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Abstract
We construct a renormalization operator acting on the space of analytic
Hamiltonians defined on T ∗Td , d � 2, based on the multidimensional
continued fractions algorithm developed by the authors. We show convergence
of orbits of the operator around integrable Hamiltonians satisfying a non-
degeneracy condition. This in turn yields a new proof of a KAM-type theorem
on the stability of diophantine invariant tori.

Mathematics Subject Classification: 37E20, 37J40, 11J70

1. Introduction

The connection between KAM and renormalization theories has been realized for quite some
time. The renormalization approach to KAM has several important advantages. First of all,
it provides a unified setting which allows us to deal with both the cases of smooth KAM-type
invariant tori and non-smooth critical tori. Secondly, the proofs based on renormalizations are
conceptually very simple and give a different perspective on the problem of small divisors. For
the continuous-time situation, several KAM results for small-divisor problems in quasiperiodic
motion have been obtained by studying the stability of trivial fixed sets of renormalization
operators (cf e.g. [3,7,10,12,13]). There was however a relevant restriction when dealing with
multiple frequencies. Because renormalization methods rely fundamentally on the continued
fractions expansion of the frequency vector, the lack of a multidimensional version of continued
fractions was the reason for failing to replicate KAM in its full generality. This limitation was
recently overcome in [6] by adapting Lagarias’ algorithm [11] and deriving estimates for
multidimensional continued fractions (MCFs) expansions of diophantine vectors.
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We present here a further application of the multidimensional renormalization method
following [6] (for vector fields on the torus) and [9] (for skew-product flows over translations on
the torus), illustrating once again the connection between KAM and renormalization methods
tackling quasiperiodic motion problems. Moreover, we hope that our work could lead to a
better understanding of the behaviour of renormalization around critical fixed points. The only
rigorous result in this direction is a computer-assisted proof of the existence of such critical
fixed point in the golden-mean d = 2 case [8].

Our present renormalization scheme is similar in spirit to Koch’s [7]. One of the differences
is that the (analytic) Hamiltonians considered in [7] are close to the integrable (degenerate)
Hamiltonian Rd � y �→ ω ·y. So, due to the degeneracy condition there are unstable directions
for the trivial fixed point of renormalization, and thus the KAM domain will correspond to the
stable manifold. In our approach we deal with an extra quadratic term in the integrable case
which implies convergence under renormalization on a ball. Moreover, the frequency vector
ω ∈ Rd in [7] is assumed to be of a special kind (known as Koch type, cf [12]) corresponding
to a zero Lebesgue measure set. In our work the result on the stability of invariant tori is
valid for any diophantine vector, a full measure set. It is still a fundamental open problem to
determine the largest set of frequencies for which the stability of KAM tori holds. We also
expect that our methods can be adapted in order to deal with Hamiltonians of class Ck .

Let B ⊂ Rd , d � 2, be an open set containing the origin, and let H 0 be a real-analytic
Hamiltonian function

H 0(x, y) = ω · y + 1
2

�yQy, (x, y) ∈ T
d × B, (1.1)

with ω ∈ Rd and a real symmetric d × d matrix Q. H 0 is said to be non-degenerate if
det Q �= 0. We say ω ∈ Rd is diophantine if there are constants β > 0 and C > 0 such that

‖k‖d−1+β |k · ω| > C, k ∈ Z
d − {0}. (1.2)

In this paper we prove the following theorem.

Theorem 1.1. Suppose H 0 is non-degenerate and ω is diophantine. If H is a real analytic
Hamiltonian on Td×B sufficiently close to H 0, then the Hamiltonian flow of H leaves invariant
a Lagrangian d-dim torus where it is analytically conjugated to the linear flow φt(x) = x + tω

on Td , t � 0. The conjugacy depends analytically on H .

Sketch of the proof

Our proof of theorem 1.1 is related to the one in [6] done in the context of vector fields on Td .
Hamiltonian vector fields involve more complicated analysis since there is extra dynamics on
a vertical direction (action) and we need to preserve the symplectic nature of the problem. Our
goal is to find an analytic embedding Td → Td × B that conjugates the Hamiltonian flow to
the linear flow on the torus given by ω.

We do not work directly with vector fields, instead we renormalize Hamiltonian functions
H(x, y) = H 0(x, y) + F(x, y) where (x, y) ∈ Td × B and F is a sufficiently small

analytic perturbation. Using a rescaling of time we may assume that ω =
(

α

1

)
for some

diophantine α ∈ Rd−1. The perturbation F is decomposed in a Taylor–Fourier series
F(x, y) = ∑

k,ν Fk,νy
ν1
1 · · · yνd

d e2π ik·x where the sum is taken over k ∈ Zd and νi ∈ N ∪ {0}.
By the analyticity of F , its modes decay exponentially as ‖k‖ → +∞ for fixed ν.

Renormalization is an iterative scheme that at each step produces a new Hamiltonian.
Suppose that after the (n − 1)th step the Hamiltonian is of the form

Hn−1(x, y) = ω(n−1) · y + 1
2

�yQn−1y + Fn−1(x, y), (1.3)
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where ω(n−1) =
(

α(n−1)

1

)
, α(n−1) is given by the continued fraction algorithm (see section 2)

and Qn−1 is a symmetric matrix with non-zero determinant. Moreover, we assume that
Fn−1 only contains Taylor–Fourier resonant modes (said to be in I +

n−1), i.e. satisfying
|ω(n−1) · k| � σn−1‖k‖ or ‖ν‖ � τn−1‖k‖ for some σn−1, τn−1 > 0. So, the nth step is
defined by the following operations:

(1) Apply a linear operator corresponding to an affine symplectic transformation given by
(x, y) �→ (T (n)−1

x, �T (n)y + bn) for some fixed vector bn.
(2) Rescale the action in order to ‘zoom in’ around the invariant torus.

(3) Rescale time (energy) to ensure that the frequency vector is in the form ω(n) =
(

α(n)

1

)
.

(4) Eliminate the constant mode of the Hamiltonian.
(5) Eliminate all the modes outside the resonant cone I +

n (thus avoiding dealing with small
divisors) by a close to the identity symplectomorphism.

The first transformation above has a conjugate action k �→ �T (n)−1
k. It follows from the

hyperbolicity of T (n) that this transformation contracts I +
n−1 if σn−1 and τ−1

n−1 are small enough.
This significantly improves the analyticity domain in the x direction which implies the decrease
in the estimates for the corresponding modes. As a result, all modes with k �= 0 become smaller.

Besides the (trivial) case (k, ν) = (0, 0) which is dealt with by operation (4), we control the
size of the remaining k = 0 modes in different ways. The case S := ∑

i νi = 1 (corresponding
to the linear term in the action y) is eliminated by a proper choice of the affine parameter bn

depending on Qn−1 and the perturbation. That is, bn is used to eliminate an unstable direction
related to frequency vectors. The quadratic term in the action (S = 2) is included in the new
symmetric matrix Qn which has again a non-zero determinant and becomes smaller due to the
action rescaling. Finally, we show that the action rescaling is also responsible for the decrease
in the higher terms S � 3.

The overall consequence of the iterative scheme just described is that it converges to a
limit set of Hamiltonians of the type y �→ v · y. That is, the ‘limit’ is a degenerate linear
function of the action and from that we show the existence of an ω-invariant torus for the
initial Hamiltonian. To prove convergence we need to find proper choices of σn and τn as well
as of stopping times tn, which turn out to be possible for diophantine ω. Roughly, too small
values of σn−1 and τ−1

n−1 make it harder to eliminate modes as they are ‘too’ resonant. On
the other hand, large values imply that T (n) does not contract I +

n−1. Similarly, large tn − tn−1

improve the hyperbolicity of the matrices T (n) but worsen the estimates on their norms and
consequently enlarge the perturbation.

