantum systems according to universal statistical prop-
erties is one of the central objectives in quantum chaos. The topic is discussed
in detail in Eugene Bogomolny’s lectures [7] and I will here concentrate on a
special class of quantum systems whose level statistics can be understood in
terms of lattice point counting problems. Let us consider a Hamiltonian with
discrete energy spectrum λ1 ≤ λ2 ≤ . . .→∞. We assume that the number of
levels (counted with multiplicity) grows asymptotically as

#{j : λj ≤ λ} ∼ N(λ) (λ→∞) (1.1)

where N(λ) = cλγ with constants c > 0, γ ≥ 1. To investigate its statistical
properties it is convenient to rescale the sequence by setting Xj = N(λj)
which yields mean density = 1, i.e.,

#{j : Xj ≤ X} ∼ X (X →∞). (1.2)

The central conjecture, put forward by Berry and Tabor in 1977 [1], is that if
the Hamiltonian is classically integrable (and sufficiently “generic”) then the
Xj have the same local statistical properties as independent random variables
from a Poisson process. This means that

N (T,L) := #{j : T ≤ Xj ≤ T + L}, (1.3)

the number of Xj in a randomly shifted interval [T, T +L] of fixed length L, is
distributed according to the Poisson law Lk

k! e−L. More precisely, let ρ : R>0 →
R≥0 be a continuous probability density with compact support, and define the
family of probability densities ρX with X ∈ R≥1 by ρX(T ) = X−1ρ(TX−1).
The assertion is now that N (T,L) has a Poisson limit distribution, if T is
distributed according to ρX and X → ∞. That is, for any bounded function
g : Z≥0 → C we have

∫ ∞

0

g
(
N (T,L)

)
ρX(T ) dT →

∞∑
k=0

g(k)
Lk

k!
e−L . (1.4)

This is in contrast to chaotic systems where the spectral statistics are expected
to follow those of random matrix ensembles.

The central idea behind the Berry-Tabor conjecture is that the energy
levels of an integrable Hamiltonian are in semiclassical approximation given
by the EBK quantization

λj(�) ∼ H(�(m + α)), � → 0, (1.5)

where H(I) is the classical Hamiltonian in the action variables; m runs over
integer lattice points and α is a fixed vector determined by topological data
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such as Maslov indices. One case where this approximation can be controlled
sufficiently well to study spectral correlations is when H is the negative Lapla-
cian −∆ on surfaces with integrable geodesic flow. For examples in the case
of surfaces of revolution (with some technical assumptions) one has [10, 11]

λj = F (m1,m2 + 1
2 ), (m1,m2) ∈ Z

2, |m1| ≤ m2, (1.6)

where F (x) = F2(x) + F0(x) +O(‖x‖−1), ‖x‖ → ∞, and F2, F0 are smooth
homogeneous functions of degree 2 and 0, respectively. Note that in the case
of the Laplacian the semiclassical limit � → 0 is equivalent to the high energy
limit j →∞.

Sinai [42] and Major [17] proved the Poisson limit theorem (1.4) for generic
F in a certain function space. A “generic” function has, however, level curves
F (x) = 1 which are not twice differentiable. Advances towards a proof of the
Poisson conjecture for systems with analytic F , such as the Laplacian on sur-
faces with integrable geodesic flow, have been made only recently. Sarnak [38]
showed that the pair correlation statistics are Poisson for the eigenvalues of
tori with a generic flat metric (we shall see below that pair correlation or two-
point statistics correspond to the variance of the distribution of N (T,L)). The
eigenvalues of a flat torus are given by positive definite binary quadratic forms
αm2 +βmn+γn2 (m,n ∈ Z), and “generic” refers to a choice of (α, β, γ) in a
set of full Lebesgue measure. These results were extended by VanderKam to
tori of arbitrary dimension [43] and also to higher-order correlation functions
[44]. Eskin, Margulis and Mozes [12] strengthened considerably Sarnak’s re-
sult by giving explicit diophantine conditions on (α, β, γ) under which the pair
correlation statistics of two-dimensional flat tori is Poisson. It is interesting to
note, however, that the fluctuations of the spectral form factor (the Fourier
transform of the pair correlation density) are in this case not consistent with
the Poisson model [18].

Berry and Tabor point out that there are many examples of integrable
systems which violate their general conjecture, and that hence the Poisson
distribution should only be expected for “generic” systems. One of the most in-
teresting counter examples is the multi-dimensional harmonic oscillator whose
eigenvalues are given by the values of the linear form ω ·m at lattice points
m ∈ N

k; see Berry and Tabor’s original work [1], and subsequent papers by
Pandey, Bohigas, Giannoni and Ramaswamy [30, 31], Bleher [2, 3], Mazel and
Sinai [29], Greenman [13, 14], and myself [21].

