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LIMIT THEOREMS FOR THETA SUMS
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1. Introduction. The classical theta sum is defined by

SN(x)=N−1/2
N∑

n=1
e
(
n2x

)
, (1)

wheree(t) = exp(2π i t). We are interested in the asymptotic behaviour ofSN(x)

asN tends to infinity, for arbitrary values ofx in R. The case whenx is rational
is the easiest. It is not hard to see that hereSN(x) = A(x)N1/2+O(N−1/2) with
some constantA(x) (which can be zero for certainx), for SN(x) reduces to ordinary
Gauss sums. The more difficult part of giving estimates for generic values ofx was
first discussed by Hardy and Littlewood [3], [4], using diophantine approximation.
Their methods were later refined in a number of publications, some of which we will
mention here. In contrast to these approaches, we investigate the asymptotic behaviour
of theta sums by means of ergodic theory, exploiting a connection to the geodesic
flow and the horocycle flow on the unit tangent bundle of a certain hyperbolic surface.
In order to simplify the presentation of the main ideas, we replace the sharp cutoff

in the sum (1) by a smooth one; that is, we take a C∞-function f (with compact
support, say) and consider the sum

S̃N (x)=N−1/2
∑
n∈Z

f (n/N)e
(
n2x

)
. (2)

Choosingf to be the characteristic function of the interval(0,1] would clearly lead
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128 JENS MARKLOF

back to (1). There is no need to restrictN to the integers. It is convenient to put
y =N−2 and to viewS̃N (x) as a function

�f (z)= y1/4
∑
n∈Z

f
(
ny1/2

)
e
(
n2x

)
(3)

on the complex upper half-planeH= {z= x+ i y : y > 0}. In the following, we only
assume thatf is of Schwartz class, that is, not necessarily of compact support, but
still smooth and rapidly decreasing. By that, the important case of the classical theta
series

θ0(z)= y1/4
∑
n∈Z

e
(
n2z

)
, (4)

which corresponds to a cutoff functionf (t) = exp(−2πt2), is also included in our
considerations.
Themain result is concernedwith the distribution of values of�f (z) in the complex

planeC. Depending on the choice ofx as rational, real quadratic, or generic, different
kinds of patterns are created in the complex plane by the values of�f (x+ i y), as
y→ 0 andx remains fixed. ForSN(x) these “curlicues” are studied, for example, by
Dekking and Mendès France [2] and by Berry and Goldberg [1] (see also references
therein). Theorem 5.2 explains how the points of such a pattern are distributed in the
plane, provided the cutoff functionf is smooth. For any open subset� ⊂ C with
nice boundary (“nice” is defined in Section 5), we prove the existence of the limit

lim
T→∞

1

T

∣∣∣{t ∈ [0,T ] :�f

(
x+ ie−t

) ∈�
}∣∣∣ (5)

for almost allx ∈ R (with respect to Lebesgue measure).| · | denotes the standard
Lebesgue measure of a subset ofR. The limit (5) has the same value for all generic
x and is given by Theorem 5.2. We see later on that the limiting distribution is
not a normal Gaussian distribution. Theorem 5.2 is proved by identifying the set
{x+ ie−t : t ∈ [0,T ]} with a generic geodesic on the unit tangent bundle T1M (or,
rather, a fourfold cover of it) of the noncompact hyperbolic surfaceM = �1(4)\H,
where�1(4) is a congruence subgroup of SL(2,Z), and then by applying the ergodic
theorem for the geodesic flow on T1M, going back to Hopf [7].
If the cut-off functionf (t) is real valued and monotonically increasing fort < 0

and is monotonically decreasing fort > 0, we show that the curlicue represented by
the set {

�f

(
x+ ie−t

) : t ∈ [0,T ]}
becomes densely distributed in the complex plane, asT tends to infinity compare
with Proposition 5.4.
The limit (5) does also exist for all real quadraticx /∈ Q, but has a different,

nonuniversal value because here the above set can be identified with a geodesic that
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approximates a closed geodesic, asT →∞. In the casex ∈Q, the relevant geodesics
are scattering orbits that run into a cusp ofM.
Instead of keepingx fixed and varyingy, we can also look at the curves created

by the values of�f (x+ i y), whenx runs from 0 to 1 andy remains fixed. These
curves are clearly closed since�f (x+ i y) is periodic inx with period 1. Theorem
5.3 states the existence of the limit (with� as above)

lim
y→0

∣∣{x ∈ [0,1] :�f (x+ i y) ∈�}∣∣, (6)

which is proved this time by identifying the set{x+ i y : x ∈ [0,1]} with a closed
horocycle and applying the equidistribution theorem of long, closed horocycles due
to Sarnak [13]. Besides that, we also determine the asymptotic behaviour of theαth
moment ∫ 1

0
|�f (x+ i y)|αdx;

compare with Theorem 6.1.
As in the case of the curlicues considered first, the set

{�f (x+ i y) : x ∈ [0,1]}
becomes densely distributed inC asy tends to zero, whenf (t) is real valued and
monotonically increasing fort < 0 and is monotonically decreasing fort > 0; com-
pare with Proposition 5.5. The limiting distributions for (5) and (6) are, in fact, the
same.
In Section 7 we give a density argument that shows that the limit (6),

lim
y→0

∣∣∣∣{x ∈ [0,1] :N−1/2 N∑
n=1

e
(
n2x

) ∈�

}∣∣∣∣,
exists also in the case of the classical theta sum. The extension of Theorem 5.2 seems
harder in this respect and is not discussed in this article.
Theorems 5.3, 6.1, and 7.3 imply results of Jurkat and van Horne [8], [9], who

studied the functionsθ0(z) andSN(x) by significantly different methods based on
diophantine approximation. Their uniform limit theorem in [10] may be derived in
an analogous way as a consequence of the equidistribution of arcs of long, closed
horocycles (compare [6]), but we do not treat this case here.

2. Basic definitions. The square rootz1/2 of a complex numberz is to be chosen
such that−π/2< argz1/2 ≤ π/2. Also, letzm/2 := (z1/2)m for any integerm ∈ Z.
The action of SL(2,R) on the upper half-planeH = {z ∈ C : Im z > 0} is defined

via fractional linear transformations; that is,

g : z �→ gz= az+b

cz+d
, g =

(
a b

c d

)
∈ SL(2,R). (7)
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Let

S̃L(2,R)= {[g,βg] : g ∈ SL(2,R), βg a function onH s.t. ei βg(z) = εg(z)},

εg(z)= (cz+d)/|cz+d|, (8)

be the universal covering group of SL(2,R), with the multiplication law[
g,β1

g

][
h,β2

h

]= [
gh,β3

gh

]
, β3

gh(z)= β1
g(hz)+β2

h(z). (9)

The inverse of[g,βg] is then[g,βg]−1=
[
g−1,β ′

g−1
]
with β ′

g−1(z)=−βg(g
−1z).

