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1. Introduction. The classical theta sum is defined by
N
Sy (x) = N_l/ZZe(nzx), (1)
n=1

wheree(t) = exp(2rit). We are interested in the asymptotic behaviourSgfx)

as N tends to infinity, for arbitrary values of in R. The case when is rational

is the easiest. It is not hard to see that h&rex) = A(x)NY2+ 0(N~Y2) with

some constand (x) (which can be zero for certair), for Sy (x) reduces to ordinary

Gauss sums. The more difficult part of giving estimates for generic valuesvals

first discussed by Hardy and Littlewood [3], [4], using diophantine approximation.

Their methods were later refined in a number of publications, some of which we will

mention here. In contrast to these approaches, we investigate the asymptotic behaviour

of theta sums by means of ergodic theory, exploiting a connection to the geodesic

flow and the horocycle flow on the unit tangent bundle of a certain hyperbolic surface.
In order to simplify the presentation of the main ideas, we replace the sharp cutoff

in the sum (1) by a smooth one; that is, we take “&fGnction f (with compact

support, say) and consider the sum

Sn(x) =N"Y2Y" f(n/N)e(nx). 2)
neZ

Choosingf to be the characteristic function of the intery@l 1] would clearly lead
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128 JENS MARKLOF

back to (1). There is no need to restrigtto the integers. It is convenient to put
y = N~2 and to viewSy (x) as a function

O (2) =y f(ny'?)e(nx) 3)

neZ

on the complex upper half-plarfe= {z =x+iy : y > 0}. In the following, we only
assume thay is of Schwartz class, that is, not necessarily of compact support, but
still smooth and rapidly decreasing. By that, the important case of the classical theta
series

Oo(z) = y*) "e(n®z). 4)

neZ

which corresponds to a cutoff functiof(r) = exp(—2r¢2), is also included in our
considerations.

The main resultis concerned with the distribution of value® g{z) in the complex
planeC. Depending on the choice ofas rational, real quadratic, or generic, different
kinds of patterns are created in the complex plane by the valu€s:of +iy), as
y — 0 andx remains fixed. FoSy (x) these “curlicues” are studied, for example, by
Dekking and Mendeés France [2] and by Berry and Goldberg [1] (see also references
therein). Theorem 5.2 explains how the points of such a pattern are distributed in the
plane, provided the cutoff functioyi is smooth. For any open subsBtc C with
nice boundary (“nice” is defined in Section 5), we prove the existence of the limit

Tliinw% {re[o,T]:®f»(x+ie*f)e%}‘ (5)
for almost allx € R (with respect to Lebesgue measure). denotes the standard
Lebesgue measure of a subsefRofThe limit (5) has the same value for all generic
x and is given by Theorem 5.2. We see later on that the limiting distribution is
not a normal Gaussian distribution. Theorem 5.2 is proved by identifying the set
{x+ie™":r € [0, T]} with a generic geodesic on the unit tangent bundla/T(or,
rather, a fourfold cover of it) of the noncompact hyperbolic surfa€e- I'1(4)\ 9,
wherel'1(4) is a congruence subgroup of &, 7), and then by applying the ergodic
theorem for the geodesic flow on ¥, going back to Hopf [7].

If the cut-off function £ (¢) is real valued and monotonically increasing foe 0
and is monotonically decreasing fore- 0, we show that the curlicue represented by
the set

{©f(x+ie™"):1€[0,T]}

becomes densely distributed in the complex planeT @ends to infinity compare
with Proposition 5.4.

The limit (5) does also exist for all real quadratic¢ Q, but has a different,
nonuniversal value because here the above set can be identified with a geodesic that
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approximates a closed geodesicTas> co. In the case € QQ, the relevant geodesics
are scattering orbits that run into a cuspMf

Instead of keeping fixed and varyingy, we can also look at the curves created
by the values of ¢ (x +iy), whenx runs from 0 to 1 and remains fixed. These
curves are clearly closed sinés (x +iy) is periodic inx with period 1. Theorem
5.3 states the existence of the limit (withas above)

|im0|{xE[O,l]:G)f(x—i-iy)e%}, (6)

y—

which is proved this time by identifying the sgt+iy : x € [0, 1]} with a closed
horocycle and applying the equidistribution theorem of long, closed horocycles due
to Sarnak [13]. Besides that, we also determine the asymptotic behaviourahthe
moment

1
/ 1O (x+iy)|“dx;
0

compare with Theorem 6.1.
As in the case of the curlicues considered first, the set

{©7(x+iy):x €[0,1]}

becomes densely distributed @hasy tends to zero, wherf (¢) is real valued and
monotonically increasing far < 0 and is monotonically decreasing for 0; com-
pare with Proposition 5.5. The limiting distributions for (5) and (6) are, in fact, the
same.

In Section 7 we give a density argument that shows that the limit (6),

lim

y—0

’

N
{x €[0,1]: N_l/ZZe(nzx) € %}

n=1

exists also in the case of the classical theta sum. The extension of Theorem 5.2 seems
harder in this respect and is not discussed in this article.

Theorems 5.3, 6.1, and 7.3 imply results of Jurkat and van Horne [8], [9], who
studied the functiongp(z) and Sy (x) by significantly different methods based on
diophantine approximation. Their uniform limit theorem in [10] may be derived in
an analogous way as a consequence of the equidistribution of arcs of long, closed
horocycles (compare [6]), but we do not treat this case here.

2. Basic definitions. The square roat?/? of a complex number is to be chosen
such that-/2 < argz1/2 < /2. Also, letz”/2 := (z1/?)" for any integemm < Z.