In the present paper we focus on two special classes of integrable systems.
The first example is the k-dimensional standard torus T

k threaded by flux
lines, where the question of energy level statistics corresponds to counting
lattice points in thin spherical shells centered at α. It was first studied in
connection with the Berry-Tabor conjecture by Cheng, Lebowitz and Major
[8, 9]. In Sects. 2 and 3 I will review recent results on the pair correlation
statistics [24, 25], which were announced in [22, 23].

The second example is the “boxed oscillator”, i.e., a particle constrained
by a box in x-direction and by a harmonic potential in the y-direction, so that
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H = −∂2
x−∂2

y+ω
2y2. In this case the eigenvalue correlations are closely related

with the local statistics of the fractional parts of the sequence n2α, which
were studied by Sinai [41], Pellegrinotti [32], Rudnick, Sarnak and Zaharescu
[35, 36, 45], and Zelditch [46]. In Sects. 4 and 5 I will discuss joint work with
Strömbergsson [28], which relates the pair correlation problem for n2α to a
natural equidistribution problem in hyperbolic geometry.

It is crucial in the Poisson limit theorem (1.4) that L is kept fixed. If L
increases (sufficiently slowly) with T then the left-hand-side is expected to
converge to a Gaussian distribution, see Bleher’s review [5] for a detailed dis-
cussion. (In a recent paper [16], Hughes and Rudnick prove a central limit
theorem for lattice points in annuli.) If, on the other hand, L grows suffi-
ciently fast with T (e.g. L = T ) the limiting distribution (provided it exists)
is typically non-universal. In the case when the eigenvalues are given by values
of positive definite binary quadratic forms (or more general functions homo-
geneous of degree two) the work of Heath-Brown [15] and Bleher [4, 5] shows
that the limit distribution can be described in terms of almost periodic func-
tions. Bleher and Bourgain obtained a similar result for the multidimensional
torus threaded by flux lines, under certain diophantine conditions on the flux
strength [6].

In the case of the boxed oscillator, we will see in Sect. 6 that, rather
than almost periodic functions, almost modular functions will describe the
distribution of the error term. This last section is based on the papers [26, 27].

2 Torus Threaded by Flux Lines and Lattice Points
in Thin Spherical Shells

The quantum mechanics of a free particle on a k-dimensional torus threaded
by flux lines of strength α = (α1, . . . , αk) is described by the Hamiltonian

H =
∑
j

(
1

2πi
∂

∂xj
− αj

)2

(2.1)

acting on periodic functions ϕ, i.e., ϕ(x + l) = ϕ(x), for all l ∈ Z
k. The

eigenfunctions of H are ϕm(x) = e(m · x), where m = (m1, . . . ,mk) ∈ Z
k,

and its eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · → ∞ are given by

‖m−α‖2 = (m1 − α1)2 + · · ·+ (mk − αk)2. (2.2)

Geometrically, the eigenvalues ofH thus correspond to squared radii of spheres
with center α which contain at least one lattice point m ∈ Z

k; the multiplicity
of the eigenvalue corresponds to the number of lattice points on the sphere.
Since the number of lattice points in a ball of large radius is approximately
its volume, we find that (1.1) holds with N(λ) = Bkλ

k/2 where Bk is the
volume of the unit ball. According to the Berry-Tabor conjecture we expect the
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rescaled sequenceXj = Bk‖m−α‖k to satisfy the Poisson limit theorem (1.4),
at least for “generic” choices of α. Hence, in geometric terms, the conjecture
says that the number of lattice points inside a random spherical shell with
fixed volume L, whose inner sphere encloses a ball of volume T (randomly
distributed with law ρX), has a Poisson limit distribution as X →∞.

As a first step towards a proof of the conjecture we shall here show that
the second moment of N (T,L), the number variance

Σ2(X,L) :=
1
X

∫ ∞

0

{N (T,L)− L}2ρ
(
T

X

)
dT, (2.3)

converges indeed to the variance of the Poisson distribution, which is L. Note
in the above definition of Σ2(X,L) that, in view of (1.2), the expectation
value of N (T,L) is asymptotically

1
X

∫ ∞

0

N (T,L) ρ
(
T

X

)
dT → L. (2.4)

As we shall see the set of “generic” α can be characterized by an explicit
diophantine condition which is in fact satisfied by a set of α of full Lebesgue
measure.

The vector α = (α1, . . . , αk) ∈ R
k is said to be diophantine of type κ, if

there exists a constant C > 0 such that

max
j

∣∣∣∣αj − mj

q

∣∣∣∣ > C

qκ
(2.5)

for all m1, . . . ,mk, q ∈ Z, q > 0. The smallest possible value for κ is κ = 1+ 1
k .