For an integerm, put

Zm =
〈[−1,β−1]m〉, with β−1(z)= π , (10)

that is, the cyclic subgroup generated by[−1,β−1]m. Zm is contained in the center
of S̃L(2,R), and in particular PSL(2,R) � S̃L(2,R)/Z1, SL(2,R) � S̃L(2,R)/Z2,
and so on.
We may identifyS̃L(2,R) with H×R via[

g,βg

] �→ (z,φ)= (
g i,βg(i)

)
. (11)

The action of̃SL(2,R) onH×R is then canonically defined by[
g,βg

]
(z,φ)= (

gz,φ+βg(z)
)
. (12)

The congruence subgroups

�0(N)=
{(

a b

c d

)
∈ SL(2,Z) : c ≡ 0 modN

}
, (13)

�1(N)=
{(

a b

c d

)
∈ �0(N) : a ≡ d ≡ 1 modN

}
, (14)

whereN is a positive integer, play a central role in our investigation. Furthermore,
put

�1(4)=
{[

g,βg

] : g ∈ �1(4), βg a function onH s.t. ei βg(z)/2=
( c

d

)
εg(z)

1/2
}
,

(15)

which is a discrete subgroup of̃SL(2,R), as shown in the next section. For an integer
a and an odd integerb, the symbol

(
a
b

)
is characterized by the following properties

(cf. [16]):
(i)

(
a
b

)= 0 if (a,b) �= 1;
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(ii) if b is an odd prime,
(
a
b

)
coincides with the ordinary quadratic residue symbol;

(iii) if b > 0,
( ·
b

)
defines a character modulob;

(iv) if a �= 0,
(
a
·
)
defines a character modulo a divisor of 4a, whose conductor is

the conductor ofQ(
√
a) overQ;

(v)
(

a
−1

)
= sgna;

(vi)
(

0
±1

)
= 1.

In particular,
(
a
b

)2=1, if (a,b)= 1.

3. Theta functions as functions on�1(4)\S̃L(2,R). It is well known that the hy-
perbolic manifold�1(4)\H is not compact but is of finite measure with respect to the
canonical Riemann measuredx dy/y2. We see that�1(4) is a discrete group contain-
ing the subgroupZ4= {[1,β1] : β1(z)= 4πn,n ∈ Z}; hence� =�1(4)\S̃L(2,R) is
of finite measure, too, with respect to the invariant measuredx dy dφ/y2. A funda-
mental region of�1(4) in H×R is, for instance,��1(4) = ��1(4)×[0,4π), if ��1(4)

is a fundamental region of�1(4) in H. One may take, for example,

��1(4) = {z ∈ H : x ∈ (−1/2,1/2], |z+1/4|> 1/4, |z−1/4| ≥ 1/4}. (16)

Denote by�(R) the Schwartz class of C∞(R) functions of rapid decrease.

Proposition 3.1. For everyf ∈ �(R), there exists a function�f ∈ C∞(�) such
that

�f (z,0)= y1/4
∑
n∈Z

f
(
ny1/2

)
e
(
n2x

)
.

Proof. Thekth Hermite functionhk reads

hk(t)=
(
2k−1k!)−1/2Hk

(
2π1/2t

)
e−2πt2, (17)

with the Hermite polynomial

Hk(t)= (−1)k et2 dk

dtk
e−t2 .

Thehk form an orthonormal basis of L2(R)with respect to the standard scalar product,
that is, (hj ,hk) = δjk. Let f̂ (k) = (f,hk) be thekth Hermite coefficient. Since
f ∈ �(R), the Hermite expansion

N∑
k=0

f̂ (k)hk(t)→ f (t) (18)

converges uniformly int due to the bounds∣∣f̂ (k)
∣∣≤ Cm(2k+1)−m, for anym, (19)
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and∣∣hk(t)
∣∣≤ {

C
(
(2k+1)1/3+ ∣∣4πt2−(2k+1)

∣∣)−1/4 , 2πt2 ≤ 2k+1,

C e−γ t2, 2πt2 > 2k+1,
(20)

with positive constantsCm, C, γ . (For this and more, see [19].)
Let us consider the theta function

θk(z)= y1/4
∑
n∈Z

hk

(
ny1/2

)
e
(
n2x

)
, (21)

with the transformation property (see [17])

θk(gz)= jg(z)
2k+1θk(z), for everyg ∈ �0(4), (22)

jg(z)= ε−1d

( c

d

)( cz+d

|cz+d|
)1/2

.

This is the usual automorphic factor divided by its modulus, andεd = 1 or i if d ≡ 1
or 3(mod4). We can forget aboutεd if we restrict ourselves to the subgroup�1(4),
which is of index 2 in�0(4). To check that�1(4) is a discrete subgroup of̃SL(2,R),
observe that ei βg(z)/2= jg(z), for g ∈ �1(4), and

jgh(z)= θ0(ghz)

θ0(z)
= θ0(ghz)

θ0(hz)

θ0(hz)

θ0(z)
= jg(hz)jh(z), (23)

which is consistent with the multiplication law (9) of̃SL(2,R). We conclude that the
function

θk(z,φ)= θk(z)e
− i(2k+1)φ/2 (24)

is invariant under�1(4), that is, it is a function on�.
Put

�f (z,φ)= y1/4
∑
n∈Z

fφ

(
ny1/2

)
e
(
n2x

)
, (25)

where

fφ(t)=
∞∑
k=0

f̂ (k)e− i(2k+1)φ/2hk(t),

since then�f (z)=�f (z,0). The seriesfφ(ny
1/2) in (25) converges uniformly inn

(z andφ are fixed). Therefore, we can exchange the order of summation to obtain

�f (z,φ)=
∞∑
k=0

f̂ (k)θk(z,φ), (26)

which is a C∞ function on�.
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Remarks. fφ(t) satisfies the Schrödinger equation for the harmonic oscillator,(
− 1

4π

∂2

∂t2
+4πt2

)
fφ(t)= 2i

∂

∂φ
fφ(t), (27)

from which we obtain the integral representation

fφ(t)=
∫ ∞

−∞
Gφ

(
t, t ′

)
f
(
t ′
)
dt ′, (28)

with the Green function

Gφ

(
t, t ′

)= 21/2e
(−σφ/8

)|sinφ|−1/2e[(t2+ t ′2
)
cosφ−2t t ′

sinφ

]
,

whereσφ = 2k+1 whenkπ < φ < (k+1)π .

Our manifold� has a cyclic automorphism group of order 8, which is generated
by the transformation(z,φ) �→ (−(4z)−1,φ+argz) corresponding to[(

0 −1/2
2 0

)
,arg

]
∈ S̃L(2,R).

To see how�f transforms under this map, let us apply Poisson’s summation formula,
which yields

�f (z,φ)= y−1/4
∑
n∈Z

∫ ∞

−∞
e

(
t2

x

y
− nt

y1/2

)
fφ(t)dt. (29)

By virtue of the relation

Gargz

(
n
y1/2

2|z| , t
)
= e− iπ/4y−1/4

(
y

4|z|2
)−1/4

e

(
n2

x

4|z|2 + t2
x

y
− nt

y1/2

)
, (30)

one easily finds

�f

(−(4z)−1,φ+argz
)= e− iπ/4�f (z,φ). (31)

Notice that repeated application yields�f (z,φ+π)=− i�f (z,φ).