The action of SI2, R) on the upper half-plang = {z € C: Imz > 0} is defined
via fractional linear transformations; that is,

az+b <a b
g:

g:zn—>gz=—cz+d, d)eSL(Z,[R). @
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Let

SL(2,R) = {[g, B¢]: ¢ € SL(2, R), B, afunction onf) s.t. &%) = ¢,(2)},

€g(2) = (cz+d)/|cz+d], (8)
be the universal covering group of &, R), with the multiplication law
[¢. B[, B7]) = [gh. B3], B = By (h2) +Bi (). 9)

The inverse ofg, B, is then[g, B,]17* = [g—l,ﬂ;,l] with B, 1(2) = —Be (g 12).
For an integern, put

Zm =([—1.B-1]"), with B_1(z) =, (10)

that is, the cyclic subgroup generated[byl, s_1]". Z,, is contained in the center
of SL(2, R), and in particular PS{2, R) ~ SL(2, R)/Z1, SL(2, R) ~ SL(2, R)/Z>,
and so on.

We may identifySL(2, R) with § x R via

[g.Be] > (z.9) = (gi, Be (). (11)
The action ofSL(2, R) on $ x R is then canonically defined by
[8.B:](z. ) = (82,9 + B¢ (2)). (12)

The congruence subgroups

To(N) = { (i Z) €SL2,7):c=0 modN} , (13)
Ty(N) = {(‘C’ Z) €To(N):a=d=1 modN} , (14)

whereN is a positive integer, play a central role in our investigation. Furthermore,
put

AL(4) = {[g, Be]: g €T1(4), B, afunction ons s.t. &P/2 = (g)eg(z)l/z},

(15)

which is a discrete subgroup 8£.(2, R), as shown in the next section. For an integer
a and an odd integers, the symbol(%) is characterized by the following properties
(cf. [16]):

(i) ($)=0if (a,b) #1;
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(i) if bisan odd prime(%) coincides with the ordinary quadratic residue symbol;

(iii) if >0, (;) defines a character modulo

(iv) if a #0, (¢) defines a character modulo a divisor af, 4vhose conductor is
the conductor ofQ(,/a) overQ;

W) (%) =son;
(vi) (%) —1.
In particular,(l“—,)zzl, if (a,b) =1.

3. Thetafunctions as functions om1(4)\§l_(2, R). Itis well known that the hy-
perbolic manifoldl'1(4)\ 5 is not compact but is of finite measure with respect to the
canonical Riemann measute dy/y?. We see that1(4) is a discrete group contain-
ing the subgroufZs = {[1, B1] : B1(z) = 4nn,n € Z}; hencell = A1(4)\§T_(2, R)is
of finite measure, too, with respect to the invariant meaguréy d¢/y?. A funda-
mental region ofA1(4) in $ x R is, for instanceF a4y = Fry4) x [0, 4n), if Fr, )
is a fundamental region df1(4) in $. One may take, for example,

Frow =(z€9H:xe(=1/21/2],|z+1/4 > 1/4,1z—1/4 = 1/4).  (16)
Denote by¥(R) the Schwartz class of(R) functions of rapid decrease.
ProposiTION 3.1 For every f € #(R), there exists a functio® ; € C*°(t) such

that
Or(z,0) = yl/4z f(nyl/z)e(nzx).

neZ

Proof. Thekth Hermite functiornz; reads
hi () = (2 %) Y2 Hy (2n V%) e 2, (17)

with the Hermite polynomial
k
_ 2 ds
H.(t) = (-1 e We .

Theh,, form an orthonormal basis ofi(R) with respect to the standard scalar product,
that is, (hj, hi) = 8. Let f(k) = (f, hi) be thekth Hermite coefficient. Since
f € $(R), the Hermite expansion

N
> Flone) > £ (18)

k=0

converges uniformly in due to the bounds

|f(®K)] < Cn(2k+1)™™, for anym, (19)
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and
C((k+DYV3+|ani2— 2+ 1)), 2m2 <2k+1,
|hk(t)| = _ 42 2 (20)
Ce v, 2wtc > 2k +1,
with positive constant€’,,, C, y. (For this and more, see [19].)
Let us consider the theta function
Ok (z) = y1/4th (nyl/z)e(nzx), (21)
neZ
with the transformation property (see [17])
0k (82) = jg(2)* 0k (2), for everyg € T'o(4), (22)

1/2
. __afc\ ([ cztd
Jg(z)_ed <d>(|cz+d|> '
This is the usual automorphic factor divided by its modulus,@ng L oriifd =1
or 3(mod 4. We can forget abouw, if we restrict ourselves to the subgiou]@(4),

which is of index 2 inl"o(4). To check thai;(4) is a discrete subgroup &L(2, R),
observe that'é:?/2 = j, (z), for g € I'1(4), and

Oo(ghz) _ Bo(ghz) Oo(hz) _
6o(2) Oo(hz) 6o(2)

which is consistent with the multiplication law (9) §f_(2, R). We conclude that the
function

Jen(z) = Jg(h2) jn(2), (23)

Ok (2. ¢) = Or(z) @ ZHD/2 (24)
is invariant undenn1(4), that is, it is a function onit.
Put
Of(z,4) =y f5(ny"?)e(n’x), (25)
nel
where

fo)="Y_ floe &N, 1),

k=0

since ther® /(z) = © £(z, 0). The seriesf, (nyY/?) in (25) converges uniformly in
(z and¢ are fixed). Therefore, we can exchange the order of summation to obtain

Or(z.¢) =Y fK)6i(z,0), (26)

k=0

which is a C° function onJt. O
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Remarks. f, () satisfies the Schrodinger equation for the harmonic oscillator,

1 92 4 2 = 2i 9 27
(_EﬁJr wt >f¢(t)— |£f¢(t)’ (27)

from which we obtain the integral representation

fo@) = /_ Gy (r,1) f(t)drt, (28)

with the Green function

2 2
Gy(t.1') = 21/26(—U¢/8)|Sin¢|_1/25 |:(t +1 )C05¢—2ff/] ’

sing
whereoy = 2k +1 whenkr < ¢ < (k+ D).