In this case α is called badly approximable. Examples of badly approximable
vectors are α such that the components of (α, 1) form a basis of a real algebraic
number field of the degree k + 1 ([39], Theorem 6F). On the other hand, for
any κ > 1 + 1

k , the set of diophantine vectors of type κ is of full Lebesgue
measure ([39], Theorem 6G).

Theorem 1 (Poisson limit of the number variance). Suppose α is dio-
phantine of type κ < k−1

k−2 and the components of the vector (α, 1) ∈ R
k+1 are

linearly independent over Q. Then, for every L > 0,

lim
X→∞

Σ2(X,L) = L. (2.6)

This theorem is a corollary of a more general statement on the convergence
of the pair correlation density of the Xj , which is proved in [24, 25]. For any
ψ ∈ C0(R>0×R>0×R) (i.e., continuous and of compact support) let us define
the pair correlation function

R2(ψ, λ) =
1

Bkλk/2

∞∑
i,j=1

ψ

(
λi
λ
,
λj
λ
, λk/2−1(λi − λj)

)
. (2.7)

We then have the following statement (Theorem 2.2, [25]).
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Theorem 2 (Poisson limit of pair correlation). Let ψ ∈ C0(R>0×R>0×
R). Suppose the components of (α, 1) ∈ R

k+1 are linearly independent over
Q, and assume α is diophantine of type κ < k−1

k−2 . Then

lim
λ→∞

R2(ψ, λ) =
k

2

∫ ∞

0

ψ(r, r, 0)rk/2−1dr

+
k2

4
Bk

∫
R

∫ ∞

0

ψ(r, r, s)rk−2dr ds. (2.8)

To see more clearly what this theorem says about the distribution of the
rescaled sequence Xj , let us put

R̃2(ψ,X) =
1
X

∞∑
i,j=1

ψ

(
Xi

X
,
Xj

X
,Xi −Xj

)
. (2.9)

The map

ω : R>0×R>0×R → R>0×R>0×R,


r1r2
s


 �→




Bkr
k/2
1

Bkr
k/2
2

BkR(r1, r2)s


 (2.10)

with R(r1, r2) = (rk/21 − rk/22 )/(r1 − r2) is invertible, continuous and in
particular maps compact sets to compact sets. We may therefore choose
as a suitable test function in Theorem 2 the function ψ = ψ̃ ◦ ω, for any
ψ̃ ∈ C0(R>0 × R>0 × R). So

ψ(r1, r2, s) = ψ̃(Bkr
k/2
1 , Bkr

k/2
2 , BkR(r1, r2)s). (2.11)

After a simple change of variables this shows that Theorem 2 is equivalent to
the statement that (under the same conditions on α) for any ψ̃ ∈ C0(R>0 ×
R>0 × R) we have

lim
X→∞

R̃2(ψ̃,X) =
∫ ∞

0

ψ̃(r, r, 0) dr +
∫

R

∫ ∞

0

ψ̃(r, r, s) dr ds. (2.12)

The first term represents the asymptotic contribution of the diagonal terms
(i = j) in the sum, while the second asserts that the spacings Xi − Xj (for
i �= j) are uniformly distributed, as one would expect from independent ran-
dom variables with constant mean spacing. We will show in Appendix A that
Theorem 1 follows in fact from (2.12) for a special choice of test function ψ.

The diophantine conditions in the above theorems are in fact sharp; there
are diophantine vectors α of type κ = k−1

k−2 such that the components of
(α, 1) ∈ R

k+1 are linearly independent over Q, for which the conclusion of
the theorems do not hold. Such α are of the form α = (α1, . . . , αk) where
(α1, . . . , αk−2) ∈ R

k−2 is badly approximable by rationals (i.e., diophantine
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of type k−1
k−2 = 1+ 1

k−2 ) and (αk−1, αk) ∈ R
2 are very well approximable vectors

which form a set of second Baire category in R
2. (A set of second category is a

set which cannot be represented as a countable union of nowhere dense sets.)
The idea here is that the pair correlation function diverges at a logarithmic
rate for α with (αk−1, αk) ∈ Q

2, which is still felt by well approximable
(αk−1, αk); see [24, 25] for details. (Note that the set C in Theorem 1.7 [25]
is wrongly characterized as a second category subset in R

k, since we impose
diophantine conditions. C is only a dense subset in R

k.)

3 Theta Sums and Unipotent Flows

Let us firstly note that it is sufficient (see [25] for details) to prove Theorem
2 for pair correlation functions of the form

R2(ψ1, ψ2, h, λ) =
1

Bkλk/2

∞∑
i,j=1

ψ1(
λi
λ

)ψ2(
λj
λ

)ĥ
(
λk/2−1(λi − λj)

)
, (3.1)

Here ψ1, ψ2 ∈ S(R≥0) are real-valued, and S(R≥0) denotes the Schwartz class
of infinitely differentiable functions of the half line R≥0 which, as well as their
derivatives, decrease rapidly at +∞. ĥ is the Fourier transform of a compactly
supported function h ∈ C0(R), ĥ(s) =

∫
R
h(u)e( 1

2us) du with the shorthand
e(z) := e2πiz.