In section 2 we review the MCF algorithm contained in [6] and state estimates needed for
the following sections. In section 3 we define the renormalization operator and iterate it to
show convergence to a trivial limit set. We are then able to prove theorem 1.1 in section 4. In
section 5 we present a proof of theorem 3.6 (similar to [1,7]) that finds a symplectomorphism
capable of eliminating the non-resonant modes of a Hamiltonian.

2. Multidimensional continued fractions

For completeness we review here the ideas contained in [6].

2.1. Flow on homogeneous space

Denote by G = SL(d, R), � = SL(d, Z) and take a fundamental domain F ⊂ G of the
homogeneous space �\G (the space of d-dimensional non-degenerate unimodular lattices).
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On F consider the flow:

�t : F → F, M �→ P(t)MEt, (2.1)

where

Et = diag(e−t , · · · , e−t , e(d−1)t ) ∈ G

and P(t) is the unique family in � that keeps �t(M) in F for every t � 0.

Given ω =
(

α

1

)
∈ Rd , we are interested in the orbit under �t of the matrix

Mω =
(

I α

0 1

)
. (2.2)

For this, consider a sequence of times

t0 = 0 < t1 < t2 < · · · → +∞ (2.3)

such that the matrices P(t) in (2.1) satisfy

P (n) := P(tn) �= P(tn−1). (2.4)

The sequence of matrices P (n) ∈ SL(d, Z) are the rational approximates of ω, called
multidimensional continued fractions expansion. In addition we define the transfer matrices

T (n) = P (n)P (n−1)−1
. (2.5)

The flow of Mω taken at the time sequence is thus the sequence of matrices

M(n) = �tn(Mω) = P (n)MωEtn . (2.6)

Using some properties of the flow, the above can be decomposed (see [6]) into

M(n) =
(

I α(n)

0 1

)(
A(n) 0
�β(n) γ (n)

)
(2.7)

with γ (n) being the dth component of the vector e(d−1)tnP (n)ω, A(n) is a (d − 1) × (d − 1) real
matrix and α(n), β(n) ∈ Rd−1.

Define ω(n) =
(

α(n)

1

)
, ω(0) = ω and, for n ∈ N,

ω(n) = γ (n)−1
M(n)


0
...

0
1

 = λnP
(n)ω = ηnT

(n)ω(n−1), (2.8)

where

λn = 1

γ (n)
e(d−1)tn and ηn = λn

λn−1
. (2.9)

Consider now the cone

K(n) = {ξ ∈ R
d : |ξ · ω(n)| � σn‖ξ‖} (2.10)

for a given σn > 0. We are using the norm ‖ξ‖ = ∑d
i=1 |ξi |.

Let ‖ · ‖ denote the usual matrix norm

‖M‖ := sup
x�=0

‖Mx‖
‖x‖ . (2.11)

Notice that any A ∈ SL(d, Z) has ‖A‖ � 1, as is the case of the norm of T (n), its inverse and
transpose.

Lemma 2.1 ( [6]). If ξ ∈ K(n−1), then there is cd > 0 such that for all n ∈ N

‖ �T (n)−1
ξ‖ � cd

(
σn−1‖T (n)−1‖ + e−δtn‖M(n−1)‖ ‖M(n)−1‖

)
‖ξ‖, (2.12)

where δtn = tn − tn−1.
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2.2. Norm estimates for diophantine vectors

It is a well-known fact that the sets DC(β) of diophantine vectors with exponent β > 0 are of
full Lebesgue measure [2]. On the other hand, the set DC(0) has zero Lebesgue measure.

Proposition 2.2 ( [6]). Let ω ∈ DC(β), β � 0. There are constants c1, c2, c3, c4, c5, c6, c7 >

0 such that, for all n ∈ N ∪ {0},
‖M(n)‖ � c1 exp[(d − 1)θtn], (2.13)

‖M(n)−1‖ � c2 exp(θtn), (2.14)

‖P (n)‖ � c3 exp[(d θ + 1 − θ)tn], (2.15)

‖P (n)−1‖ � c4 exp[(d − 1 + θ)tn], (2.16)

‖T (n)‖ � c5 exp[(1 − θ)δtn + d θ tn], (2.17)

‖T (n)−1‖ � c6 exp[(d − 1)(1 − θ)δtn + d θ tn] (2.18)

and

c7 exp

[
− θ

(
d2

1 − θ
− (d − 1)

)
tn

]
� |γ (n)| � c1 exp[(d − 1)θtn], (2.19)

where δtn = tn − tn−1 and θ = β/(d + β).

Proposition 2.3. Let ω ∈ DC(β), β � 0. If ξ ∈ K(n−1), then there is cd > 0 for all n ∈ N

‖ �T (n)−1
ξ‖ � cde−(1−θ)δtn+dθtn−1

(
c6σn−1edδtn + c1c2

) ‖ξ‖, (2.20)

with θ = β/(d + β).

Proof. The estimate follows from applying proposition 2.2 to lemma 2.1. �

3. Renormalization of Hamiltonian flows

3.1. Preliminaries

Consider the symplectic manifold T ∗Td with respect to the canonical symplectic form∑d
i=1 dyi ∧ dxi . As the cotangent bundle of Td is trivial, T ∗Td  Td × Rd , we identify

functions on T ∗Td with functions on Td × Rd . By lifting to the universal cover, we consider
functions from R2d into R and extend them to the complex domain.

Let � be a neighbourhood of Rd×{0} in C2d . A Hamiltonian is a complex analytic function
H : � → C, Zd -periodic on the first coordinate, written in the form of a Taylor–Fourier series

H(x, y) =
∑

(k,ν)∈I

Hk,νyνe2π ik·x, (x, y) ∈ �, (3.1)

where I = Zd × (N ∪ {0})d , Hk,ν ∈ C and yν = y
ν1
1 · · · yνd

d .
Let the positive real numbers ρ and r be given in order to determine the domain

Dρ,r = Dρ × Br, (3.2)

where
Dρ = {x ∈ Cd : ‖Imx‖ < ρ/2π} and
Br = {y ∈ Cd : ‖y‖ < r}, (3.3)

for the norm ‖u‖ = ∑d
i=1 |ui | on Cd . Moreover, we will be using the norm of matrices given

by ‖Q‖ = maxj=1,...,d

∑d
i=1 |Qi,j |, where Qi,j are the entries of a d × d matrix Q.
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Consider the Banach space Aρ,r of Hamiltonians defined on � = Dρ,r , which extend
continuously to the boundary and with finite norm

‖H‖ρ,r =
∑

(k,ν)∈I

|Hk,ν| r‖ν‖ eρ‖k‖. (3.4)

Similarly, take a norm on the product space A2d
ρ,r = Aρ,r × · · · × Aρ,r given by

‖(H1, · · · , H2d)‖ρ,r = ∑2d
i=1 ‖Hi‖ρ,r . Using this we define the Banach space A′

ρ,r of
Hamiltonians H ∈ Aρ,r with finite norm

‖H‖′
ρ,r = ‖H‖ρ,r + ‖∇H‖ρ,r .

A property that will be used several times in this paper is the Cauchy estimate: for any
δ > 0 we have

‖∂iH‖ρ,r � 2π
δ

‖H‖ρ+δ,r , H ∈ Aρ+δ,r , 1 � i � d,

‖∂jH‖ρ,r � 1
δ
‖H‖ρ,r+δ, H ∈ Aρ,r+δ, d + 1 � j � 2d,

(3.5)

where ∂k denotes the partial derivative with respect to the kth argument. In particular

‖H‖′
ρ,r �

(
1 +

2π + 1

δ

)
‖H‖ρ+δ,r+δ. (3.6)

The constant Fourier modes will be written by the projection

EF(y) =
∫

Td

F (x, y)dx =
∑

ν

F0,νyν, EνF(y) = F0,νyν . (3.7)

The space where EF lies is denoted by EAr and the natural induced norm is ‖ · ‖r . Similarly,
we define EA′

r with norm ‖ · ‖′
r .