Our manifold.t has a cyclic automorphism group of order 8, which is generated
by the transformationiz, ¢) — (—(4z)~1, ¢ +argz) corresponding to

0 -1/2 ~
[(2 0 ),arg} € SL(2, R).

To see howo ; transforms under this map, let us apply Poisson’s summation formula,
which yields

OrG¢) =y 4y / e (rzg— y’%) fpnyr. (29)
nez? —®

By virtue of the relation

1/2 -1/4

y _aim/a —1/4( y ) <2 X oX  nt )
G n—-,t | =e¢€ —_— e\n"—s+t"————-5 ), 30
g( 20z > Yo\ ety ) GO

one easily finds
Or(— () L o+arg) =e "0 s(z, 4). (31)

Notice that repeated application yiel@s (z,¢+7) = —i©¢(z, ¢).

M has three cusps of codimension 2@&t¢), (1/2, ¢), and(oco, ¢). We now study
the asymptotic behaviour @ ((z, ¢) in these cusps. To this end, let us choose the
following convenient coordinates:

(20, 60) = (- (42)~2, ¢ +arge),
(212, 9172) = (— (42 =271, p+argz — 1/2)), (32)
(ZO(M ¢00) = (Zv ¢)
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ProrosiTION 3.2 Let f € P(R). Then

i 1/4 _
&7/ £ Oye +on (35 ™),  yo— o0,

Oz ¢) =1 On (Vi) Y2 = 00,
1/4 —
Fre @y HONGEY), oo 0,

forany N.

Proof. Sincefy € #(R), the asymptotic relation in the cusp(@ab, ¢) is evident,
and the behaviour a0, ¢) is clear from transformation formula (31). In order to
understand the second relation, we observe that

Oy (z,¢) =220, (42-2,¢) - O (z—1/2,¢)
=2Y2e/4Q (z1)2/4, p1/2) — €7/ O f (2172, P1/2) (33)
= On(y1%)- O
Denote by/it* the compactification of the manifold, that is,
wr=a0  |J (G.#):¢el0.4m).
Jj€{0,1/2,00}

If the cutoff function f satisfies the conditiorf, (0) # O for all ¢ € [0, 4r), the map
©; : M — C can be extended to a continuous nﬁp s M* — CU{oo} by defining
O% =0y, ©%(0,¢9) =00, ©%(1/2,¢) =0, andO% (00, ¢) = co.

ProposiTioN 3.3 Let f € $(R), and assume thaf, (0) # 0 for all ¢ € [0, 4n).
Then the map
®’} s MF — CU{oo})

is onto.

Proof. We think of CU {c0} as the Riemann spheré,Svhere the north pole is
identified withoo and the south pole with zero. In the first step of this proof, we show
that the closed curve

y:[0.41] > {000}, 1> £i(0),
is not null-homotopic on 5—{0, oo}. To this end, split into
y1:00,27] > §—{0,00}, 1> f;(0),
connectingfo(0) = f(0) with f>,(0) = —f(0), and
y2:[0,27] > S —={0,00), 1> f12:(0),

connectingfz, (0) = — £ (0) with f4,(0) = f(0). Sinceys = —y1, it is plain to see
thaty cannot be contracted to a point without crossing a north or south pole.
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Now consider the family of closed curves
Py 1 [0, 4] — S {00}, 1 ©p(1/24iy,1), (34)

parameterized by. From Proposition 3.2 we kno® ((1/2+iy,t) = f; (0)y¥4 +
On (), asy — oo. So for ally > yo, with yo large enough, the curvg, has the
same property ag— it is not null-homotopic on 3—{0, co}.

We now contract the closed curyg, on & —{0} to the north pole by considering
the family (34), wherey runs fromyg to co. This deformation is clearly continuous
iny since@} is. Notice in particular tha@f‘;(l/z-i-iy, t) #0 for y > yp, and hence
Yy does not pass the south pole.

Alternatively, we can as well contragt,, continuously on 5—{o0} to the south
pole, by lettingy run from yg to zero. Here we have)’;-(l/2+ iy,t) # oo for
y €10, yol, and hence, does not pass the north pole.

Therefore, given any poinP € S?, the closed curver, must passP on its way
either to the north or to the south pole, so

{©%(1/2+iy.1): (v.1) €[0,00] x [0,47]} = S (35)
This proves the maﬁ)"} is onto. O

Remark. A sufficient condition for the cutoff functiorf to guaranteefy (0) # 0
for all ¢ is, for example, thalf (¢) is real valued and monotonically increasing for
t < 0 and is monotonically decreasing for 0. (Here and in the following, it is of
course always assumed thatis not the trivial zero-function.) This can be seen as
follows. Recall from (28) thaf; (0) # O is equivalent tof (0) # 0 and

o0
/ e(r?w) f()dt #0
—o0

for all w € R. If f(r) is assumed to be real valued and monotonically increasing
(resp., decreasing) far< 0 (resp.t > 0), then the first condition is clearly satisfied,
becausef has to vanish at-co and thus must be positive. The monotone increase
(resp., decrease) implies also that

/OO cos(2rr?w) f(1)dt > 0,

—00
which in turn gives the second condition.
We now provide some information on Eisenstein series of the theta @uwghich
we use to prove the upcoming proposition.