A short calculation shows that R2(ψ1, ψ2, h, λ) can be written as an inte-
gral over a product of theta sums,

R2(ψ1, ψ2, h, λ) =
1
Bk
vk/2−1×

×
∫

R

Θf

(
u+ i

1
λ
, 0;
(

0
α

))
Θg

(
u+ i

1
λ
, 0;
(

0
α

))
h(vk/2−1u) du, (3.2)

for the choice of functions f(w) = ψ1(‖w‖2) and g(w) = ψ2(‖w‖2). Here the
theta sum Θf is defined for any Schwartz function f ∈ S(Rk) by

Θf (τ, φ; ξ) = vk/4
∑

m∈Zk

fφ((m− y)v1/2) e( 1
2‖m− y‖2u+ m · x), (3.3)

where

τ = u+ iv, (u ∈ R, v ∈ R>0), φ ∈ R, ξ =
(

x
y

)
(x,y ∈ R

k). (3.4)

The family of functions fφ is an extension of f =: fφ
∣∣
φ=0

defined by

fφ(w) =
∫

Rk

Gφ(w,w′)f(w′) dw′, (3.5)
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with the integral kernel

Gφ(w,w′) = e(−kσφ/8)| sinφ|−k/2e
[ 1

2 (‖w‖2 + ‖w′‖2) cosφ−w ·w′

sinφ

]
,

(3.6)
where σφ = 2ν+1 when νπ < φ < (ν+1)π, ν ∈ Z. The operators Uφ : f �→ fφ
are unitary, and in particular U0 = id.

The idea behind the introduction of the extra variables φ and x is that
the product ΘfΘg can be identified with a function on the finite volume
homogeneous space M = Γ\Gk where Gk = SL(2,R)�R

2k and Γ is a lattice
in Gk. The multiplication law for Gk is (M ; ξ)(M ′; ξ′) = (MM ′; ξ + Mξ′)
where M,M ′ ∈ SL(2,R) and ξ, ξ′ ∈ R

2k; the action of SL(2,R) on R
2k is

defined by

Mξ =
(
ax + by
cx + dy

)
, M =

(
a b
c d

)
, ξ =

(
x
y

)
. (3.7)

The connection between M ∈ SL(2,R) and the variables τ = u + iv, φ used
above is given by the Iwasawa decomposition

M =
(

1 u
0 1

)(
v1/2 0
0 v−1/2

)(
cosφ − sinφ
sinφ cosφ

)
. (3.8)

The first of the two crucial ingredients in the proof of the Poisson limit
of the pair correlation functions is following equidistribution theorem [24, 25]
whose proof in turn uses Ratner’s classification of ergodic measures invariant
under a unipotent flow [33, 34]. The following theorem may be viewed (strictly
speaking only in the case σ = 0) as a special case of Shah’s Theorem 1.4 [40];
for a proof see [24] (σ = 0) and [25] (σ > 0).

Theorem 3 (Equidistribution of translates of unipotent orbits). Let
Γ be a subgroup of SL(2,Z)�Z

2k of finite index, and assume the components of
the vector (y, 1) ∈ R

k+1 are linearly independent over Q. Let h be a continuous
function R → R≥0 with compact support. Then, for any bounded continuous
function F on Γ\Gk and any σ ≥ 0, we have

lim
v→0

vσ
∫

R

F

(
u+ iv, 0;

(
0
y

))
h(vσu) du =

1
µ(Γ\Gk)

∫
Γ\Gk

F dµ

∫
R

h(w) dw

(3.9)
where µ is the Haar measure of Gk.

The dynamical interpretation of the above average is the following. Let us
define the flows Ψu, Φt : Γ\Gk → Γ\Gk by right translation with

Ψu0 =
((

1 u
0 1

)
;0
)
, Φt0 =

((
e−t/2 0

0 et/2

)
;0
)
, (3.10)

respectively. Then
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Γ

(
u+ i e−t, 0;

(
0
y

))
= Γg0Ψu0 Φ

t
0 = Φt ◦ Ψu(Γg0), g0 :=

(
1;
(
0
y

))
(3.11)

and we can thus view the integral for t = 0 as an integral along an orbit of the
unipotent flow Ψu which includes (at time u = 0) the point g0; for t > 0 we
obtain a translate by Φt of the above orbit which, by Theorem 3, eventually
becomes equidistributed in Γ\Gk.