In the following we will use the notation A � B to mean that there is a constant C > 0
such that A � CB.

Remark 3.1. We will be dealing with maps between Banach spaces over C with a notion of
analyticity stated as follows (cf e.g. [5]): a map F defined on a domain is analytic if it is locally
bounded and Gâteux differentiable. If it is analytic on a domain, it is continuous and Fréchet
differentiable. Moreover, we have a convergence theorem which is going to be used later on.
Let {Fk} be a sequence of functions analytic and uniformly locally bounded on a domain D.
If limk→+∞ Fk = F on D, then F is analytic on D.

3.2. Change of basis and rescaling

The following transformations leave invariant the dynamics of the flow generated by a
Hamiltonian, producing an equivalent system. They consist of

• an affine symplectic transformation of the phase space,

Ln: (x, y) �→ (T (n)−1
x, �T (n)y + bn), (x, y) ∈ C

2d , (3.8)

for some bn ∈ Cd ,
• a linear time (energy) change,

H �→ ηnH (3.9)

where ηn is defined in (2.9),
• a linear action rescaling,

H �→ 1

µn

H(·, µn·) (3.10)

with a choice of µn > 0 to be specified later on,



Multidimensional renormalization 2733

• and the (trivial) elimination of the constant term

H �→ (I − E0)H. (3.11)

Notice that EH ◦ Rz = EH and

Rz ◦ Ln = Ln ◦ RT (n)z (3.12)

with

Rz: (x, y) �→ (x + z, y), z ∈ C
d . (3.13)

For n ∈ N, ρn−1 > 0 and r > 0, we are going to apply the transformations (3.8)–(3.11)
to Hamiltonians of the form

H(x, y) = ω(n−1) · y + 1
2

�yQn−1y + F(x, y), (x, y) ∈ Dρn−1,r , (3.14)

where Qn−1 is a d × d symmetric matrix and F ∈ Aρn−1,r . We thus get new Hamiltonians
which are images under the map

Ln(H) = (I − E0)
ηn

µn

H ◦ Ln(·, µn·).
In order to simplify notations, we write

�n(y) = µn
�T (n)y + bn. (3.15)

So, for any (x, y) ∈ L−1
n Dρn−1,r ,

Ln(H)(x, y)

= (I − E0)
ηn

µn

[
ω(n−1) · �n(y) +

1

2
��n(y)Qn−1�n(y) + F ◦ Ln(x, µny)

]
. (3.16)

By the decomposition F = (I − E)F + F0 and using the Taylor expansion of F0:

F0 ◦ �n(y) = F0(bn) + µn
�∇F0(bn)

�T (n)y +
µ2

n

2
�yT (n)D2F0(bn)

�T (n)y + ϒn(y), (3.17)

with ϒn(y) = O(‖y‖3), we get

Ln(H)(x, y) = ω(n) · y + ηn

[ �bnQn−1 + �∇F0(bn)
] �T (n)y

+
ηnµn

2
�yT (n)

[
Qn−1 + D2F0(bn)

] �T (n)y

+
ηn

µn

ϒn(y) +
ηn

µn

(I − E)F ◦ Ln(x, µny). (3.18)

In order to ‘normalize’ the (Fourier constant) linear term in y of ELn(H) by making it equal
to ω(n) · y, we choose bn inside the domain of ∇F0 such that

Qn−1bn + ∇F0(bn) = 0. (3.19)

The quadratic term is dealt with by considering a new symmetric d × d matrix Qn being

Qn = ηnµnT
(n)
[
Qn−1 + D2F0(bn)

] �T (n). (3.20)

We can finally write

Ln(H)(x, y) = ω(n) · y + 1
2

�yQny + L̂n(F0)(y) + L̃n(F − F0)(x, y), (3.21)

where we have introduced the operator

L̂n: F0 �→ ηn

µn

ϒn (3.22)

for the cubic and higher terms in y and

L̃n: (I − E)F �→ ηn

µn

(I − E)F ◦ Ln(·, µn·) (3.23)

for the non-constant Fourier modes. The above operators are defined in EAr and (I−E)Aρn−1,r .
For a given γ > 0, denote by �γ the set of all H as in (3.14) such that ‖F0‖ρn−1,r < γ .
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Lemma 3.2. If det(Qn−1) �= 0 and

γn = r2

16‖Q−1
n−1‖

, (3.24)

there is bn ∈ C1(�γn
, Cd) such that, for all H ∈ �γn

, bn = bn(H) satisfies (3.19) and

‖bn(H)‖ < (2/r)‖Q−1
n−1‖ ‖F0‖r <

r

8
. (3.25)

Moreover, det(Qn) �= 0 where Qn is given by (3.20) and

‖Q−1
n ‖ � ‖T (n)−1‖ ‖ �T (n)−1‖

µn|ηn|(‖Q−1
n−1‖−1 − 16

r2 ‖F0‖r )
. (3.26)

In the case F0 is real-analytic and Qn−1 is real, bn(H) ∈ Rd and Qn is also real.

Proof. Consider the differentiable function F(H, b) = b+Q−1
n−1∇F0(b) defined on �γn

×Br/2.
Notice thatF(H 0

n−1, 0) = 0. Moreover, the derivative ofF with respect to the second argument,

D2F(H, b) = I + Q−1
n−1D

2F0(b), (H, b) ∈ �γn
× Br/2,

admits a bounded inverse because

‖D2F0‖r/2 = max
d+1�j�2d

‖∂j∇F0‖r/2

� (4/r)‖∇F0‖3r/4

� (16/r2)‖F0‖r

< ‖Q−1
n−1‖−1 (3.27)

by the Cauchy estimate. Thus, the implicit function theorem implies the existence of a C1

function bn: H �→ bn(H) in a neighbourhood of H 0
n−1 such that

F(H, bn(H)) = bn(H) + Q−1
n−1∇F0(bn(H)) = 0,

i.e. a solution of (3.19). Notice that for any H ∈ �γn
the operator Id−F(H, ·) is a contraction

with a unique fixed point bn(H). Hence the domain of the C1 functionH �→ b(H) is extendable
to �γn

and thus (3.25). Assuming F0 to be real-analytic and Qn−1 with real entries, the same
argument is still valid when considering Br/2 ∩Rd . So, b(H) is real and Qn is a real symmetric
matrix.

From (3.27),

‖Q−1
n−1D

2F0(bn(H))‖ < 1, H ∈ �γn
.

Hence, A = Qn−1[I + Q−1
n−1D

2F0(bn(H))] is invertible. Moreover,

‖A−1‖ � 1/(‖Q−1
n−1‖−1 − ‖D2F0‖r/2). (3.28)

Now, Q−1
n = (ηnµn)

−1 �T (n)−1
A−1T (n)−1

, thus (3.26). �

Lemma 3.3. If r < r ′ and

µn <
r

4r ′‖ �T (n)‖ , (3.29)

then L̂n: EAr ∩ �γn
→ EA′

r ′ and

‖L̂n‖ � µ2
n|ηn|

(
1 +

1

2r ′

)
(4r ′ ‖ �T (n)‖)3

r2(r − 4r ′µn ‖ �T (n)‖) . (3.30)
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Proof. Let H ∈ �γn
, R = r

4r ′µn‖ �T (n)‖ > 1, y ∈ Br ′ and the map

f : {z ∈ C: |z| � R} → C
d

z �→ F0(zµn
�T (n)y + bn(H)). (3.31)

Hence ϒn as in (3.17) can be written as

f (1) − f (0) − Df (0) − 1

2
D2f (0) = 1

2π i

∮
|z|=R

f (z)

z3(z − 1)
dz.