� has three cusps of codimension 2 at(0,φ), (1/2,φ), and(∞,φ). We now study
the asymptotic behaviour of�f (z,φ) in these cusps. To this end, let us choose the
following convenient coordinates:

(z0,φ0)=
(−(4z)−1,φ+argz

)
,

(z1/2,φ1/2)=
(−(4z−2)−1,φ+arg(z−1/2)

)
,

(z∞,φ∞)= (z,φ).

(32)
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Proposition 3.2. Let f ∈ �(R). Then

�f (z,φ)=


eiπ/4fφ0(0)y

1/4
0 +ON

(
y−N
0

)
, y0→∞,

ON

(
y−N
1/2

)
, y1/2→∞,

fφ∞(0)y1/4∞ +ON

(
y−N∞

)
, y∞→∞,

for anyN .

Proof. Sincefφ ∈ �(R), the asymptotic relation in the cusp at(∞,φ) is evident,
and the behaviour at(0,φ) is clear from transformation formula (31). In order to
understand the second relation, we observe that

�f (z,φ)= 21/2�f (4z−2,φ)−�f (z−1/2,φ)

= 21/2eiπ/4�f (z1/2/4,φ1/2)−eiπ/4�f (z1/2,φ1/2)

=ON

(
y−N
1/2

)
.

(33)

Denote by�∗ the compactification of the manifold�, that is,

�∗ =�∪
⋃

j∈{0,1/2,∞}
{(j,φ) : φ ∈ [0,4π)}.

If the cutoff functionf satisfies the conditionfφ(0) �= 0 for all φ ∈ [0,4π), the map
�f :�→ C can be extended to a continuous map�∗f :�∗ → C∪{∞} by defining
�∗f |� =�f , �∗f (0,φ)=∞, �∗f (1/2,φ)= 0, and�∗f (∞,φ)=∞.

Proposition 3.3. Let f ∈ �(R), and assume thatfφ(0) �= 0 for all φ ∈ [0,4π).
Then the map

�∗f :�∗ → C∪{∞}
is onto.

Proof. We think ofC∪{∞} as the Riemann sphere S2, where the north pole is
identified with∞ and the south pole with zero. In the first step of this proof, we show
that the closed curve

γ : [0,4π ] → S2−{0,∞}, t �→ ft (0),

is not null-homotopic on S2−{0,∞}. To this end, splitγ into

γ1 : [0,2π ] → S2−{0,∞}, t �→ ft (0),

connectingf0(0)= f (0) with f2π (0)=−f (0), and

γ2 : [0,2π ] → S2−{0,∞}, t �→ ft+2π (0),

connectingf2π (0) = −f (0) with f4π (0) = f (0). Sinceγ2 = −γ1, it is plain to see
thatγ cannot be contracted to a point without crossing a north or south pole.
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Now consider the family of closed curves

γ̃y : [0,4π ] → S2−{∞}, t �→�f (1/2+ i y, t), (34)

parameterized byy. From Proposition 3.2 we know�f (1/2+ i y, t) = ft (0)y1/4+
ON(y−N∞ ), asy→∞. So for ally ≥ y0, with y0 large enough, the curvẽγy has the
same property asγ— it is not null-homotopic on S2−{0,∞}.
We now contract the closed curveγ̃y0 on S2−{0} to the north pole by considering

the family (34), wherey runs fromy0 to∞. This deformation is clearly continuous
in y since�∗f is. Notice in particular that�∗f (1/2+ i y, t) �= 0 for y ≥ y0, and hence
γ̃y does not pass the south pole.
Alternatively, we can as well contract̃γy0 continuously on S2−{∞} to the south

pole, by lettingy run from y0 to zero. Here we have�∗f (1/2+ i y, t) �= ∞ for
y ∈ [0,y0], and hencẽγy does not pass the north pole.
Therefore, given any pointP ∈ S2, the closed curvẽγy must passP on its way

either to the north or to the south pole, so{
�∗f (1/2+ i y, t) : (y, t) ∈ [0,∞]×[0,4π ]}∼= S2 . (35)

This proves the map�∗f is onto.

Remark. A sufficient condition for the cutoff functionf to guaranteefφ(0) �= 0
for all φ is, for example, thatf (t) is real valued and monotonically increasing for
t < 0 and is monotonically decreasing fort > 0. (Here and in the following, it is of
course always assumed thatf is not the trivial zero-function.) This can be seen as
follows. Recall from (28) thatfφ(0) �= 0 is equivalent tof (0) �= 0 and∫ ∞

−∞
e
(
t2w

)
f (t)dt �= 0

for all w ∈ R. If f (t) is assumed to be real valued and monotonically increasing
(resp., decreasing) fort < 0 (resp.,t > 0), then the first condition is clearly satisfied,
becausef has to vanish at±∞ and thus must be positive. The monotone increase
(resp., decrease) implies also that∫ ∞

−∞
cos

(
2πt2w

)
f (t)dt > 0,

which in turn gives the second condition.

We now provide some information on Eisenstein series of the theta group�θ , which
we use to prove the upcoming proposition.
The theta group�θ is generated by the transformationsz �→ z+1 andz �→ −1/4z.

A fundamental region is given by

��θ = {z ∈ H : x ∈ (−1/2,1/2], |z|> 1/2}, (36)
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so the two cusps of�θ\H are identified with the points 1/2 and∞. The Eisenstein
series associated with theith cusp is defined as

Ei(z,s)=
∑

γ∈�i\�θ

[
Im(γiγ z)

]s
, Res > 1, (37)

where�i is the stabilizer of theith cusp (e.g.,�∞ = {γ : z �→ z+n,n ∈ Z}). γi is
the transformation mapping theith cusp onto the standard cusp at∞ with unit width.
We putzi = γiz (compare with definition (32)). Fourier expansion inxj yields

Ei(z,s)

= δij y
s
j +ϕij (s)y

1−s
j +2

∞∑
m=1

ϕ
(m)
ij (s)y

1/2
j Ks−1/2(2πmyj )cos(2πmxj ), (38)

whereKν(z) is theK-Bessel function. The functionsϕij andϕ(m)
ij can be expressed

in terms of number-theoretic functions, in particular,

ϕij (s)= ξ(2s−1)

ξ(2s)
ηij (s) (39)

with ξ(s)= π−s/2�(s/2)ζ(s), whereζ(s) is the Riemann zeta function, and(
ηij (s)

)= 1

22s−1

(
1 2s−21−s

2s−21−s 1

)
.