The integral on the right-hand-side of the above equidistribution theorem
can be worked out explicitly for F = ΘfΘg and yields precisely the first term
in Theorem 2. The problem is that F is not a bounded function. To prove
convergence in this case we need to ensure that the translated orbit stays
sufficiently far away from the singularities of F ; this is achieved by imposing
diophantine conditions on y. The only exception is a small piece of the orbit at
u = 0 which runs into the singularity and produces an additional contribution,
which in fact yields the second term in Theorem 2.

4 The Boxed Oscillator, Lattice Points in Thin Parabolic
Strips, and Distribution Modulo One

The Hamiltonian of the boxed oscillator is H = − ∂2

∂x2 − ∂2

∂y2 + ω2y2, where
we assume Dirichlet boundary conditions at x = 0, �. Its eigenvalues are Ej =
(π/�)2n2 + (2m + 1)ω, for n = 1, 2, 3, . . . and m = 0, 1, 2, . . .. Up to overall
additive and multiplicative constants these can be written as λj = n2α +m
with α = (π/�)2/2ω. The eigenvalue number is asymptotically #{j : λj ≤
λ} ∼ cλ3/2 where c = meas{x, y ≥ 0, αx2 + y ≤ 1} = 2

3
√
α
.

The statistical properties of the sequence λj are directly related to those
of n2α mod 1. For consider those λj = n2α +m, which fall into the interval
[λ, λ + 1), for some fixed λ > 0. Clearly for every n = 1, 2, . . . such that
n2α < λ + 1 there exists a unique m = 0, 1, 2, . . . such that λj ∈ [λ, λ + 1).
The values of λj in this interval are thus in one-to-one correspondence with
n2α mod 1, n = 1, . . . , N <

√
(λ+ 1)/α. The distribution of the λj in small

random intervals can therefore be understood in terms of the distribution of
n2α mod 1 in small (i.e. of size of the order of 1/N) random intervals of the
unit circle. Let [ξ, ξ + N−1σ] + Z be such an interval where ξ is uniformly
distributed on the unit circle; define the analogue of the counting function
(1.3) by

N (N, ξ, σ) = #{n = 1, . . . , N : n2α ∈ [ξ, ξ +N−1σ] + Z}. (4.1)

In view of the Berry-Tabor conjecture we expect that—for generic α— this
number is Poisson distributed as N → ∞, i.e., for any bounded function
g : Z≥0 → C, ∫ 1

0

g
(
N (N, ξ, σ)

)
dξ →

∞∑
k=0

g(k)
σk

k!
e−σ . (4.2)



172 Jens Marklof

The best result we have in this direction is again for the number variance

Σ2(N,σ) :=
∫ 1

0

{N (N, ξ, σ)− σ}2 dξ, (4.3)

which can be shown to converge to the Poisson limit for almost all α.

Theorem 4 (Poisson limit of the number variance). There is a set P ⊂
R of full Lebsgue measure such that, for every α ∈ P and every σ > 0,

lim
N→∞

Σ2(N,σ) = σ. (4.4)

As for Theorem 1 above, this theorem follows from the Poisson distribution
of the more general pair correlation function

R2(ψ,N) =
1
N

N∑
j,k=1

∑
ν∈Z

ψ
(
N(j2α− k2α+ ν)

)
(4.5)

where ψ ∈ C0(R), continuous and with compact support. The following the-
orem is proved by Rudnick and Sarnak [35] by averaging R2(ψ,N) and its
square over α and using a variant of the Borel-Cantelli argument.

Theorem 5 (Poisson limit of pair correlation). There is a set P ⊂ R

of full Lebsgue measure such that, for every α ∈ P and every ψ ∈ C0(R), we
have

lim
N→∞

R2(ψ,N) = ψ(0) +
∫

R

ψ(x) dx. (4.6)

The number variance is in this case in fact identical to the pair correlation
function, i.e., Σ2(N,σ) = R2(ψ,N)−σ2 for the choice ψ(x) = max{σ−|x|, 0},
see Appendix B.

5 On n2α mod 1 and the Equidistribution of Kronecker
Sequences Along Closed Horocycles

In view of Theorems 1 and 2, one would like to give a more explicit char-
acterization (in terms of diophantine conditions) for the set of α for which
n2α mod 1 is Poisson distributed. Would, for instance, the assertion in Theo-
rem 5 hold for α =

√
2 ? Motivated by the affirmative answer in the case of

the pair correlation problem for quadratic forms discussed in the previous sec-
tion, the idea is to look for an equidistribution problem involving unipotent
orbits, which can be employed to understand the pair correlation densities
of n2α mod 1. To this end, consider a pair correlation function with smooth
weighting,
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R2(f, h,N) =
1
N