Therefore,

‖ϒn‖′
r ′ = 1

2π

∥∥∥∥∮|z|=R

f (z)

z3(z − 1)
dz

∥∥∥∥′

r ′

� 1

R2(R − 1)
sup
|z|=R

‖F0(zµn
�T (n) · +bn(H))‖′

r ′ .

Since ‖y‖ < r ′, in view of (3.25),

sup
|z|=R

‖zµn
�T (n)y + bn(H)‖ � Rµn‖ �T (n)‖ r ′ + ‖bn(H)‖ < r/2

and

sup
|z|=R

‖F0(zµn
�T (n) · +bn(H))‖′

r ′ � ‖F0‖r/2 + Rµn ‖ �T (n)‖ ‖∇F0‖r/2

� ‖F0‖r/2 +
1

2r ′ ‖F0‖r �
(

1 +
1

2r ′

)
‖F0‖r . (3.32)

Thus, ‖ϒn‖′
r ′ � (1 + 1/2r ′)[R2(R − 1)]−1‖F0‖r and

‖L̂n(F0)‖′
r ′ = |ηn|

µn

‖ϒn‖′
r ′ � |ηn|

µn

(
1 +

1

2r ′

)
(4r ′|µn| ‖ �T (n)‖)3

r2(r − 4r ′|µn| ‖ �T (n)‖)‖F0‖r .

�

3.3. Far from resonance modes

Given σn, τn > 0, we call far from resonance modes with respect to ω(n) the Taylor–Fourier
modes with indices in

I−
n = {

(k, ν) ∈ I : |ω(n) · k| > σn‖k‖, ‖ν‖ < τn‖k‖} . (3.33)

The resonant modes are the ones in I +
n = I − I−

n . We also have the projections I+
n and I−

n over
the spaces of Hamiltonians by restricting the Taylor–Fourier modes to I +

n and I−
n , respectively.

The identity operator is I = I+
n + I−

n .
Moreover, take

An = sup
k�=0,|ω(n)·k|�σn‖k‖

‖ �T (n+1)−1
k‖

‖k‖ . (3.34)

3.4. Analyticity improvement

The next lemma means that every Hamiltonian in I+
n−1Aρn−1,r ∩ �γn

, i.e. a function on Dρn−1,r

into C, is mapped by Ln into A′
ρ ′

n,r
′ . The analyticity strip width is improved whenever An−1 is

small enough. Lemma 3.5 will ‘convert’ this improvement into a norm reduction.
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Lemma 3.4. If δ > 0, r < r ′,

ρ ′
n � ρn−1

An−1
− δ and τn � 2

log 2
(ρ ′

n + δ)‖ �T (n)−1‖, (3.35)

then L̃n as a map from (I+
n−1 − E)Aρn−1,r ∩ �γn

to (I − E)A′
ρ ′

n,r
′ is continuous with

‖L̃n‖ �
(

1 +
2π

δ
+

r

2r ′2 log 2

) |ηn|
µn

. (3.36)

Proof. Let F ∈ (I+
n−1 − E)Aρn−1,r ∩ �γn

,

E = {(0, ν): ν ∈ (N × {0})d} and Jn = {k ∈ Z
d : |k · ω(n)| � σn‖k‖}. (3.37)

Using lemma 3.2 and (3.29) we have

ψn = µn‖ �T (n)‖ r ′ + ‖bn(H)‖ � r

4
+

2

r
‖Q−1

n−1‖ ‖F0‖r <
r

2
. (3.38)

We want to find an upper bound on

‖F ◦ Ln(·, µn·)‖′
ρ ′

n,r
′

�
∑

I+
n−1−E

(
1 + 2π‖ �T (n)−1

k‖ + µn‖ �T (n)‖ ‖ν‖/r ′
)

|Fk,ν|ψ‖ν‖
n eρ ′

n‖ �T (n)−1
k‖

�
∑

I+
n−1−E

(
1 +

2π

δ
eδ‖ �T (n)−1

k‖ +
r

4r ′2ξn

eξn‖ν‖
)

|Fk,ν|ψ‖ν‖
n eρ ′

n‖ �T (n)−1
k‖, (3.39)

where we have used the inequality ζe−δ ζ � δ−1 with ζ � 0 and again a choice of µn verifying
(3.29). Here ξn = 1

2 log(r/ψn) > 1
2 log 2.

Consider separately the two cases corresponding to the definition of the resonance cone
I +
n−1. We deal first with the modes corresponding to k ∈ Jn−1 − {0}. By (3.34) and (3.35)

each one of these modes in (3.39) is bounded from above by(
1 +

2π

δ
+

r

2r ′2 log 2

)
r‖ν‖eρn−1‖k‖. (3.40)

Now, consider ‖ν‖ � τn‖k‖ with k �= 0, so that

‖ �T (n)−1
k‖ � τ−1

n ‖ �T (n)−1‖ ‖ν‖. (3.41)

These modes in (3.39) are estimated by(
1 +

2π

δ
+

r

4r ′2ξn

eξn‖ν‖
)(

r e−2ξn+(ρ ′
n+δ)‖ �T (n)−1‖/τn

)‖ν‖
�
(

1 +
2π

δ
+

r

2r ′2 log 2

)
r‖ν‖,

(3.42)

where we have used (3.35).
Finally, we get

‖F ◦ Ln(·, µn·)‖′
ρ ′

n,r
′ �

(
1 +

2π

δ
+

r

2r ′2 log 2

)
‖F‖ρn−1,r ,

and (3.36) follows from (3.23). �
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Let 0 < ρ ′′
n � ρ ′

n and the inclusion

In: A′
ρ ′

n,r
′ → A′

ρ ′′
n ,r ′ , H �→ H |Dρ ′′

n ,r ′ . (3.43)

The norm of the k �= 0 modes can be improved by the application of In.

Lemma 3.5. If φn � 1 and

0 < ρ ′′
n � ρ ′

n − log(φn), (3.44)

then

‖In(I − E)‖ � φ−1
n . (3.45)

The proof is immediate and will be omitted.

3.5. Elimination of far from resonance modes

The theorem below states the existence of a symplectomorphism isotopic to the identity that
cancels the far from resonance modes of a Hamiltonian close to the quadratic integrable
Hamiltonian

H 0
n : y �→ ω(n) · y + 1

2
�yQny. (3.46)

Given ρn, ν > 0, denote by Vε the open ball in A′
ρn+ν,r ′ centred at H 0

n with radius ε > 0.
We define also

εn = σ 2
n (min

{
1, ν

2π
, r ′ − r

}
)2

12(4‖ω(n)‖ + dσn)r ′(2π + 1)2(1 + 2π + τn+1
r ′ )2

(3.47)

and

ϕn = 1 +

√
3r ′ 4‖ω(n)‖ + dσn

εn

. (3.48)

Theorem 3.6. Let r < r ′ and σn > 2r ′‖Qn‖. Then there exist analytic maps G: Vεn
→ A2d

ρn,r

where G(H) is a symplectomorphism and U : Vεn
→ I+

nAρn,r given by U(H) = H ◦ G(H),
such that I−

n U(H) = 0 and

‖G(H) − Id‖′
ρn,r

� 1

εn

‖I
−
n H‖ρn,r ,

‖U(H) − H 0
n ‖ρn,r � ϕn‖H − H 0

n ‖′
ρn+ν,r ′ . (3.49)

Moreover, if H is real-analytic, then G(H) is real-analytic.

A proof of this theorem is included in section 5.

Lemma 3.7. In the conditions of theorem 3.6, if x ∈ Rd and H ∈ Vεn
, then

G(H ◦ Rx) = R−1
x ◦ G(H) ◦ Rx (3.50)

on Dρn,r .