The theta group’y is generated by the transformatians> z +1 andz — —1/4z.
A fundamental region is given by

Fry={z€H:x€(-1/2,1/2], |z| > 1/2}, (36)
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so the two cusps dfy\$ are identified with the points/2 andoo. The Eisenstein
series associated with th#h cusp is defined as

Ei(z,s) = Z [ImGiv2)], Res>1, (37)
y€li\Tl'g

whereTl’; is the stabilizer of théth cusp (e.9.'coc ={y : 2+ z+n,n € Z}). y; is
the transformation mapping thith cusp onto the standard cuspratwith unit width.
We putz; = y;z (compare with definition (32)). Fourier expansioninyields

Ei(z,s)

0
— 1/2
=8y} +0i()y; +2 o (5)y} Ki—1j2(my;) cos2mmy ), (38)

m=1

wherek, (z) is the K-Bessel function. The functions; andgol.(]'.") can be expressed
in terms of number-theoretic functions, in particular,

§(2s—-1

ij (s) (39)

@ij(s) =

with &(s) = 7 /2" (s /2)¢ (s), wheret (s) is the Riemann zeta function, and

1 1 P _21—s
05 9)) = 525 (zs s g ) |

See Hejhal [5, Chapter 11, Section 3].
The expansion (38) can be used to find a meromorphic continuati&p(ofs) to
the whole complex plane. Let us also note that

Ei(z,8) =8y} +9ij(s)yi " +0(e727), y;— o0, (40)

which holds uniformly on compacta in the half-planesRe 1/2, since in this domain
the only singularity ofE; (z, s) is the simple pole of;;(s) ats = 1.

ProposITION 3.4 Let f € L2(R). Then there exists a functigd s € L2(M) such
that

-0
L2(M)

N
H@ r=> fi
k=0

as N — oo, where f (k) are the Hermite coefficients ¢f.

Proof. It is sufficient to show that the functios;, are orthonormal. In fact, we
shall see that
dxdyde

4m) 2 | 02j(z, )02 (2, ) —— = 8. (41)
M y2
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Proposition 3.2 guarantees the convergence of the integrakpdiiegration can be
carried out easily, and we are left with

(4m) 7181 /
T1(4\$

since by formula (31) the modulus 64, (z) is invariant under the theta group,
which is of index 2 overl1(4)/{%1}. Define

Za'xa'y

dx d _
288%Y — 2m) s / 162 ()| . (42
T'o\$ y

dxd
1o = [ [P E 0 - a0 Ex s +1/2]) T30 43)
To\$ Y

which is convergent due to (40). The Eisenstein series has a simple paielatvith
residue Re&.(z,s = 1) = 7~ and is regular for Re> 1, thus

Resli(s =1) = n_l/

dxd
2855 (44)
Fo\$ y

On the other hand, we can unfold the integhals) using the definition (37). This
gives, for Re > 1,

I (s) = f / [0 @) 2" —h @2y 2] d);dy

d
/ Zth ny2)2ys=1/24Y y (45)
y

- 4;(2s—1)/ hok(£)2]¢1% ~2dt.
—00
In the last step we exchanged the order of integration and summation. This is justified,

as the integral converges uniformly, in the sense that for every we find aC such
that

<€ (46)

‘/ X:th(nt)t23 2dt

uniformly for all N € N. To see this notice that (46) is dominated by

o0

an 2

K

K
nl—Zs

nC
hok ()12 ~2dt |+ dt,
0

o0
‘th(t)tZY—Z

where we choos& such that the second sum is less tla@8, and then we choose
C such that the first sum is less thas2.
Finally, we obtain the desired Rggs = 1) = 2. O
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Remark. It is a direct consequence of (41) thatfifis even (i.e.,f () = f(—1)),
then

Am) 2O 1,00 24 = [ (), (47)

@) NO fll 2 = 1 £ llL2w)- (48)

Itis worthwhile to mention that the content of this section may be rephrased in terms
of the Shale-Weil representationﬁf_(z, R). A nice introduction to the representation
theory of this group is, for instance, contained in [11]. In particular, it is interesting
that®, f € #(R), satisfies the eigenvalue equation

3
COr=—197, (49)

where C is the Casimir operator
3% 92 32
C=y?|—+— —
Y <8x2+8y2)+y8x8¢

of §f_(2, R). Equation (49) may be verified by a straightforward calculation using
(27); compare also with Lemma 1.5 of Shintani [18].

4. Geodesic flows and horocycle flowsThe unit tangent bundle{M of a hy-
perbolic manifoldM = I'\ $, with I a discrete subgroup of P&, R), is isomorphic
to I'\(T19). T1 9 denotes the unit tangent bundle f which is usually identified
with $ x (R/2r77Z), and the action of PSI2, R) on Ty § is given by

g:(z.0) > (82,0 —28,(2)); (50)

see [13]. To view this in the framework &L(2, R), which we have developed so
far, let us substituté = —2¢, and identify T, $ with  x (R/zZ). Now the action
of PSL(2, R) looks more like (12),

in particular, if we view PSI2, R) asSL(2, R)/Z,.
If we takeM =T'1(4)\$ and denote by the group generated by the elements of
A1(4) andZq, we find that

T1M ~ A\SL(2, R). (52)
A1(4) is normal inA, we have the disjunct decomposition

A=A(BDHUA1B[-1, 7r]UA1(D[L, 27]UA1(H)[-1, 37], (53)
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and thus we have
A1(A\A ~ 7.

This means thatl is a fourfold cover of T M.

Let{®'},cr be a 1-parameter subgroupéTl(Z, R), that is,®* ®’ = ds/. Assume
tr ®' = 2coshr/2). (By the trace of an element §1I1(2, R), we mean the trace of its
SL(2, R) component.) The! is conjugate to

e’’2 0
el 2)4

that is, we find & such thatd’g = gd;. We define thegeodesic flovon SL(2,R)
as the right translation bgg,

@' :SL(2,R) - SL(2,R), &> gdbh (54)
In the same fashion, we define therocycle flow

W' :SL2,R) - SL(2,R), &~ gV}, (55)

=l 4))

The associated 1-parameter subgroips},;cr are characterized by the condition
try! =2,

We call the setgcpg},e[o,n ageodesic of lengtli. We call{g\IJ(’)},e[o,T] ahorocycle
of lengthT.