∑
j,k∈Z

∑
ν∈Z

f

(
j

N

)
f

(
k

N

)
ĥ
(
N(j2α− k2α+ ν)

)
(5.1)

where f ∈ C
∞
0 (R), h ∈ C0(R) with Fourier transform

ĥ(s) =
∫

R

h(u)e( 1
2us) du = O(|s|−2) (5.2)

for s→∞. Applying Poisson summation to the ν-sum, we obtain

R2(f, h,N) =
1
N

∑
m∈Z

h

(
m

N

)∣∣Θf (mα+ iN−2, 0)
∣∣2 (5.3)

where Θf (τ, φ) is the theta sum (3.3) for dimension k = 1 at ξ = 0, i.e.,

Θf (τ, φ) = v1/4
∑
n∈Zk

fφ(nv1/2) e( 1
2n

2u). (5.4)

The pair correlation function may thus be viewed as a special case of averages
of the form

1
M

M∑
m=1

F (mα+ iv, 0) (5.5)

asM →∞ and v → 0, where F is a continuous function on M = Γ\SL(2,R),
where Γ is a lattice in SL(2,R) which contains the parabolic subgroup{(

1 j
0 1

)
: j ∈ Z

}
; we will also assume for simplicity that −1 ∈ Γ . In partic-

ular, for Γ = Γθ, the invariance group of |Θf | (the “theta group”), one can
show [28] that if for some fixed α ∈ R and F = |Θf |2 we have

lim
M→∞

1
M

M∑
m=1

F (mα+ iv, 0) =
1

µ(M)

∫
M
F dµ, v =M−2 → 0, (5.6)

then the limiting pair correlation density of n2α mod 1 is Poisson.
The equidistribution theorem (5.6) we are here interested in combines two

classical equidistribution problems. The first is the equidistribution of long
closed horocycles [37], i.e.,

lim
y→0

∫ 1

0

F (u+ iv, 0) du =
1

µ(M)

∫
M
F dµ, (5.7)

for any sufficiently nice test function F , e.g., bounded continuous. The second
is the distribution of the Kronecker sequence α, 2α, 3α . . . ,Mα mod 1, which
is well known to be equidistributed as M →∞ for all irrational α; that is

lim
M→∞

1
M

M∑
m=1

F (mα+ iv, 0) =
∫ 1

0

F (u+ iv, 0) du (5.8)
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for fixed v > 0. Taking both limits M → ∞, v → 0 simultaneously requires
a careful analysis. Of particular interest is the case when the number M of
points on the horocycle grows slower than the length of the horocycle, v−1.
In this case the problem is that the mean distance between the points on
the horocycles grows as v → 0. It seems therefore difficult to show that any
possible limit measure is invariant under some unipotent action, and hence
Ratner’s theorem cannot be applied (in the present approach, that is). The
proof of the following theorem uses instead methods from spectral analysis
[28].

Theorem 6 (Equidistribution of mα mod 1 along closed horocycles).
Let Γ be a lattice in SL(2,R) as described above. Fix ν > 0. Then there is a
set P = P (Γ, ν) ⊂ R of full Lebesgue measure such that for any α ∈ P , any
bounded continuous function F : M → C, and any constants 0 < C1 < C2,
we have

1
M

M∑
m=1

F (mα+ iv, 0) → 1
µ(M)

∫
M
F dµ (5.9)

uniformly as M →∞ and C1M
−ν ≤ v ≤ C2M

−ν .

This theorem holds in fact for a larger class of test functions F which are
continuous but unbounded, and which allow the choice F = |Θf |2. Theorem 6
thus implies Rudnick & Sarnak’s result [35] that the pair correlation density
of n2α mod 1 is Poisson for almost all α.

If Γ = SL(2,Z) or a congruence subgroup, and we increase the number of
points on the horocycles sufficiently fast (i.e., ν is chosen sufficiently small)
we are able to prove equidistribution under explicit diophantine conditions.
The best possible result is obtained under the assumption that the Fourier
coefficients of the eigenfunctions on the Laplacian on Γ\H (H denotes the
complex upper half plane) are almost bounded; this hypothesis is usually
referred to as the Ramanujan conjecture for Maass wave forms.

Theorem 7 (Equidistribution of mα mod 1 along closed horocycles).
Let Γ be a congruence subgroup of SL(2,Z) and assume the Ramanujan con-
jecture for Maass waveforms on Γ\H holds. Let α ∈ R be of type κ ≥ 2, and
fix ν < min{2, 2

κ−2}. Then for any bounded continuous function F : M→ C,
and any constant C1 > 0, we have

1
M

M∑
m=1

F (mα+ iv, 0) → 1
µ(M)

∫
M
F dµ (5.10)

uniformly as M →∞, v → 0 so long as v ≥ C1M
−ν .