Proof. If g = G(H) is a solution of I−
n H ◦ g = 0 in Dρn,r , then g̃ = R−1

x ◦ G(H) ◦ Rx solves
the same equation for H̃ = H ◦ Rx, i.e. I−H̃ ◦ g̃ = 0 in Dρn,r . �
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3.6. Convergence of renormalization

For a resonance set I +
n and µn > 0, the nth step renormalization operator is defined to be

Rn = Un ◦ In ◦ Ln ◦ Rn−1 and R0 = U0,

where Un is as in theorem 3.6 at the step n. Notice that if

H +(y) = ω · y + 1
2

�yQy + v · y,

then

Rn(H
+) = ω(n) · y + 1

2λnχn
�yP (n)Q �P (n)y

for every v ∈ Cd , where

χn =
n∏

i=1

µi. (3.51)

This means that the renormalizations eliminate the direction corresponding to linear terms in
y. From the previous sections the map Rn on its domain of validity is analytic by construction.
In addition, whenever a Hamiltonian H is real-analytic, the same is true for Rn(H).

Let r ′ > r > 0, ρ0 > 0 and fix a sequence σn < 1, n ∈ N and σ0 > 2r ′‖Q‖. To complete
the specification of the resonant modes and of εn in theorem 3.6, take τ0 = 1 and

τn = 2ρ0‖ �T (n)−1‖
Bn−1 log 2

(3.52)

according to lemma 3.4, with

Bn =
n∏

i=0

Ai. (3.53)

Notice that the Ans depend on σn.
Consider also the constants ν and δ as they appear in theorem 3.6 and lemma 3.4,

respectively.
We now define the non-increasing sequence �0 = 1,

�n = min

{
�n−1,

σ 2
n

(4r ′‖Q‖)2

n∏
i=1

26ζi

|ηi | ‖T (i)‖2‖ �T (i)‖2
,

ε3
n∏n

i=1 ‖T (i)−1‖3
,

n∏
i=1

min{|ηi |−3, |ηi |2}
224ζ 3

i ‖T (i)−1‖2‖ �T (i)−1‖6

}
� 1, (3.54)

with

ζn =
(

1 +
1

2r ′

)(
r ′

r

)3

ϕn‖ �T (n)‖3 > 1.

In order to use the results obtained earlier connected with the building blocks of the
renormalization operator and to get convergence of the renormalization (in the theorem below),
we choose

ρn = 1

Bn−1

[
ρ0 −

n−1∑
i=0

Bi log (φi+1) − (δ + ν)

n−1∑
i=0

Bi

]
, (3.55)

where

φn = max
{

1, 2
(

1 + 2π
δ

+ r

2r ′2 log 2

)
ϕn|ηn|�n−1

µn�n

}
� 1,

µn =
(

�n

28ζn max{1,|ηn|}�n−1

)1/2
� 1.

(3.56)
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Recall that φn is our choice for lemma 3.5. Moreover, our choice of µn implies that

µn � 1

24ζ
1/2
n

� 1

24

(
r

r ′‖ �T (n)‖
)3/2

� r

8r ′‖ �T (n)‖ , (3.57)

so lemma 3.3 holds.
To have ρn positive for all n we need to study the following function of ω ∈ Rd associated

to the choice of σn:

B(ω) =
+∞∑
i=0

Bi log (φi+1) + (δ + ν)

+∞∑
i=0

Bi. (3.58)

It is simple to see that B depends on the multidimensional continued fraction expansion of
ω through the matrices T (n) and the scalars ηn. The remaining dependences are on fixed
constants and on Q, but these turn out to be irrelevant as we will be uniquely interested in the
convergence of the series in (3.58). In this sense, we can look at B as only depending on the
arithmetics of ω. As we will see in the following part of this section, for diophantine vectors
ω we can find a sequence σn for which B(ω) converges.

Notice that if B(ω) converges, then Bn → 0 as n → +∞. Also, τn � B−1
n−1 → ∞ by

(3.52) and εn � τ−2
n → 0 by (3.47). Hence, �n � ε3

n → 0 by the third term in min{· · ·} of
(3.54).

We denote

Hn = Rn(H)

and associate the sequence H 0
n of quadratic integrable Hamiltonians given by (3.46), where

Qn is defined by (3.20).

Theorem 3.8. Suppose that det(Q) �= 0,

B(ω) < +∞, (3.59)

and ρ > B(ω) + ν. There exists c, K > 0 such that if H ∈ Aρ,r ′ and ‖H − H 0‖ρ,r ′ < c, then
H is in the domain of Rn and

‖Hn − H 0
n ‖ρn,r � K�n‖H − H 0‖ρ,r ′ , n ∈ N ∪ {0}. (3.60)

Proof. Let ρ0 = ρ − ν > B(ω). Hence, by the definition of ρn, there is R > 0 satisfying
ρn > RB−1

n−1 for all n ∈ N.
If c � ε0 we use theorem 3.6 to get R0(H) ∈ I+

0Aρ0,r with

‖H0 − H 0‖ρ0,r � K�0‖H − H 0‖ρ,r ′

for some K > 0. Take Q0 = Q.
Now, for n ∈ N assume that Hn−1 ∈ I+

n−1Aρn−1,r . Suppose that

‖Hn−1 − H 0
n−1‖ρn−1,r � K�n−1‖H − H 0‖ρ,r ′ ,

‖Qn−1‖ � ‖Q‖
n−1∏
i=1

3

2
µi |ηi | ‖T (i)‖ ‖ �T (i)‖,

‖Q−1
n−1‖ � ‖Q−1‖

n−1∏
i=1

2µ−1
i |ηi |−1‖T (i)−1‖ ‖ �T (i)−1‖.

(3.61)
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So, for c small enough, using the last term in (3.54) we get

‖Q−1
n−1‖ � �

1/2
n−1

�n−1

n−1∏
i=1

25ζ
1/2
i ‖T (i)−1‖ ‖ �T (i)−1‖ max

{
1

|ηi |1/2
,

1

|ηi |
}

� r2

32cK�n−1
. (3.62)

Thus, lemma 3.2 is valid and as a consequence ‖bn(Hn−1)‖ < r/8.
After performing the operators Ln and In, we want to estimate the norm of the resulting

Hamiltonians. The constant and non-constant Fourier modes are dealt with separately in

InLn(H) = H 0
n + L̂n(EHn−1) + InL̃n(I − E)(Hn−1). (3.63)

For the former we use lemma 3.3 and for the latter lemmas 3.4 and 3.5. So,

‖L̂n(EHn−1)‖′
r ′ � 27K

(
1 + 1

2r ′
) (

r ′
r

)3
µ2

n|ηn| ‖ �T (n)‖3�n−1‖H − H 0‖ρ,r ′

� K
2ϕn

�n‖H − H 0‖ρ,r ′ .
(3.64)

Furthermore, φn yields

‖InL̃n(I − E)(Hn−1)‖′
ρ ′′

n ,r ′ � K
(

1 + 2π
δ

+ r

2r ′2 log 2

)
µ−1

n φ−1
n |ηn|�n−1‖H − H 0‖ρ,r ′

� K
2ϕn

�n‖H − H 0‖ρ,r ′ .
(3.65)

Moreover, assuming c to be small enough, we estimate (3.20) using (3.27), ‖Qn−1‖−1 �
‖Q−1

n−1‖, (3.62) and the second inequality in (3.61) to obtain

‖Qn‖ � µn|ηn| ‖T (n)‖ ‖ �T (n)‖‖Qn−1‖(1 + 16r−2cK�n−1‖Qn−1‖−1)

� ‖Q‖
n∏

i=1

3

2
µi |ηi | ‖T (i)‖ ‖ �T (i)‖ � σn

4r ′ ,
(3.66)

where the last inequality comes from the second term in (3.54). By (3.26) and again (3.62),

‖Q−1
n ‖ � ‖T (n)−1‖ ‖ �T (n)−1‖‖Q−1

n−1‖
µn|ηn|(1−16r−2cK�n−1‖Q−1

n−1‖)

� ‖Q−1‖
n∏

i=1

2µ−1
i |ηi |−1‖T (i)−1‖ ‖ �T (i)−1‖.