For a discrete subgroufy, we define the geodesic flow on the quotient by

with

@' : A\SL(2,R) - A\SL(2,R), AgZr> AZD. (56)

A geodesic{ Ag®)}c(0,7) is closed if and only ifd” = gl g~tisin A. T is then
the period of the closed geodesic, and the smallest 0 for which ®’ € A is its
primitive period The same terminology applies to closed horocycles.

The ergodicity of the geodesic flow on the unit tangent bundle of a hyperbolic
surface of finite volume, hence for quotiert§ PSL(2, R), is proved by Hopf [7].
The generalization to quotienm\§f_(2, R) of finite measure is obvious. We state
the result for our special casié = A1(4)\§f_(2, R).

PropPOSITION 4.1 Let F € L1(t). Then for almost alg € .,

T

im = [ F(gob)dr = —— / F(@)dpu(@)
7o T Jo T ) Ju

with respect to Haar measurdu(g) = dxdydp/y?.
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Remarks. In the case wherF is uniformly continuous, we note that if equi-
distribution holds for some, it holds as well for all other points on the stable
manifold of g, that is, for all pointg: of the form

s 94

with 8(z) = arguz + 1), for any (fixed)u, v € R. In particular, the relation

1 /T 1
lim = [ F(x+ie ", 0)dt = —/ F(2)du(g) (57)
T—-oo T Jo ( ) pw(M) S
holds for almost alk, with respect to Lebesgue measurefn
This statement remains valid # is taken to be a characteristic function.

CoroLLARY 4.2 Let xg be the characteristic function of an open sub®et .t
with boundary of measure (%) = 0. Then

1T . w(D)
lim = a(x+ie™,0)dt = —=
xa )t =

58
T—oo T Jo ( )

holds for almost allx.

Proof. We apply a standard density argument: For any giwen 0, there exist
uniformly continuous functiongy, F» € L1(M) such thatFy < xo < F» and

1
o /ﬂ [F2@) — FL(@)]dn(@) <e.

Thus forT — oo, the left-and right-hand sides of

lim 1 TFl(gf\IJ())dt< lim i/T)(gzj(gllfé)dt

T—oo T Jo T T T Jo (59)
< lim 1 TFg(gr\If(’))dt
T T-ooT Jo

have limits that differ by less than Sincee can be arbitrarily small, the corollary
follows. O

The ergodicity of the geodesic flow is intimately related to the ergodicity of the
horocycle flow. What is more, Sarnak [13] even shows individual equidistribution of
long closedhorocycles on the unit tangent bundle of noncompact hyperbolic surfaces
of finite volume (in the compact case no horocycle is closed). His proof still holds
in our case if the Eisenstein series of even integral weight are replaced by Eisenstein
series of half-integral weight

Ew(zs,m= Y  [Im@2]j,@™",

7€lo\I'1(4)
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with the transformation property
Eoo(gz;s,m) = jo(2)" Eco(z;5,m)

for any g € I'1(4). The use of these Eisenstein series would allow us to give an
asymptotic expansion in inverse powers of the horocycle length, as in [13], provided
the test functions are smooth and of compact support (see [12] for details). In order
to permit a wider class of test functions, we restrict ourselves to the leading-order
contribution.

ProposiTION 4.3 Let F be continuous onit, and assume (z, ¢) = O(y7) for
someo < 1,asy; - oo (i =0,1/2,00). Then for

. T-Y2 0
[ 2

T

lim = F(gqﬂ)dzzi/ F(@)du(g).
T—o0 T Jo 0 (M) Sy

we have

In coordinates ofy x R, the last relation reads

. 1 1
}Iyl[)nO/O F(z,O)dx = MAAF(Z’ ¢)

Proof. Let us first have a look at functions that are independegtarfid invariant
under, sayl'g, that is, functions o'\ 9. In a recent paper, Hejhal [6] showed that
for such functionsf satisfying

dxdyde¢
— (60)

feCaTp\H)NLATH\$H),  Af € L3(p\H),

one has

1
fo f(z)dx:l f(z)dXdy +o(y¥?), (61)

T JFr, y?

for 0 < y < 1. A denotes the Laplaciap? (32 + 82) of the upper half-plang. Now,
by a standard approximation argument (similar to the one given above) we have, for
continuous functiong’ € C(I'p\9) with f(z) = O(y/) (o < 1/2) in the cusps,

1
Iim/ Fodi=2 [ f@
y—=0Jo 4

Fr, y?

(62)

Suppose next thaf is continuous and can be written in the form

@) =Cy? +0(37*7) (63)
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in the neighbourhood of thegh cusp, with constant§, 1/2 < o < 1, ande > 0. The
function
g =f@)—-C Y EiGzo0) (64)
i=1/2,00
satisfiesg(z) = O(yl1 N+ 0(yl/2 ), so relation (62) is applicable. Together with
the fact that the zeroth Fourier coefficient of the Eisenstein séfies o) vanishes
in the limit y — 0 when Y2 < o < 1 (compare with (38)), we obtain

nm/f(z)arx—l f(z)dXdy—g 3 / Ei(z, a)d”ly
T

Fry y? i=1/2,007 IT

The integrals over the Eisenstein series vanish, since

dxd 1 dxd
/ Ei(z,0) xzy: AEi(z,0) xzy’ (65)
Fa y o(0—-1)Jg y

where the integration is performed over the truncated fundamental démain{z
Fr, :yi < A,i =1/2,00}. By Green’s theorem, (65) equals

AT gij(@)AT
Z (a—l_ . >_>o, (66)

j=1/2,00

which clearly vanishes for/2 < ¢ < 1 in the limit A — co.