See Hejhal [5, Chapter 11, Section 3].
The expansion (38) can be used to find a meromorphic continuation ofEi(z,s) to

the whole complex plane. Let us also note that

Ei(z,s)= δij y
s
j +ϕij (s)y

1−s
j +O

(
e−2πyj

)
, yj →∞, (40)

which holds uniformly on compacta in the half-plane Res > 1/2, since in this domain
the only singularity ofEi(z,s) is the simple pole ofϕij (s) at s = 1.

Proposition 3.4. Let f ∈ L2(R). Then there exists a function�f ∈ L2(�) such
that ∥∥∥∥�f −

N∑
k=0

f̂ (k)θk

∥∥∥∥
L2(�)

→ 0

asN →∞, wheref̂ (k) are the Hermite coefficients off .

Proof. It is sufficient to show that the functionsθ2k are orthonormal. In fact, we
shall see that

(4π)−2
∫

�
θ2j (z,φ)θ2k(z,φ)

dx dy dφ

y2
= δjk. (41)
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Proposition 3.2 guarantees the convergence of the integral. Theφ-integration can be
carried out easily, and we are left with

(4π)−1δjk
∫
�1(4)\H

|θ2k(z)|2dx dy

y2
= (2π)−1δjk

∫
�θ\H

|θ2k(z)|2dx dy

y2
, (42)

since by formula (31) the modulus ofθ2k(z) is invariant under the theta group�θ ,
which is of index 2 over�1(4)/{±1}. Define

Ik(s)=
∫
�θ\H

[
|θ2k(z)|2E∞(z,s)−h2k(0)

2E∞(z,s+1/2)
] dx dy

y2
, (43)

which is convergent due to (40). The Eisenstein series has a simple pole ats = 1 with
residue ResE∞(z,s = 1)= π−1 and is regular for Res > 1, thus

ResIk(s = 1)= π−1
∫
�θ\H

|θ2k(z)|2dx dy

y2
. (44)

On the other hand, we can unfold the integralIk(s) using the definition (37). This
gives, for Res > 1,

Ik(s)=
∫ ∞

0

∫ 1

0

[
|θ2k(z)|2ys−h2k(0)

2ys+1/2] dx dy

y2

= 4
∫ ∞

0

∞∑
n=1

h2k
(
ny1/2

)2
ys−1/2dy

y

= 4ζ(2s−1)
∫ ∞

−∞
h2k(t)

2|t |2s−2dt.

(45)

In the last step we exchanged the order of integration and summation. This is justified,
as the integral converges uniformly, in the sense that for everyε > 0 we find aC such
that ∣∣∣∣∫ C

0

N∑
n=1

h2k(nt)t
2s−2dt

∣∣∣∣< ε (46)

uniformly for allN ∈N. To see this notice that (46) is dominated by∣∣∣∣ K∑
n=1

n1−2s
∫ nC

0
h2k(t)t

2s−2dt
∣∣∣∣+ ∣∣∣∣ ∞∑

K

n1−2s
∣∣∣∣∫ ∞

0

∣∣∣∣h2k(t)t2s−2∣∣∣∣dt,
where we chooseK such that the second sum is less thanε/2, and then we choose
C such that the first sum is less thanε/2.
Finally, we obtain the desired ResIk(s = 1)= 2.
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Remark. It is a direct consequence of (41) that iff is even (i.e.,f (t) = f (−t)),
then

(4π)−2(�f ,θk)L2(�) = f̂ (k), (47)

(4π)−1‖�f ‖L2(�) = ‖f ‖L2(R). (48)

It is worthwhile tomention that the content of this sectionmay be rephrased in terms
of the Shale-Weil representation of̃SL(2,R). A nice introduction to the representation
theory of this group is, for instance, contained in [11]. In particular, it is interesting
that�f , f ∈ �(R), satisfies the eigenvalue equation

C�f =− 3

16
�f , (49)

where C is the Casimir operator

C= y2
(

∂2

∂x2
+ ∂2

∂y2

)
+y

∂2

∂x∂φ

of S̃L(2,R). Equation (49) may be verified by a straightforward calculation using
(27); compare also with Lemma 1.5 of Shintani [18].

4. Geodesic flows and horocycle flows.The unit tangent bundle T1M of a hy-
perbolic manifoldM = �\H, with � a discrete subgroup of PSL(2,R), is isomorphic
to �\(T1H). T1H denotes the unit tangent bundle ofH, which is usually identified
with H×(R/2πZ), and the action of PSL(2,R) on T1H is given by

g : (z,θ) �→ (
gz,θ−2βg(z)

); (50)

see [13]. To view this in the framework of̃SL(2,R), which we have developed so
far, let us substituteθ = −2φ, and identify T1H with H× (R/πZ). Now the action
of PSL(2,R) looks more like (12),

g : (z,φ) �→ (
gz,φ+βg(z)

)
, (51)

in particular, if we view PSL(2,R) asS̃L(2,R)/Z1.
If we takeM = �1(4)\H and denote by; the group generated by the elements of

�1(4) andZ1, we find that

T1M �;\S̃L(2,R). (52)

�1(4) is normal in;, we have the disjunct decomposition

;=�1(4)∪�1(4)[−1,π ]∪�1(4)[1,2π ]∪�1(4)[−1,3π ], (53)
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and thus we have
�1(4)\;� Z4.

This means that� is a fourfold cover of T1M.
Let {<t }t∈R be a 1-parameter subgroup iñSL(2,R), that is,<s<t =<s+t . Assume

tr<t = 2cosh(t/2). (By the trace of an element iñSL(2,R), we mean the trace of its
SL(2,R) component.) Then<t is conjugate to

<t
0=

[(
e−t/2 0
0 et/2

)
,0

]
;

that is, we find ag̃ such that<t g̃ = g̃<t
0. We define thegeodesic flowon S̃L(2,R)

as the right translation by<t
0,

<t : S̃L(2,R)→ S̃L(2,R), g̃ �→ g̃<t
0. (54)

In the same fashion, we define thehorocycle flow

=t : S̃L(2,R)→ S̃L(2,R), g̃ �→ g̃=t
0, (55)

with

=t
0=

[(
1 t

0 1

)
,0

]
.

The associated 1-parameter subgroups{=t }t∈R are characterized by the condition
tr=t = 2.
We call the set{g̃<t

0}t∈[0,T ] ageodesic of lengthT .We call{g̃=t
0}t∈[0,T ] ahorocycle

of lengthT .
For a discrete subgroup�, we define the geodesic flow on the quotient by

<t :�\S̃L(2,R)→�\S̃L(2,R), �g̃ �→�g̃<t
0. (56)

A geodesic{�g̃<t
0}t∈[0,T ] is closed if and only if<T = g̃<T

0 g̃
−1 is in �. T is then

the period of the closed geodesic, and the smallestt > 0 for which<t ∈ � is its
primitive period. The same terminology applies to closed horocycles.
The ergodicity of the geodesic flow on the unit tangent bundle of a hyperbolic

surface of finite volume, hence for quotients�\PSL(2,R), is proved by Hopf [7].
The generalization to quotients�\S̃L(2,R) of finite measure is obvious. We state
the result for our special case� =�1(4)\S̃L(2,R).