(3.67)

The Hamiltonian InLn(Hn−1) is inside the domain of Un since for c small enough
ϕ−1

n c K�n < εn and ‖Qn‖ < σn/(2r ′). The result follows from (3.49). �

Remark 3.9. The above can be generalized for a small analyticity radius ρ by considering a
sufficiently large N and applying the above theorem to H̃ = UNLN · · · U1L1U0(H), where
H is close enough to H 0. We recover the large strip case since ρN is of the order of
B−1

N−1. It remains to check that ρN > B(ω(N)) + ν. This follows from the fact that
B(ω(N)) = B−1

N−1[B(ω) − BN(ω)] where BN(ω) is the sum of the first N terms of B(ω)

so that BN(ω) → B(ω) as N → +∞.

Lemma 3.10. If ω =
(

α

1

)
∈ Rd is diophantine, then (3.59) is verified.

Proof. To show (3.59) it is only necessary to check that we can find sequences
σn and tn for which the series

∑
Bn| log |ηn+1||,

∑
Bn log ‖T (n+1)‖,

∑
Bn log ‖T (n+1)−1‖,∑

Bn log ‖ω(n+1)‖,
∑

Bn| log σn+1| and
∑

Bn| log �n+1| converge.
Let us set, for each n ∈ N,

tn = (1 + ξ)n and σn = e−aδtn ,
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where positive constants ξ and a will be chosen in the following and δtn = tn − tn+1. We shall
assume that ξ is large enough that

ξ

(
d − a

1 + ξ

)
� log

c1c2

c6
. (3.68)

So, σn−1 exp(dδtn) � c1c2/c6 as in proposition 2.3. Hence,

An−1 � e−αδtn , (3.69)

with

α = d(ξ − β)

ξ(d + β)
−
(

d − a

1 + ξ

)
(3.70)

which is positive if a > d(1 + ξ)[1 − 1/(d + β)]. Thus,

Bn =
n∏

i=0

Ai � Cne−αtn+1 , (3.71)

where C is some positive constant. Clearly,
∑

Bn < ∞.
From (2.8) we have ‖ω(n)‖ � ‖M(n)‖ |γ (n)|−1. Thus, using (2.13) and (2.19) we have

‖ω(n)‖ � exp

[
dβ(1 + ξ)

ξ
δtn

]
. (3.72)

Now, using (2.9) and the bounds (2.19), (2.17) and (2.18) we get

‖T (n)‖ � exp

[
d(1 + ξ)(β + 1)

ξ(d + β)
δtn

]
,

‖T (n)−1‖ � exp

[
d(1 + ξ)(d − 1 + β)

ξ(d + β)
δtn

]
,

|ηn| � exp

[
d(1 + ξ)

ξ

(
d − 1

d + β
+ β

)
δtn

]
.

(3.73)

Finally,

log
n∏

i=1

‖T (i)‖, log
n∏

i=1

‖T (i)−1‖, | log
n∏

i=1

|ηi || � tn,

log
n∏

i=1

‖ω(i)‖, | log
n∏

i=1

σi |, | log
n∏

i=1

Bi−1| � tn,

(3.74)

so that | log �n| � tn.
Since Bn decays exponentially with tn+1 and log φn+1 grows at most linearly, the series

(3.59) converges. �

4. Construction of the invariant torus

Here we will always assume to be in the conditions of section 3.6. We use theorem 3.8 to
determine the existence of an ω-invariant torus for the flow of analytic Hamiltonians H close
enough to H 0 (theorem 1.1). This follows from the construction of an analytic conjugacy
between the linear flow on Td of rotation vector ω and an orbit of H .

Let the set � be given by

� = {H ∈ Aρ,r ′ : ‖H − H 0‖ρ,r ′ < c}, (4.1)
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which is contained in the domain of Rn for all n ∈ N ∪ {0}. Given H ∈ �, Hn ∈ I+
nAρn,r . It

is simple to check that

Hn = λn

χn

[(I − E0)(H ◦ g0 ◦ L
µ1
1 ◦ g1 ◦ · · · ◦ Lµn

n )] ◦ gn

= λn

χn

{
(I − E0)H ◦ g0 ◦ [P1(H) ◦ g1 ◦ P1(H)−1]◦

· · · ◦ [Pn−1(H) ◦ gn−1 ◦ Pn−1(H)−1] ◦ Pn(H)
} ◦ gn. (4.2)

Here, gk = Gk(Lk(Hk−1)) is given by theorem 3.6 at the kth step and

L
µk

k : (x, y) �→ (T (k)−1
x, �k(Hk−1)(y)), (4.3)

where �k(Hk−1)(y) = µk
�T (k)y +bk(Hk−1). In addition, we have the conformally symplectic

map

Pn(H) = L
µ1
1 · · · Lµn

n : (x, y) �→
(
P (n)−1

x, �1(H) · · · �n(Hn−1)(y)
)

, n � 1, (4.4)

and we set P0(H) = Id. Notice that

�1(H) · · · �n(Hn−1)(y) = χn
�P (n)y + vn(H), (4.5)

with

vn(H) = b1(H) +
n∑

i=2

χi−1
�P (i−1)bi(Hi−1).

For n � 1 define

an(H) = lim
m→+∞ �n(Hn−1) · · · �m(Hm−1)(0)

= bn(Hn−1) +
+∞∑

i=n+1

µn · · · µi−1
�T (n) · · · �T (i−1)bi(Hi−1) (4.6)

if it converges. If that is the case,

a(H) = a1(H) = lim
n→+∞ vn(H) (4.7)

and

a(H) − vn(H) = χn
�P (n)an+1(H). (4.8)

Lemma 4.1. The maps an: � → Br/2 are well defined and analytic, taking any real-analytic
H into Rd .

Proof. From lemma 3.2 we obtain ‖bk(Hk−1)‖ < r/8 for any k ∈ N. Thus, by (3.57),

µn · · · µi−1‖ �T (n) · · · �T (i−1)bi(Hi−1)‖ � r

8

( r

8r ′
)i−n

, (4.9)

where 1 � n � i − 1. Hence, (4.6) converges and each an(H) is well defined in Cd . In case
H is real, an(H) ∈ Rd . The maps H �→ an(H) are analytic since the convergence is uniform.
Moreover, (4.6) can be estimated using (4.9),

‖an(H)‖ � r

8
+

r

8

r
8r ′

1 − r
8r ′

<
r

2
.

�
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Lemma 4.2. There is an open ball B centred at H 0 in � such that, if H ∈ B, we can find
sequences Rn, rn > 0 satisfying: R−1 = ρ, r−1 = r ′,

Rn + 2πK�2/3
n ‖H − H 0‖ρ,r ′ � Rn−1 � ρn−1

‖P (n−1)‖ , (4.10)

rn + K�2/3
n ‖H − H 0‖ρ,r ′ � rn−1 � χn−1r

2‖ �P (n−1)−1‖
, (4.11)

n � 0, and

lim
n→+∞ R−1

n �2/3
n = 0. (4.12)

Proof. Let ρ∗ = min ρn. Since χn is decreasing and ‖P (n)‖ �
∏n

i=1 ‖T (n)‖ (similar relations
hold for the transpose and inverse matrices), it is enough to check (using the last term in (3.54))
that

�2/3
n � min

{
λnρ∗

n∏
i=1

‖T (i)‖−1, χn

n∏
i=1

‖ �T (i)−1‖−1

}
for some 0 < λ < 1 by taking Rn = c1λ

−n�
2/3
n and rn = c2�

2/3
n with small constants

c1, c2 > 0. Thus, the inequalities (4.10) and (4.11) hold whenever we take a sufficiently small
bound on ‖H − H 0‖ρ,r . The limit (4.12) is now immediate. �

Let the vertical translation

Vz: (x, y) �→ (x, y + z), (4.13)

for any z ∈ Cd . For a given H ∈ �, define the norm ‖X‖n = ‖X ◦ Va(H)‖Rn,rn
whenever

X ◦ Va(H) ∈ A2d
Rn,rn

.
Now, consider the isotopic to the identity analytic symplectomorphism

Wn(H) = Pn(H) ◦ Gn(Ln(Hn−1)) ◦ Pn(H)−1 (4.14)

on Pn(H)Dρn,r with n � 0 and H ∈ �. In particular, Wn(H
0) = Id. Notice that for H

real-analytic, Wn(H) is real-analytic.