Proposition 4.3 is now a consequence of the following observationF Lstisfy
the hypothesis of Proposition 4.3. Then, given any 0, we find functiongFy, F» €
C (M) with compact support and we find a continuous functforn 0, independent
of ¢, invariant undefly, satisfying (63), such thafy — f < F < Fo+ f on all of AL,
and such that

1
— Fo(8)—F1(9)+2f(g) |[du(g) <e. 67
M(M)A[zg 1) +2f(8)]dn(@ (67)
Since we know that the statement of Proposition 4.3 holds for the three funétions

F>, f, it must as well hold forF. This proves the proposition. O

CoroLLARY 4.4 Let xg be the characteristic function of an open subiBet i
with boundary of measure (%) = 0. Then

n(D)

1
lim ,0)dx = .
y—>0/o xa (& 0 =00

(68)

Proof. The proof is the same as for Corollary 4.2. O

The limit theorems stated in the following sections are now a simple consequence
of the ergodic properties discussed above.
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5. The distribution of values in the complex plane. In order to study the distri-
bution of values oP ¢ (z, ¢) in the complex plane, let us take an open®et C and
define the distribution function

1, ifO( ) e,

) (69)
0, if Oz ¢)¢B.

Dyag(z,¢) = {

Dy (2, ¢) is the characteristic function of the preima@?l(%) of & in M. We say
% has a “nice” boundary® if the boundary of@;l(%) has measure zero it. A
sufficient condition ford% to be nice is thab% is of Lebesgue measure zero and
contains no critical values @ ;. By Sard’s theorem, the set of critical values of a
smooth mapit — C is itself of measure zero if1.

Although the definition of “nice” depends o® s, we indicate by the following
example that most sets indeed have a nice boundary.

LemmA 5.1 Supposef € $(R). LetB c C be an open convex set containing
zero and with smooth boundary, and let furthermore

B(w,R) ={Rz+w:z € B}
be its magnified (byk > 0) and translated (byw € C) copy. Fixw. Then, except for
countably manyR, the boundary of8(w, R) is nice.

Proof. The measure of the set
Z(R)={(z.¢) e M:Of(z,¢) € B(w, R)}
tends tou () = 872, whenR — oo, since®  is measurable. The sets
IR ={(z,¢) € M:Of(z,9) € 3B(w, R)}

are disjoint for different values aR (this is due to the convexity dB(w, R)). For
these two reasons, there can only be countably niafgr which $(R) has positive
measure. Sinc® ; is continuous, the boundary #f(R) is contained in the set(R),
which proves the lemma. O

TaEOREM 5.2 Let 3B C C be open with nice boundary, and I¢te #(R). Then
for almost allx € R (with respect to Lebesgue measure),

u(@;%%))_

. 1 .
lim = {tel0,T]:©f(x+ie ’)e%}‘: 82

T—o0

TueoreM 5.3 Let%® c C be open with nice boundary, and léte $(R). Then

n(©71@®))

[{x €10,1]: ©p(x+iy) € B}| = o2

lim
y—0
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Proof of Theorems 5.2 and 5.3First observe that
T
{ret0.11:0,(x+ie™) e} =/ Dyagy(x+ie™,0)dt
0

and L
|{x €[0,1]1:0,(x+iy) e 975}| =f Dyg(x+iy,0)dx.
0
Since® y € C* (L) (Proposition 3.1) and the boundary%fis nice, the preimage of

9% is open with boundary of measure zero. The statements now follow from Corollaries
5.2 and, 5.3 respectively. O

To give a little illustration, let us have a look at the distribution of the absolute
values of®s(z, ¢) on the real line; that is, we choosk = B := {z : |z| > R}.
In this case it is easy to obtain an asymptotic expressiomcte];l(%R)), R large.
Notice that, due to Proposition 3.2, the measure of the set

B ={(z,9) € Faya 1 y0 > | fp (0| *R*}
U{(z.8) € Fas@ : Yoo > | 3 (O T*R*}  (70)

(%, (4 is the fundamental region defined in Section 3) converges rapidIR, fer oo,
to what we seek:

w(O @R) = w@rR)+Om(RM). (71)
Elementary integration yields (providdtlis so large that the sets in (70) are disjoint)
4
u(@r)=2R"* fo | £5(0)]*dg, (72)
where
00 4
160" = 4csing) 2| [ e(s?cotg) rinyar|
—0o0

compare to equation (28). After some change of variables, we eventually obtain

) 00 4

w(@g)=32R~4 f } / e(r?u) f(t)dt| du. (73)
—00 —00
It is worthwhile mentioning that the statement in Theorem 5.2 does not hold when

x is rational or real quadratic. First notice that every Q is I'1(4)-equivalent to one
of the cusps 0, 22, or co of the hyperbolic surfacE€1(4)\ 9 (see, e.g., [15, p. 14]).
The asymptotic behaviour @b ;(z,0) for x € Q, y — 0, is therefore dictated by
Proposition 3.2. Suppose next thais a root of the equation

ax’+bx+c=0 (74)
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with integral coefficients satisfying, b, ¢) = 1 andb? — 4ac > 0. There is a well-
known one-to-one correspondence between primitive quadratic f@msy) =

ax?+ bxy + cy? and primitive hyperbolic elements of P8, 7) (see, e.g., [14]).
Hence every solution of a quadratic equation (74) is associated with a closed geo-
desic on the modular surface P&l.Z)\ $, which lifts to a closed geodesic (as defined

in Section 4) onll = A1(4)\§L(2, R). Since this closed geodesic is approached ex-
ponentially quickly by the geodesi¢x +ie™",0) : t € [0, T]}, asT — oo, the theta
function ® s (x +ie~T) is asymptotically periodic irf’. Hence a limit distribution
exists, but, of course, it depends on the corresponding closed geodesic and.thus on

ProposiTION 5.4 Let f € $(R), and assume thaf, (0) # 0 for all ¢ € [0, 4r).
Then for almost alk € R (with respect to Lebesgue measure) the set
{0/(x+ie”,0):1€[0,T]}
becomes densely distributed@as T tends to infinity.