Proposition 4.1. LetF ∈ L1(�). Then for almost all̃g ∈�,

lim
T→∞

1

T

∫ T

0
F
(
g̃<t

0

)
dt = 1

µ(�)

∫
�
F(g̃)dµ(g̃)

with respect to Haar measuredµ(g̃)= dx dy dφ/y2.
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Remarks. In the case whenF is uniformly continuous, we note that if equi-
distribution holds for somẽg, it holds as well for all other points on the stable
manifold of g̃, that is, for all points̃h of the form

h̃= g̃<v
0

[(
1 0
u 1

)
,β

]
with β(z)= arg(uz+1), for any (fixed)u,v ∈R. In particular, the relation

lim
T→∞

1

T

∫ T

0
F
(
x+ ie−t ,0

)
dt = 1

µ(�)

∫
�
F(g̃)dµ(g̃) (57)

holds for almost allx, with respect to Lebesgue measure onR.

This statement remains valid ifF is taken to be a characteristic function.

Corollary 4.2. Let χ� be the characteristic function of an open subset� ⊂�
with boundary of measureµ(∂�)= 0. Then

lim
T→∞

1

T

∫ T

0
χ�

(
x+ ie−t ,0

)
dt = µ(�)

µ(�)
(58)

holds for almost allx.

Proof. We apply a standard density argument: For any givenε > 0, there exist
uniformly continuous functionsF1, F2 ∈ L1(�) such thatF1 ≤ χ� ≤ F2 and

1

µ(�)

∫
�

[
F2(g̃)−F1(g̃)

]
dµ(g̃) < ε.

Thus forT →∞, the left-and right-hand sides of

lim
T→∞

1

T

∫ T

0
F1
(
g̃=t

0

)
dt ≤ lim

T→∞
1

T

∫ T

0
χ�

(
g̃=t

0

)
dt

≤ lim
T→∞

1

T

∫ T

0
F2
(
g̃=t

0

)
dt

(59)

have limits that differ by less thanε. Sinceε can be arbitrarily small, the corollary
follows.

The ergodicity of the geodesic flow is intimately related to the ergodicity of the
horocycle flow. What is more, Sarnak [13] even shows individual equidistribution of
longclosedhorocycles on the unit tangent bundle of noncompact hyperbolic surfaces
of finite volume (in the compact case no horocycle is closed). His proof still holds
in our case if the Eisenstein series of even integral weight are replaced by Eisenstein
series of half-integral weight

E∞(z;s,m)=
∑

γ∈�∞\�1(4)

[
Im(γ z)

]s
jγ (z)

−m,
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with the transformation property

E∞(gz;s,m)= jg(z)
mE∞(z;s,m)

for any g ∈ �1(4). The use of these Eisenstein series would allow us to give an
asymptotic expansion in inverse powers of the horocycle length, as in [13], provided
the test functions are smooth and of compact support (see [12] for details). In order
to permit a wider class of test functions, we restrict ourselves to the leading-order
contribution.

Proposition 4.3. Let F be continuous on�, and assumeF(z,φ) = O(yσ
i ) for

someσ < 1, asyi →∞ (i = 0,1/2,∞). Then for

g̃ =
[(

T −1/2 0
0 T 1/2

)
,0

]
,

we have

lim
T→∞

1

T

∫ T

0
F
(
g̃=t

0

)
dt = 1

µ(�)

∫
�
F(g̃)dµ(g̃).

In coordinates ofH×R, the last relation reads

lim
y→0

∫ 1

0
F(z,0)dx = 1

µ(�)

∫
�
F(z,φ)

dx dy dφ

y2
. (60)

Proof. Let us first have a look at functions that are independent ofφ and invariant
under, say,�θ , that is, functions on�θ\H. In a recent paper, Hejhal [6] showed that
for such functionsf satisfying

f ∈ C2(�θ\H)∩L2(�θ\H), �f ∈ L2(�θ\H),

one has ∫ 1

0
f (z)dx = 1

π

∫
��θ

f (z)
dx dy

y2
+O

(
y1/2

)
, (61)

for 0< y ≤ 1.� denotes the Laplaciany2(∂2x +∂2y ) of the upper half-planeH. Now,
by a standard approximation argument (similar to the one given above) we have, for
continuous functionsf ∈ C(�θ\H) with f (z)=O(yσ

i ) (σ < 1/2) in the cusps,

lim
y→0

∫ 1

0
f (z)dx = 1

π

∫
��θ

f (z)
dx dy

y2
. (62)

Suppose next thatf is continuous and can be written in the form

f (z)= Cyσ
i +O

(
y
1/2−ε
i

)
(63)
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in the neighbourhood of theith cusp, with constantsC, 1/2< σ < 1, andε > 0. The
function

g(z)= f (z)−C
∑

i=1/2,∞
Ei(z,σ ) (64)

satisfiesg(z) = O(y1−σ
i )+O(y

1/2−ε
i ), so relation (62) is applicable. Together with

the fact that the zeroth Fourier coefficient of the Eisenstein seriesEi(z,σ ) vanishes
in the limit y→ 0 when 1/2< σ < 1 (compare with (38)), we obtain

lim
y→0

∫ 1

0
f (z)dx = 1

π

∫
��θ

f (z)
dx dy

y2
− C

π

∑
i=1/2,∞

∫
��θ

Ei(z,σ )
dx dy

y2
.

The integrals over the Eisenstein series vanish, since∫
�A

Ei(z,σ )
dx dy

y2
= 1

σ(σ −1)

∫
�A

�Ei(z,σ )
dx dy

y2
, (65)

where the integration is performed over the truncated fundamental domain�A = {z ∈
��θ : yi < A,i = 1/2,∞}. By Green’s theorem, (65) equals∑

j=1/2,∞

(
Aσ−1

σ −1
− ϕij (σ )A

−σ

σ

)
→ 0, (66)

which clearly vanishes for 1/2< σ < 1 in the limitA→∞.
Proposition 4.3 is now a consequence of the following observation. LetF satisfy

the hypothesis of Proposition 4.3. Then, given anyε > 0, we find functionsF1,F2 ∈
C∞(�) with compact support and we find a continuous functionf ≥ 0, independent
of φ, invariant under�θ , satisfying (63), such thatF1−f ≤ F ≤ F2+f on all of�,
and such that

1

µ(�)

∫
�

[
F2(g̃)−F1(g̃)+2f (g̃)

]
dµ(g̃) < ε. (67)

Since we know that the statement of Proposition 4.3 holds for the three functionsF1,
F2, f , it must as well hold forF . This proves the proposition.

Corollary 4.4. Let χ� be the characteristic function of an open subset� ⊂�
with boundary of measureµ(∂�)= 0. Then

lim
y→0

∫ 1

0
χ�(z,0)dx = µ(�)

µ(�)
. (68)

Proof. The proof is the same as for Corollary 4.2.