Lemma 4.3. Wn is an analytic map on B such that, if H ∈ B,

Wn(H): Va(H)(Dρn,rn
) → Va(H)(Dρn−1,rn−1)

and there is K ′ > 0 verifying

‖Wn(H) − Id‖n � K ′�2/3
n ‖H − H 0‖ρ,r ′ . (4.15)

Proof. For H ∈ � and (x, y) ∈ DRn,rn
,

‖ImP (n)x‖ < ‖P (n)‖Rn/2π � ρn/2π,

‖�−1
n (Hn−1) · · · �−1

1 (H)(y + a(H))‖ = ‖χ−1
n

�P (n)−1
(y + a(H) − vn(H))‖

� χ−1
n ‖ �P (n)−1‖rn + ‖an+1(H)‖ < r. (4.16)

Therefore, Pn(H)−1 ◦ Va(H)(DRn,rn
) ⊂ Dρn,r . Moreover, using (3.49),

‖Wn(H) − Id‖n = ‖P̂n(H) ◦ [Gn(InLn(Hn−1)) − Id] ◦ Pn(H)−1 ◦ Va(H)‖Rn,rn

� ε−1
n ‖P̂n(H)‖ ‖InLn(Hn−1) − H 0

n ‖ρn,r ′

� K ′�2/3
n ‖H − H 0‖ρ,r ′ , (4.17)

where P̂n(H) corresponds to the linear part (x, y) �→ (P (n)−1
x, χn

�P (n)y) of Pn(H) which
has norm bounded by ‖P̂n(H)‖ � ‖P (n)−1‖ + χn‖ �P (n)‖.
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Now, for (x, y) ∈ DRn,rn
and H ∈ B,

‖π1ImWn(H) ◦ Va(H)(x, y)‖ � ‖Im(π1Wn(H) ◦ Va(H)(x, y) − x)‖ + ‖Imx‖
< ‖Wn(H) − Id‖n + Rn/2π < Rn−1/2π,

‖π2Wn(H) ◦ Va(H)(x, y) − a(H)‖ � ‖π2Wn(H) ◦ Va(H)(x, y) − y − a(H)‖ + ‖y‖
< ‖Wn(H) − Id‖n + rn < rn−1.

So, Wn(H): Va(H)(DRn,rn
) → Va(H)(DRn−1,rn−1). �

Define the analytic map �n on B satisfying �n(H): Va(H)(DRn,rn
) → Va(H)(Dρ,r ′),

�n(H) = W0(H) ◦ · · · ◦ Wn(H), (4.18)

with H ∈ B. We then rewrite (4.2) as

H ◦ �n(H) = χn

λn

Hn ◦ Pn(H)−1 + E(H), (4.19)

where E(H) represents a constant (irrelevant) term. Since each Wn(H) is symplectic, thus
�n(H) is symplectic and H ◦ �n(H) is canonically equivalent to the Hamiltonian Hn. In
particular, if Hn = H 0

n for some n, there is an ω-invariant torus in the phase space of Hn. We
are interested in the general case, Hn − H 0

n → 0 as n → +∞.

Lemma 4.4. There is c > 0 such that for H ∈ B

‖�n(H) − �n−1(H)‖n � c�2/3
n ‖H − H 0‖ρ,r ′ .

Proof. For each k = 0, · · · , n − 1, consider the transformations

Gk(z, H) = (Wk(H) − Id) ◦ (Id + Gk+1(z, H)) + Gk+1(z, H),

Gn(z, H) = z(Wn(H) − Id),

with (z, H) ∈ {z ∈ C: |z| < 1 + dn} × B, where we have c′ > 0 such that

dn = c′

�
2/3
n ‖H − H 0‖ρ,r ′

− 1 > 0.

If ‖Gk+1(z, H)‖n � (Rk − Rn)/2π, then Gk is well defined as an analytic map and

‖Gk(z, H)‖n � ‖Wk(H) − Id‖k + ‖Gk+1(z, H)‖n.

An inductive scheme shows that

‖Gn(z, H)‖n � (Rn−1 − Rn)/2π,

‖Gk(z, H)‖n �
n−1∑
i=k

‖Wi(H) − Id‖i + |z| ‖Wn(H) − Id‖n

� (Rk−1 − Rn)/2π.

By Cauchy’s formula

‖�n(H) − �n−1(H)‖n = ‖G0(1, H) − G0(0, H)‖n

=
∥∥∥∥ 1

2πi

∮
|z|=1+dn/2

G0(z, H)

z(z − 1)
dz

∥∥∥∥
n
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and

‖�n(H) − �n−1(H)‖n � 2

dn

sup
|z|=1+dn/2

‖G0(z, H)‖n

� �2/3
n ‖H − H 0‖ρ,r ′ .

�

Consider the Banach space C1
per(R

d , C2d) of C1 functions Zd -periodic, endowed with the
norm

‖f ‖C1 = max
k�1

max
x∈Rd

‖Dkf (x)‖.

Our goal is to find parametrizations of invariant tori of the type θ �→ (θ, a(H)) + f (θ).

Lemma 4.5. There exist C > 0, an open ball B ′ ⊂ B centred at H 0 and an analytic map
ϒ on B ′ such that, for every H ∈ B ′, ϒ(H) = limn→+∞ �n(H)|{y=a(H)} is an embedding
Rd → C2d , ϒ(H) − (Id, a(H)) ∈ C1

per(R
d , C2d) and

‖ϒ(H) − (Id, a(H))‖C1 � C‖H − H 0‖ρ,r ′ . (4.20)

If H ∈ B ′ is real-analytic, then ϒ(H): Rd → R2d .

Proof. For each H ∈ B, by the first inequality in (3.5),

‖[�n(H) − �n−1(H)](·, a(H))‖C1

� max
k�1

sup
x∈Dρn/2

‖Dk[�n(H)(x, a(H)) − �n−1(H)(x, a(H))]‖

� 4π

Rn

‖�n(H) − �n−1(H)‖n, (4.21)

which is estimated using (4.12). Hence, �n(H)(·, a(H))−(Id, a(H)) converges in the Banach
space C1

per(R
d , C2d), and (4.20) holds. The convergence of �n is uniform in B; thus ϒ is

analytic. If H is sufficiently close to H 0, ϒ(H) is in fact an injective immersion (embedding)
as the space of embeddings is closed for the C1 norm and ϒ(H) is close to (Id, a(H)).
Finally, for H real-analytic we have ϒ(H)(Rd) ⊂ R2d in view of the similar property for each
Wn(H). �

The Hamiltonian vector field of a Hamiltonian H is XH = J∇H , where J: (x, y) �→
(y, −x). The next lemma shows the invariance of the torus defined by ϒ(H) which corresponds
to the linear vector field θ̇ = ω.