ProposiTioN 5.5 Let f € $(R), and assume thaf, (0) # 0 for all ¢ € [0, 4n).
Then the set

{Of(x+iy,0):x €0, 1]}
becomes densely distributed@nas y tends to zero.

Proof of Propositions 5.4 and 5.5Apply Proposition 3.3 and Corollaries 4.2 and
4.4, O

We recall the remark after Proposition 3.3 whefg0) # 0 holds for all¢, if
f() is assumed to be real valued and monotonically increasing for0 and is
monotonically decreasing for> 0.

6. The asymptotic behaviour of moments. For somerw-periodic continuous
function(¢) and Re > 1, let us define the Eisenstein series

E(z ¢:9)= Y h(o+8,@)[Imy2)], (75)
7€leo\I's

which we may view as a function o\ PSL(2, R) if we identify PSL(2, R) with
$ % [0, 7). Its behaviour in the cusps €ét/2, ¢) and(co, ¢) is (for Res > 1)

0 (i), y1/2 —> 00,
Eoo(z,¢;5) = ( 1/2 ) L Res / (76)
h($)y* +O(y ), y— o0,

since
|[Exo(z,¢;5)] < CEx(z,Res),

|Eoo(Z, ¢; S) —h(¢)ysi < C[Eoo(Z, RES) _yRes]’
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for some constant. E.(z,s) is the classical Eisenstein series we have already
discussed. We could easily improve (76), but we do not really need it at this place.
The zeroth Fourier coefficient reads

1 ¢(25—1)
22 -1 ¢(2s)

1
/O Exo(z,¢;8)dx = h(¢)y® + T H(p )y, (77)

where

g
H @)= [ 1o +p)(sin 2 Vap.
0
For h(¢) = 1, we get back to the classical case, that is,

12T (s —1/2)
r'es)

Furthermore, it is useful to have a function that grows linearly in the cugpoai).
Such a function is, for example, given by

H(p;s)=m

1+e+ioo Eoo(z,0;5)

redine G-Ds-1-20" (78)

i€
Goo(z,¢5€) = /
1

for somee > 0, since

ie 1+e+ioo ys B y1+2€’ ifO < y < 1, (79)
lte—ico (S—D(s—1— 26) y, if y>1,
and thus, as a consequence of (76),
(y1/2): Y12 = 00,
Goolz, ¢5€) = / (80)
” {h<¢>y+0( ).y oo

The zeroth Fourier coefficient can be calculated from (77). In particular, fop0< 1
and O< e < 1/2, one has

1 1
/0 Goo(z, 03 €)dx = h(9)y™** + Qp(Dlogy ™"+ 5- 0y (D) + Q) (1)

ie l-e+ioo 1—s
T e 29526 o1o20? BY
with the functions
-1 ¢(2s—1) 1 .
Qp(s) = 21 (2 ———H(:s), Q¢(1)—;H(0,1) (82)
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being holomorphic in the half-plane Re- 1/2. Q:p(s) means derivative with respect
to s. Notice that

4log2 2 [T .
‘;g —%(2)]Q¢(1)+ /0 h(@+p)log(sing)dp.  (83)

wherey denotes Euler’s constant.
We are now prepared to prove the following theorem.

0, (1) = Z[y

THEOREM 6.1 Let f € ¥(R) anda > 0 be some real number. Then, for- O,

1 bOl +0(1)7 |fa <4,
f 1©5(2)|“dx = { by logy~t+cq+0(D), ifa=4,
° boyt 4 4 co+0(), ifa> 4,
with the constants
1 dxdyd¢

- 1Of @z, )N ——, if o < 4,
I\ PSL2,R) y
4 oo foo 4
ba=12) /_Ooe(tzu)f(t)dz du, if o = 4,
1 g(e/2=1) (> [> 5 « ,
1-2-972 ¢(a)2) _w‘/_we(f w) f(®)dt| du, ifa>4,
and
1 dxa’yd(b
-3 ® I E 1
ﬂZ/re\Psuz,R)[| 1@ =Ry gi O] =5+ 5 bs
4log2
+2[y 52 o]
Co =
_ V tu f(t)dt Iog(1+u) u, ifa=4,
1 dxdyd _
_2/ [|®f(Z,¢)| —R%(z )] a y ¢, if @ > 4.
T Jrg\PSL2,R)

Here, fora > 4,
o
Ri@d)= Y |forp00[mea]”|",
y€loo\INg

while, fora = 4,

R4 je [ltetioo R‘k(z ®) W
1@ g0 = /1+s ico (s—D(s—1—2¢)

forany0 < € < 1/2, where the constant, is independent of a particular choice of
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Proof. In the casex < 4, we can directly apply Proposition 4.3. When> 4,
we apply Proposition 4.3 to the functio® (z, ¢)|* — R?(z,q&), which is bounded
(so that the hypothesis of Proposition 4.3 is satisfied), since the divergent parts of
both terms cancel. To see this, first notice tRﬁi(z,d)) is just the Eisenstein series
Eso(z, ¢; a/4) defined in (75), withh (¢) = | f4(0)|*, and then use the asymptotic re-
lation (76). The leading-order terby y1~*/4 is essentially the mean value Bf (z,0)
with respect tox,

1-a/4 _ p
vt g(@/2-1) . 22

(84)

1
/ RY(2,0)dx = | £(0)y*/* +
0

where the integral can be further simplified using (28). The easel can be handled
in a similar way, with obvious modifications. O

7. The classical theta sum. In this section we show how Theorem 5.3 can be
extended to theta sun®3,(z) such as the classical theta suin(x). In fact, it is
sufficient to assume that the cutoff functigh which determine® /, is Riemann-
integrable. The main task is to relate the sérmp(z) to the theta functior® ¢ (z, ¢),
now defined only as an4(it) function in the sense of Proposition 3.4. In partic-
ular, the relation® (z) = ©(z, 0), derived for Schwartz functiong, is not valid
anymore.