This statement is proved in [28]. If κ ≥ 3, then ν < 2
κ−2 is in fact the best

possible restriction on ν, in the sense that there are otherwise counter exam-
ples for which the assertion of the theorem is wrong [28]. Thus, in contrast



Energy Levels, Lattice Points, Almost Modular Functions 175

with the equidistribution theorem for unipotent flows (Theorem 3), we must
impose diophantine conditions even in the case of bounded test functions.

It would be very interesting to extend Theorem 7 to ν = 2, which, as
mentioned above, is the case relevant to the pair correlation problem. Note
that the theta group Γθ is a congruence subgroup of SL(2,Z).

6 Distribution Modulo One and Almost Modular
Functions

In the previous section we have presented some evidence that the distribution
of n2α mod 1 in intervals of size 1/N is described by a Poisson distribution.
In the same vein (as mentioned in the introduction) it can be expected that
a central limit theorem holds for slightly larger intervals. Let us here consider
the case when the interval size is macroscopic. For any fixed interval [ξ, ξ+η],
0 < η < 1, we are interested in the counting function

Nα(N, ξ, η) = #{n = 1, . . . , N : n2α ∈ [ξ, ξ + η] + Z}. (6.1)

For irrational α, the sequence n2α is equidistributed mod 1, which means that
N (N, ξ, η) ∼ Nη as N →∞. The error term is thus

Eα(N, ξ, η) = Nα(N, ξ, η)−Nη. (6.2)

There are two possibilities to study the fluctuations of this function. Fix
the interval and take α to be uniformly distributed in [0, 1), or fix α and take
ξ to be uniformly distributed in [0, 1) with η fixed as usual (note, however,
that this time we consider large intervals compared with the mean separation
1/N). In the first case we have the following statement.

Theorem 8 (Limit theorem for the error term). For α uniformly dis-
tributed in [0, 1), N−1/2Eα(N, ξ, η) has a limit distribution as N →∞. That
is, there exists a probability measure νξ,η on R such that, for any bounded
continuous function g : R → R, we have

lim
N→∞

∫ 1

0

g
(
N−1/2Eα(N, ξ, η)

)
dα =

∫
R

g(w) νξ,η(dw). (6.3)

Furthermore, νξ,η is even.

This is a special case of Theorem 2.1 in [26], which also provides an ex-
plicit formula for the variance of the limit distribution. To sketch the proof of
Theorem 8 let us write

Eα(N, ξ, η) =
N∑
n=1

ψ(n2α)−N
∫ 1

0

ψ(t) dt, (6.4)
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where ψ is the characteristic function of [ξ, ξ + η]. ψ could in fact be a more
general real- or complex-valued function; we will only require that its Fourier
coefficients

ψ̂k =
∫ 1

0

ψ(t) e(−kt) dt. (6.5)

satisfy
ψ̂0 = 0, (6.6)

and that there are constants β > 1/2 and C(ψ) > 0 such that

|ψ̂k| ≤
C(ψ)
|k|β (6.7)

for all k �= 0. Fourier expansion (which converges only in the L2 sense) yields

Eα(N, ξ, η) =
∑
k �=0

ψ̂k

{
N∑
n=1

e(kn2x)

}
. (6.8)

It is known [19] that the theta sums inside the curly brackets individually
have a limit distribution, as N →∞. This result follows from the observation
(cf. previous sections) that theta sums can be identified with functions on the
metaplectic cover of SL(2,R) which are invariant under certain subgroups of
finite index in the metaplectic analogue of SL(2,Z). The limit theorem is then
a direct consequence for the equidistribution of long closed horocycles on the
metaplectic cover [20].

One can show that the truncated Fourier expansion

E(K)
α (N, ξ, η) =

∑
0<|k|≤K

ψ̂k

{
N∑
n=1

e(kn2x)

}
(6.9)

can as well be identified with functions on the metaplectic cover of SL(2,R),
where the index of the invariance subgroup is still finite but becomes large
with increasing K. Following the same steps as in [19] one can therefore show
that E(K)

α (N, ξ, η) satisfies the limit theorem, Theorem 8.
The variance of the difference Eα(N, ξ, η)−E(K)

α (N, ξ, η) is, uniformly in
N � 1, arbitrarily small for K sufficiently large; hence the distributions of
Eα(N, ξ, η) and E(K)

α (N, ξ, η) are arbitrarily close for K large. Theorem 8
follows now from standard probabilistic arguments.