The limit theorems stated in the following sections are now a simple consequence
of the ergodic properties discussed above.
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5. The distribution of values in the complex plane. In order to study the distri-
bution of values of�f (z,φ) in the complex plane, let us take an open set�⊂ C and
define the distribution function

Df,�(z,φ)=
{
1, if �f (z,φ) ∈�,

0, if �f (z,φ) /∈�.
(69)

Df,�(z,φ) is the characteristic function of the preimage�−1f (�) of � in �. We say
� has a “nice” boundary∂� if the boundary of�−1f (�) has measure zero in�. A
sufficient condition for∂� to be nice is that∂� is of Lebesgue measure zero and
contains no critical values of�f . By Sard’s theorem, the set of critical values of a
smooth map�→ C is itself of measure zero inC.
Although the definition of “nice” depends on�f , we indicate by the following

example that most sets indeed have a nice boundary.

Lemma 5.1. Supposef ∈ �(R). Let � ⊂ C be an open convex set containing
zero and with smooth boundary, and let furthermore

�(w,R)= {Rz+w : z ∈�}
be its magnified (byR > 0) and translated (byw ∈ C) copy. Fixw. Then, except for
countably manyR, the boundary of�(w,R) is nice.

Proof. The measure of the set

�(R)= {
(z,φ) ∈� :�f (z,φ) ∈�(w,R)

}
tends toµ(�)= 8π2, whenR→∞, since�f is measurable. The sets

�(R)= {
(z,φ) ∈� :�f (z,φ) ∈ ∂�(w,R)

}
are disjoint for different values ofR (this is due to the convexity of�(w,R)). For
these two reasons, there can only be countably manyR for which�(R) has positive
measure. Since�f is continuous, the boundary of�(R) is contained in the set�(R),
which proves the lemma.

Theorem 5.2. Let � ⊂ C be open with nice boundary, and letf ∈ �(R). Then
for almost allx ∈R (with respect to Lebesgue measure),

lim
T→∞

1

T

∣∣∣{t ∈ [0,T ] :�f

(
x+ ie−t

) ∈�
}∣∣∣= µ

(
�−1f (�)

)
8π2

.

Theorem 5.3. Let�⊂ C be open with nice boundary, and letf ∈ �(R). Then

lim
y→0

∣∣{x ∈ [0,1] :�f (x+ i y) ∈�}∣∣= µ
(
�−1f (�)

)
8π2

.
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Proof of Theorems 5.2 and 5.3.First observe that∣∣∣{t ∈ [0,T ] :�f

(
x+ ie−t

) ∈�
}∣∣∣= ∫ T

0
Df,�

(
x+ ie−t ,0

)
dt

and ∣∣{x ∈ [0,1] :�f (x+ i y) ∈�}∣∣= ∫ 1

0
Df,�(x+ i y,0)dx.

Since�f ∈ C∞(�) (Proposition 3.1) and the boundary of� is nice, the preimage of
� is openwith boundary of measure zero. The statements now follow fromCorollaries
5.2 and, 5.3 respectively.

To give a little illustration, let us have a look at the distribution of the absolute
values of�f (z,φ) on the real line; that is, we choose� = �R := {z : |z| > R}.
In this case it is easy to obtain an asymptotic expression forµ(�−1f (�R)), R large.
Notice that, due to Proposition 3.2, the measure of the set

�R =
{
(z,φ) ∈ ��1(4) : y0 > |fφ0(0)|−4R4}

∪{(z,φ) ∈ ��1(4) : y∞ > |fφ∞(0)|−4R4} (70)

(��1(4) is the fundamental region defined in Section 3) converges rapidly, forR→∞,
to what we seek:

µ
(
�−1f (�R)

)= µ(�R)+OM

(
R−M

)
. (71)

Elementary integration yields (providedR is so large that the sets in (70) are disjoint)

µ(�R)= 2R−4
∫ 4π

0
|fφ(0)|4dφ, (72)

where

|fφ(0)|4= 4(sinφ)−2
∣∣∣∣∫ ∞

−∞
e
(
t2cotφ

)
f (t)dt

∣∣∣∣4 ;
compare to equation (28). After some change of variables, we eventually obtain

µ(�R)= 32R−4
∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
e
(
t2u

)
f (t)dt

∣∣∣∣4du. (73)

It is worthwhile mentioning that the statement in Theorem 5.2 does not hold when
x is rational or real quadratic. First notice that everyx ∈Q is�1(4)-equivalent to one
of the cusps 0, 1/2, or∞ of the hyperbolic surface�1(4)\H (see, e.g., [15, p. 14]).
The asymptotic behaviour of�f (z,0) for x ∈ Q, y → 0, is therefore dictated by
Proposition 3.2. Suppose next thatx is a root of the equation

ax2+bx+c = 0 (74)
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with integral coefficients satisfying(a,b,c) = 1 andb2−4ac > 0. There is a well-
known one-to-one correspondence between primitive quadratic formsQ(x,y) =
ax2+ bxy + cy2 and primitive hyperbolic elements of PSL(2,Z) (see, e.g., [14]).
Hence every solution of a quadratic equation (74) is associated with a closed geo-
desic on themodular surface PSL(2,Z)\H, which lifts to a closed geodesic (as defined
in Section 4) on� =�1(4)\S̃L(2,R). Since this closed geodesic is approached ex-
ponentially quickly by the geodesic{(x+ ie−t ,0) : t ∈ [0,T ]}, asT →∞, the theta
function�f (x+ ie−T ) is asymptotically periodic inT . Hence a limit distribution
exists, but, of course, it depends on the corresponding closed geodesic and thus onx.

Proposition 5.4. Let f ∈ �(R), and assume thatfφ(0) �= 0 for all φ ∈ [0,4π).
Then for almost allx ∈R (with respect to Lebesgue measure) the set{

�f

(
x+ ie−t ,0

) : t ∈ [0,T ]}
becomes densely distributed inC asT tends to infinity.

Proposition 5.5. Let f ∈ �(R), and assume thatfφ(0) �= 0 for all φ ∈ [0,4π).
Then the set

{�f (x+ i y,0) : x ∈ [0,1]}
becomes densely distributed inC asy tends to zero.

Proof of Propositions 5.4 and 5.5.Apply Proposition 3.3 and Corollaries 4.2 and
4.4.

We recall the remark after Proposition 3.3 wherefφ(0) �= 0 holds for allφ, if
f (t) is assumed to be real valued and monotonically increasing fort < 0 and is
monotonically decreasing fort > 0.