Let 8 c C be an open convex set containing zero and with smooth boundary.
Furthermore, let

B(w, R) ={Rz+w :z € B}
be its magnified (byk > 0) and translated (by € C) copy. In the following, keep
w fixed.

THEOREM 7.1 Let f be Riemann-integrable. Then, except for countably niany
we have

|im0|{x €[0,1]: Op(x+iy) € B(w, R)}| = ¥g(w, R),
y—

where
1
Ya(w, R) = —8ﬂ2u{(z,¢) €EM:Of(z,9) € B(w, R)}.

Proof. We know that the theorem holds wh¢gre ¥(R); compare to Theorem 5.3
and Lemma 5.1. In the following, assunfeis Riemann-integrable anfl € ¥(R),
such that

f |f(6) — fe(t)|%dt < e. (85)
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Without loss of generality, botli and f. are taken to be even. Becausé Riemann-
integrable, we have

0@ <y | f(nyY?)| < 00
neZ

for everyfinite y. For y small enough, we have the relation

1
/0 0 1(2)— 0. (2)[%dx = yY?| £(0) — £.(0)|?

+2072 37 | F ) = f ()P <3 (86)

neZ*

since the sum converges to twice the Riemann integral of (85). Consider the sets

A = {x €[0,1]:[0,() -0, ()| <4},

Xy(R)={x€[0,1]: ©p(x+iy) € B(w, R},

and
X5(R) = {x€[0,1]: 0 (x+iy) € B(w, R)}.

The integral over the complement &f, has to satisfy

3e>/ |®f(z)—®fs(z)|2dxz/ M2 dx,
[0.11-45 [0,1]—A¢

and hence we have

|AS| > 1—3€™2, (87)
Consequently,
X, (R)] < | Xy (R)NAG| +3¢1/2 (88)
and
| XS(R)| < [XS(R)NAS|+3e1/2. (89)
We have the inclusions
(XS(R—CeM)NAS) C X (R) (90)

and

(Xy(R)NAS) C X§(R+Ce™?) (91)
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if the constantC is chosen large enougld’ (depends solely on the s&t(w, R)). So,
|XS(R—Ce¥%)| —36Y2 < |X,(R)| < |XS(R+CeY?)| +36Y2. (92)
Let us now consider the sets
A€ ={(z,9) e M: |Of(2) - O (2)] <€),

E(R)={(z.¢) e M:O(z,¢) € B(w,R)},

and
LR ={(z.¢) € M: O, (z,¢) € B(w, R)}.

By virtue of Proposition 3.4, we see that

(4”)_2/M 0/(z,¢)— O (2, ) [*din(z, ¢) = / |F()— fo0))dt <e.  (93)

Thus
e > (4m)? / 0/(.)— 0, .9 dn(z. ¢) > (4m) 72 f 2du(z,¢)
M—sAE M—s4€
implies that
1(s4€) > 8r2(1—2€1/2), (94)
and hence
1(Z(R)) < p(%(R) N A€) + 16722 (95)
and
(X6 (R)) < (% (R)NeA€) + 167 2€/2. (96)
Corresponding to (90) and (91), one has
(% (R—CeY*)Nst) C (R) (97)
and
(X(R)NA) € % (R+CeM?), (98)

with the same constaid. So,
(%€ (R —Ce¥?)) —167%€Y/2 < u(%(R)) < (%< (R+CeV*)) + 16722, (99)

By Theorem 5.3, for all but countably ma®, we have

: 1
lim, | XS (RECeM?)| = gan (e (RE ce'4)).
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Therefore, if the difference between the measwés (R — Cel/4)) and (%€ (R +
Cel/%) vanishes along some sequences 66 0, because of (92) and (99) the se-
quencel X, (R)| (y — 0) then must converge to the desirg@).

What thus remains to be shown is that, given &ny0, there is ar > 0 such that

(%€ (R+CeV*) — (¢ (R — CeYY) < 6. (100)
To this end, observe that by virtue of (99)
(3 (R-+ CeM4)) — (i (R - V)
< u(%(R+2CeY*)) —u(%(R—2CeY%)) +3272%2. (101)
Now suppose thak is such that
(X (R+2CeY4) — w(%(R—2Ce%) > c(R)

for arbitrarily smalle, wherec(R) is some positive constant. This means, however,
that

1w({(z,¢) € M: O f(z,9) € B(w, R+2CeY4),
Oz, ¢) ¢ B(w, R—2CeYM)}) = c(R), (102)
for arbitrarily smalle, which in turn implies

n({z ¢) eM:Os(z,¢) € IB(w, R)}) > c(R).

This can only happen for countably maRy since® s is measurable (compare with
Lemma 5.1). O

We have the following corollaries.

CoroLLARY 7.2 There exists a functiom(a,b) such that for all (except for
countably manyy, b € R,

N
lim {x €[0,1]:a < N_l/ZZCOS(ijzx) < b}‘ = ®(a,b)

N—oo
n=1

and

N—oo

N
lim {x €[0,1]:a < N_l/ZZSin(Znnzx) < b” = ®(a,b).
n=1

The reason why both limits are equal®da, b) is that, due to equation (31), which
holds for smooth functions, we ha¥@y(z,¢ +m) ~ —i©r(z,¢) in the L2 sense.
Therefore, the limit distribution in the complex plane should be invariant a.e. under
rotations by—i.
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CoroLLARY 7.3 There exists a functiow (a, b) such that for all (except for
countably manyy, b € R,

N

Ze(nzx)

n=1

lim {x €[0,1]:a < N2
N—oo

<b” — W(a,b).

Corollary 7.3 was first proved by Jurkat and van Horne [8], as mentioned before.
It follows from the algebraic decay of the limit distribution, which was discussed in
Section 5 (see also [8]), that it is not a normal distribution; in particular,

b
®(a,b) \/% / e W22 gy (103)

T Ja
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