The fact that each approximation E(K)
α (N, ξ, η) is a modular function, but

Eα(N, ξ, η) is not (in general), suggests the name almost modular function, in
close analogy with almost periodic functions in the sense of Besicovitch. The
above arguments can in fact be extended to general classes of almost modular
functions, which are characterized by the approximability (with respect to a
certain Lp norm) by modular functions invariant under congruence subgroups
of large index [26].
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Another interesting example of an almost modular function is the loga-
rithm of ∞∏

n=1

(
1− e(n2z)

)
, (6.10)

which is studied in [27]. Its limit distribution in the complex plane is in fact
rotation-invariant.
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A Proof of Theorem 1

Because of (1.2) we have, for large X,

Σ2(X,L) ∼ 1
X

∫ ∞

0

N (T,L)2ρ
(
T

X

)
dT − L2. (A.1)

Expand

N (T,L) =
∑
j

χ1

(
Xj − T
L

)
, (A.2)

where χ1 is the indicator function of the interval [0, 1]. This yields

Σ2(X,L) + L2 ∼ 1
X

∑
i,j

∫ ∞

−∞
χ1

(
Xi − T
L

)
χ1

(
Xj − T
L

)
ρ

(
T

X

)
dT. (A.3)

We have replaced 0 in the lower limit by −∞, which is permitted since ρ is
supported on the positive half line. Substitute T by T + 1

2 (Xi +Xj), and the
right hand side becomes

1
X

∑
i,j

∫ ∞

−∞
χ1

( 1
2 (Xi −Xj)− T

L

)
×

× χ1

( 1
2 (Xj −Xj)− T

L

)
ρ

( 1
2 (Xi +Xj) + T

X

)
dT. (A.4)
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The integration in T is restricted by the inequalities

0 ≤ 1
2
(Xi −Xj)− T ≤ L, 0 ≤ 1

2
(Xj −Xi)− T ≤ L, (A.5)

which imply 0 ≤ −T ≤ L, so T is bounded. Therefore, by the continuity of ρ,

ρ

( 1
2 (Xi +Xj) + T

X

)
∼ ρ
( 1

2 (Xi +Xj)
X

)
, (A.6)

and it is sensible to write (A.4) as

1
X

∑
i,j

ρ

( 1
2 (Xi +Xj)

X

)
W (Xi −Xj) + error term (A.7)

where

W (s) :=
∫ ∞

−∞
χ1

(
T + 1

2s

L

)
χ1

(
T − 1

2s

L

)
dT = max{L− |s|, 0}. (A.8)

Since the function ψ(r1, r2, s) = ρ( 1
2 (r1 + r2))W (s) is continuous and has

compact support, (2.12) yields

lim
X→∞

Σ2(X,L) + L2 =
∫ ∞

0

ψ(r, r, 0) dr +
∫

R

∫ ∞

0

ψ(r, r, s) dr ds = L+ L2,

(A.9)
which proves Theorem 1, provided the above error term is indeed small. To
investigate this, note that

|error term| ≤ 1
X

∑
i,j

ρ̃

( 1
2 (Xi +Xj)

X

)
W (Xi −Xj) (A.10)

where ρ̃ is a continuous function with compact support such that

sup
0≤−T≤L

∣∣∣∣ρ
(
r +

T

X

)
− ρ(r)

∣∣∣∣ ≤ ρ̃(r) (A.11)

for all r. It is evident that for any given ε > 0 we can find a function ρ̃
meeting this requirement for all X large enough and satisfying in addition∫∞
0
ρ̃(r)dr < ε. By (2.12) the right hand side of (A.10) converges to

(L2 + L)
∫ ∞

0

ρ̃(r)dr < (L2 + L)ε (A.12)

which means that the error term is smaller than any ε > 0, hence zero. ��
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B Proof of Theorem 4

We have

Σ2(N,σ) + σ2

=
∞∑

j,k=1

∑
ν,ν′∈Z

∫ 1

0

{
χ[0,σ]

(
N(j2α+ ξ + ν)

)
χ[0,σ]

(
N(k2α+ ξ + ν′)

)}
dξ

=
∞∑

j,k=1

∑
ν∈Z

∫
R

{
χ[0,σ]

(
N(j2α+ ξ + ν)

)
χ[0,σ]

(
N(k2α+ ξ)

)}
dξ

=
1
N

∞∑
j,k=1

∑
ν∈Z

∫
R

{
χ[0,σ]

(
N(j2α− k2α+ ν) + ξ

)
χ[0,σ](ξ)

}
dξ (B.1)

and thus Σ2(N,σ)+σ2 = R2(ψ,N) for ψ(x) =
∫

R

{
χ[0,σ](x+ξ)χ[0,σ](ξ)

}
dξ =

max{σ − |x|, 0}. Since ψ ∈ C0(R), and ψ(0) +
∫

R
ψ(x) dx = σ + σ2, Theorem

4 is thus indeed a special case of Theorem 5. ��
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de l’Union Mathématique Internationale, No. 2. Monographie No. 19 de
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