6. The asymptotic behaviour of moments. For someπ -periodic continuous
functionh(φ) and Res > 1, let us define the Eisenstein series

E∞(z,φ;s)=
∑

γ∈�∞\�θ

h
(
φ+βγ (z)

)[
Im(γ z)

]s
, (75)

which we may view as a function on�θ\PSL(2,R) if we identify PSL(2,R) with
H×[0,π). Its behaviour in the cusps at(1/2,φ) and(∞,φ) is (for Res > 1)

E∞(z,φ;s)=
{
O
(
y1−Res1/2

)
, y1/2→∞,

h(φ)ys+O
(
y1−Res

)
, y→∞,

(76)

since
|E∞(z,φ;s)| ≤ CE∞(z,Res),∣∣E∞(z,φ;s)−h(φ)ys

∣∣≤ C
[
E∞(z,Res)−yRes

]
,
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for some constantC. E∞(z,s) is the classical Eisenstein series we have already
discussed. We could easily improve (76), but we do not really need it at this place.
The zeroth Fourier coefficient reads∫ 1

0
E∞(z,φ;s)dx = h(φ)ys+ 1

22s−1

ζ(2s−1)

ζ(2s)
H(φ;s)y1−s , (77)

where

H(φ;s)=
∫ π

0
h(φ+β)(sinβ)2(s−1)dβ.

Forh(φ)= 1, we get back to the classical case, that is,

H(φ;s)= π1/2�(s−1/2)

�(s)
.

Furthermore, it is useful to have a function that grows linearly in the cusp at(∞,φ).
Such a function is, for example, given by

G∞(z,φ;ε)= i ε

π

∫ 1+ε+i∞

1+ε−i∞
E∞(z,φ;s)

(s−1)(s−1−2ε)
ds, (78)

for someε > 0, since

i ε

π

∫ 1+ε+i∞

1+ε−i∞
ys

(s−1)(s−1−2ε)
ds =

{
y1+2ε, if 0 < y < 1,

y, if y ≥ 1,
(79)

and thus, as a consequence of (76),

G∞(z,φ;ε)=
{
O
(
y−ε
1/2

)
, y1/2→∞,

h(φ)y+O
(
y−ε

)
, y→∞.

(80)

The zeroth Fourier coefficient can be calculated from (77). In particular, for 0< y < 1
and 0< ε < 1/2, one has∫ 1

0
G∞(z,φ;ε)dx = h(φ)y1+ε+Qφ(1) logy

−1+ 1

2ε
Qφ(1)+Q′φ(1)

+ i ε

π

∫ 1−ε+i∞

1−ε−i∞
Qφ(s)

y1−s

(s−1)2(s−1−2ε)
ds, (81)

with the functions

Qφ(s)= s−1

22s−1

ζ(2s−1)

ζ(2s)
H(φ;s), Qφ(1)= 1

π2
H(0;1) (82)



LIMIT THEOREMS FOR THETA SUMS 147

being holomorphic in the half-plane Res > 1/2.Q′φ(s)means derivative with respect
to s. Notice that

Q′φ(1)= 2

[
γ − 4log2

3
− ζ ′

ζ
(2)

]
Qφ(1)+ 2

π2

∫ π

0
h(φ+β) log(sinβ)dβ, (83)

whereγ denotes Euler’s constant.
We are now prepared to prove the following theorem.

Theorem 6.1. Let f ∈ �(R) andα ≥ 0 be some real number. Then, fory→ 0,

∫ 1

0
|�f (z)|αdx =


bα+o(1), if α < 4,

bα logy−1+cα+o(1), if α = 4,

bαy
1−α/4+cα+o(1), if α > 4,

with the constants

bα =



1

π2

∫
�θ\PSL(2,R)

|�f (z,φ)|α dx dy dφ

y2
, if α < 4,

4

π2

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
e
(
t2u

)
f (t)dt

∣∣∣∣4du, if α = 4,

1

1−2−α/2

ζ(α/2−1)

ζ(α/2)

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
e(t2u)f (t)dt

∣∣∣∣α du, if α > 4,

and

cα =



1

π2

∫
�θ\PSL(2,R)

[|�f (z,φ)|4−R4
f (z,φ;ε)

]dx dy dφ

y2
+ 1

2ε
b4

+2
[
γ − 4log2

3
− ζ ′

ζ
(2)

]
b4

− 4

π2

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞
e
(
t2u

)
f (t)dt

∣∣∣∣4 log(1+u2
)
du, if α = 4,

1

π2

∫
�θ\PSL(2,R)

[|�f (z,φ)|α−Rα
f (z,φ)

]dx dy dφ

y2
, if α > 4.

Here, forα > 4,

Rα
f (z,φ)=

∑
γ∈�∞\�θ

∣∣∣fφ+βγ (z)(0)
[
Im(γ z)

]1/4∣∣∣α ,
while, forα = 4,

R4
f (z,φ;ε)=

i ε

π

∫ 1+ε+i∞

1+ε−i∞

R4s
f (z,φ)

(s−1)(s−1−2ε)
ds,

for any0< ε < 1/2, where the constantcα is independent of a particular choice ofε.
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Proof. In the caseα < 4, we can directly apply Proposition 4.3. Whenα > 4,
we apply Proposition 4.3 to the function|�f (z,φ)|α−Rα

f (z,φ), which is bounded
(so that the hypothesis of Proposition 4.3 is satisfied), since the divergent parts of
both terms cancel. To see this, first notice thatRα

f (z,φ) is just the Eisenstein series
E∞(z,φ;α/4) defined in (75), withh(φ)= |fφ(0)|α, and then use the asymptotic re-
lation (76). The leading-order termbαy1−α/4 is essentially the mean value ofRα

f (z,0)
with respect tox,∫ 1

0
Rα

f (z,0)dx = |f (0)|αyα/4+ y1−α/4

2α/2−1

ζ(α/2−1)

ζ(α/2)

∫ π

0
|fφ(0)|α(sinφ)α/2−2dφ,

(84)

where the integral can be further simplified using (28). The caseα = 4 can be handled
in a similar way, with obvious modifications.

7. The classical theta sum. In this section we show how Theorem 5.3 can be
extended to theta sums�f (z) such as the classical theta sumSN(x). In fact, it is
sufficient to assume that the cutoff functionf , which determines�f , is Riemann-
integrable. The main task is to relate the sum�f (z) to the theta function�f (z,φ),
now defined only as an L2(�) function in the sense of Proposition 3.4. In partic-
ular, the relation�f (z) = �f (z,0), derived for Schwartz functionsf , is not valid
anymore.
Let � ⊂ C be an open convex set containing zero and with smooth boundary.

Furthermore, let

�(w,R)= {Rz+w : z ∈�}
be its magnified (byR > 0) and translated (byw ∈ C) copy. In the following, keep
w fixed.

Theorem 7.1. Letf be Riemann-integrable. Then, except for countably manyR,
we have

lim
y→0

∣∣{x ∈ [0,1] :�f (x+ i y) ∈�(w,R)}∣∣==�(w,R),

where

=�(w,R)= 1

8π2
µ{(z,φ) ∈� :�f (z,φ) ∈�(w,R)}.

Proof. We know that the theorem holds whenf ∈ �(R); compare to Theorem 5.3
and Lemma 5.1. In the following, assumef is Riemann-integrable andfε ∈ �(R),
such that ∫ ∞

−∞
|f (t)−fε(t)|2dt < ε. (85)
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Without loss of generality, bothf andfε are taken to be even. Becausef is Riemann-
integrable, we have

|�f (z)| ≤ y1/4
∑
n∈Z

∣∣f (ny1/2)∣∣<∞
for everyfinite y. Fory small enough, we have the relation∫ 1

0

∣∣�f (z)−�fε (z)
∣∣2dx = y1/2

∣∣f (0)−fε(0)
∣∣2

+2y1/2
∑
n∈Z×

∣∣f (ny1/2)−fε

(
ny1/2

)∣∣2 < 3ε, (86)

since the sum converges to twice the Riemann integral of (85). Consider the sets

Aε
y =

{
x ∈ [0,1] : ∣∣�f (z)−�fε (z)

∣∣< ε1/4
}
,

Xy(R)= {
x ∈ [0,1] :�f (x+ i y) ∈�(w,R)

}
,

and
Xε

y(R)= {
x ∈ [0,1] :�fε (x+ i y) ∈�(w,R)

}
.

The integral over the complement ofAε
y has to satisfy

3ε >

∫
[0,1]−Aε

y

∣∣�f (z)−�fε (z)
∣∣2dx ≥ ∫

[0,1]−Aε
y

ε1/2dx,

and hence we have ∣∣Aε
y

∣∣> 1−3ε1/2. (87)

Consequently, ∣∣Xy(R)
∣∣< ∣∣Xy(R)∩Aε

y

∣∣+3ε1/2 (88)

and ∣∣Xε
y(R)

∣∣< ∣∣Xε
y(R)∩Aε

y

∣∣+3ε1/2. (89)

We have the inclusions (
Xε

y

(
R−Cε1/4

)∩Aε
y

)⊂Xy(R) (90)

and (
Xy(R)∩Aε

y

)⊂Xε
y

(
R+Cε1/4

)
(91)
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if the constantC is chosen large enough (C depends solely on the set�(w,R)). So,∣∣Xε
y

(
R−Cε1/4

)∣∣−3ε1/2 ≤ ∣∣Xy(R)
∣∣≤ ∣∣Xε

y

(
R+Cε1/4

)∣∣+3ε1/2. (92)

Let us now consider the sets

�ε = {
(z,φ) ∈� : ∣∣�f (z)−�fε (z)

∣∣< ε1/4
}
,

�(R)= {
(z,φ) ∈� :�f (z,φ) ∈�(w,R)

}
,

and
�ε(R)= {

(z,φ) ∈� :�fε (z,φ) ∈�(w,R)
}
.

By virtue of Proposition 3.4, we see that

(4π)−2
∫

�

∣∣�f (z,φ)−�fε (z,φ)
∣∣2dµ(z,φ)=

∫ ∞

−∞
∣∣f (t)−fε(t)

∣∣2dt < ε. (93)

Thus

ε > (4π)−2
∫

�−�ε

∣∣�f (z,φ)−�fε (z,φ)
∣∣2dµ(z,φ)≥ (4π)−2

∫
�−�ε

ε1/2dµ(z,φ)

implies that

µ
(
�ε

)
> 8π2(1−2ε1/2

)
, (94)

and hence

µ
(
�(R)

)
< µ

(
�(R)∩�ε

)+16π2ε1/2 (95)

and

µ
(
�ε(R)

)
< µ

(
�ε(R)∩�ε

)+16π2ε1/2. (96)

Corresponding to (90) and (91), one has(
�ε

(
R−Cε1/4

)∩�ε
)⊂ �(R) (97)

and (
�(R)∩�ε

)⊂ �ε
(
R+Cε1/4

)
, (98)

with the same constantC. So,

µ
(
�ε

(
R−Cε1/4

))−16π2ε1/2 ≤ µ
(
�(R)

)≤ µ
(
�ε

(
R+Cε1/4

))+16π2ε1/2. (99)

By Theorem 5.3, for all but countably manyR, we have

lim
y→0

∣∣Xε
y

(
R±Cε1/4

)∣∣= 1

8π2
µ
(
�ε

(
R±Cε1/4

))
.
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Therefore, if the difference between the measuresµ(�ε(R−Cε1/4)) andµ(�ε(R+
Cε1/4)) vanishes along some sequence ofε → 0, because of (92) and (99) the se-
quence|Xy(R)| (y→ 0) then must converge to the desiredµ(�).
What thus remains to be shown is that, given anyδ > 0, there is anε > 0 such that

µ
(
�ε

(
R+Cε1/4

))−µ
(
�ε

(
R−Cε1/4

))
< δ. (100)

To this end, observe that by virtue of (99)

µ
(
�ε

(
R+Cε1/4

))−µ
(
�ε

(
R−Cε1/4

))
< µ

(
�
(
R+2Cε1/4

))−µ
(
�
(
R−2Cε1/4

))+32π2ε1/2. (101)

Now suppose thatR is such that

µ
(
�
(
R+2Cε1/4

))−µ
(
�
(
R−2Cε1/4

))≥ c(R)

for arbitrarily smallε, wherec(R) is some positive constant. This means, however,
that

µ
({
(z,φ) ∈� :�f (z,φ) ∈�

(
w,R+2Cε1/4

)
,

�f (z,φ) /∈�
(
w,R−2Cε1/4

)})≥ c(R), (102)

for arbitrarily smallε, which in turn implies

µ
({
(z,φ) ∈� :�f (z,φ) ∈ ∂�(w,R)

})≥ c(R).

This can only happen for countably manyR, since�f is measurable (compare with
Lemma 5.1).

We have the following corollaries.

Corollary 7.2. There exists a function<(a,b) such that for all (except for
countably many)a,b ∈R,

lim
N→∞

∣∣∣∣{x ∈ [0,1] : a < N−1/2
N∑

n=1
cos

(
2πn2x

)
< b

}∣∣∣∣=<(a,b)

and

lim
N→∞

∣∣∣∣{x ∈ [0,1] : a < N−1/2
N∑

n=1
sin

(
2πn2x

)
< b

}∣∣∣∣=<(a,b).

The reason why both limits are equal to<(a,b) is that, due to equation (31), which
holds for smooth functions, we have�f (z,φ+π) ∼ − i�f (z,φ) in the L2 sense.
Therefore, the limit distribution in the complex plane should be invariant a.e. under
rotations by− i.
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Corollary 7.3. There exists a function=(a,b) such that for all (except for
countably many)a,b ∈R,

lim
N→∞

∣∣∣∣{x ∈ [0,1] : a < N−1/2
∣∣∣∣ N∑
n=1

e
(
n2x

)∣∣∣∣< b
}∣∣∣∣==(a,b).

Corollary 7.3 was first proved by Jurkat and van Horne [8], as mentioned before.
It follows from the algebraic decay of the limit distribution, which was discussed in
Section 5 (see also [8]), that it is not a normal distribution; in particular,

<(a,b) �= 1√
2π

∫ b

a

e−(1/2)t2 dt. (103)
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