Lemma 4.6. For H ∈ B ′, we have on Rd

XH ◦ ϒ(H) = D(ϒ(H)) ω. (4.22)

Proof. Since �n(H) is a symplectomorphism, we have for x ∈ Rd ,

Yn(x) = XH ◦ �n(H) ◦ Va(H)(x, 0) − D(�n(H)) ◦ Va(H)(x, 0) XH 0(x, 0)

= [D(�n(H)) ◦ Va(H) XH◦�n(H)◦Va(H)−H 0 ](x, 0). (4.23)

Hence,

‖Yn(x)‖ � ‖D(�n(H))(x, a(H))‖ ‖∇[H ◦ �n(H) ◦ Va(H) − H 0](x, 0)‖. (4.24)
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In order to estimate the above we first recall (4.19) to show that

∇[H ◦ �n(H) ◦ Va(H) − H 0](x, 0) = χn

λn

∇[(Hn − H 0
n ) ◦ Pn(H)−1 ◦ Va(H)](x, 0)

+
1

λnχn

�[a(H) − vn(H)]P (n)−1
Qn

�P (n)−1
. (4.25)

Notice that by induction we get

1

λnχn

P (n)−1
Qn

�P (n)−1 = Q +
n−1∑
i=0

1

λiχi

P (i)−1
D2F

(i)
0 (bi+1(Hi))

�P (i)−1
. (4.26)

Since
∑n−1

i=1 (χi |λi |)−1‖P (i)−1‖ ‖ �P (i)−1‖�i � 1 and by (4.6) and (4.8)

‖a(H) − vn(H)‖ � χn‖ �P (n)‖ ‖an+1(H)‖ � �2/3
n , (4.27)

the last term in (4.25) is estimated from above by �
2/3
n . Moreover, the first term in the rhs of

(4.25) is bounded times a constant by

1

|λn| ‖
�P (n)−1‖ ‖Hn − H 0

n ‖ρn,r � �2/3
n . (4.28)

Finally, from the convergence of �n and

‖D�n(H)(x, a(H))‖ � 1

Rn

‖�n(H)‖n � 1

Rn

, (4.29)

we find that ‖Yn(x)‖ converges uniformly to 0 as n → +∞ because of (4.12). �

Lemma 4.7. If H ∈ B ′ and x ∈ Rd , then

ϒ(H ◦ Rx) = R−1
x ◦ ϒ(H) ◦ R̂x, (4.30)

where R̂x: z �→ z + x is a translation on Cd .

Proof. For each n ∈ N, (3.12) implies that Pn(H ◦ Rz) = Pn(H) and we know that
Pn(H) ◦ R−1

P (n)z = R−1
z ◦ Pn(H), z ∈ Cd . So, from lemma 3.7,

Wn(H ◦ Rx) = Pn(H) ◦ Gn(LnRn−1(H ◦ Rx)) ◦ Pn(H)−1

= R−1
x ◦ Wn(H) ◦ Rx. (4.31)

Thus, �n(H ◦ Rx) = R−1
x ◦ �n(H) ◦ Rx and (4.30) follows using the convergence of �n. �

The flow generated by XH is denoted by φt
H taken at time t � 0. Hence,

φt
H 0 |Td×{0} = R̂ωt .

We prove below the existence of an invariant torus T for H close to H 0, i.e. an analytic
conjugacy between φt

H |T and R̂ωt .

Theorem 4.8. Let D ⊂ Rd be an open ball about the origin. If H ∈ Cω(Td ×D) is sufficiently
close to H 0, then there exists a Cω embedding γ : Td → Td × D such that

φt
H ◦ γ = γ ◦ R̂ωt , t � 0, (4.32)

and T = γ (Td)  Td is a submanifold homotopic to {y = 0}. Furthermore, the map H �→ γ

is analytic.
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Proof. The lift H̃ to Rd × D of H is assumed to have a unique analytic extension to Dρ,r ′ .
Consider the real-analytic Hamiltonian G = H̃ ∈ Aρ,r ′ . Suppose that G is close enough to
H 0 such that G ∈ B ′ and G ◦Rz ∈ B ′ for η > 0 and z ∈ Dη. Then, γ = ϒ(G)|[0,1)d , which is
C1 and homotopic to (Id, a(G)), verifies (4.32). This follows from (4.22) and the equivalent
equation

d

dt

∣∣∣
t=0

(φt
H ◦ γ ) = d

dt

∣∣∣
t=0

(γ ◦ R̂ωt ),

which we integrate for initial condition φ0
H = R̂0 = Id.

We now want to extend analytically γ to a complex neighbourhood of its domain. Take
γ̃ (z) = Rz ◦ ϒ(G ◦ Rz)(0), z ∈ Dη. The maps z �→ G ◦ Rz and H �→ ϒ(H) are analytic
and C1

per(R
d , C2d) � g �→ g(0) is bounded. As γ̃ : Dη → C2d involves their composition, it is

analytic and Zd -periodic. From (4.30), for any x ∈ Rd , we have

γ̃ (x) = ϒ(G) ◦ R̂x(0) = ϒ(G)(x) = γ (x).

Finally, since ϒ is analytic, the same is true for the map H �→ γ . �
As a quasiperiodic invariant torus T is always Lagrangian (cf [4]), we have now concluded

the proof of theorem 1.1.

5. Elimination of modes

Here we present a proof of theorem 3.6. It is similar to the related methods appearing in,
e.g. [7, 1]. As we have fixed n, we will not include it in our notations.

Let R = (R1, R2) and R′ = (R′
1, R

′
2) be such that R > R′ > 0 componentwise. We

will be interested in the set GR′ of analytic symplectomorphisms g: DR′ → DR satisfying
g − Id ∈ A2d

R′ and

‖g − Id‖R′ < δ = min{(R1 − R′
1)/2π, R2 − R′

2}.
We use the notation {·, ·} for the usual Poisson bracket associated to J: (x, y) �→ (y, −x). In
the following R − δ stands for R − δ(1, 1) and π2: (x, y) �→ y is the projection on the second
component. The lemma below constructs a symplectomorphism g generated by a function G

and gives several related estimates to be used later.

Lemma 5.1. Let 0 < ξ � 1
2 . If G ∈ A′

R′ and ‖G‖′
R′ < ξδ/(2π + 1), then there is a unique

analytic symplectomorphism g: DR′−2δ → C2d such that ‖g − Id‖R′−2δ < ξδ and

g = Id + J∇G ◦ ĝ, (5.1)

where ĝ(x, y) = (x, π2g(x, y)), (x, y) ∈ DR′−2δ . Moreover, for any H ∈ AR′

‖H ◦ g‖R′−2δ � ‖H‖R′ ,

‖H ◦ g − H‖R′−2δ � 2ξ‖H‖R′ ,

‖H ◦ g − H − {H, G}‖R′−2δ � 2ξ 2‖H‖R′ , (5.2)

and the maps G �→ g and G �→ H ◦ g are analytic.

Proof. Define the map T : g �→ Id + J∇G ◦ ĝ on the open ball B in A2d
R′−2δ centred at the

identity and with radius ξδ. It is simple to check that T (B) ⊂ B; in particular, a fixed point
T (g) = g ∈ B is symplectic. We now show that T is a contraction on B and thus its unique
fixed point is the map we are looking for. In fact, whenever g ∈ B we obtain

‖DT (g)‖ � ‖D∇G ◦ ĝ‖R′−2δ � ‖D∇G‖R′−δ

� 2π + 1

δ
‖∇G‖R′ � 2π + 1

δ
‖G‖′

R′ < ξ. (5.3)



2748 K Khanin et al

For the estimates in (5.2) (the first is now immediate) we introduce the differentiable
function

f : {z ∈ C: |z| < ζ } → AR′

z �→ H ◦ (Id + zJ∇G(Id + z(ĝ − Id))), (5.4)

where ζ = 1/ξ � 2. Cauchy’s integral formula yields that

‖H ◦ g − H‖R′−2δ = ‖f (1) − f (0)‖R′−2δ

� 1

2π

∮
|z|=ζ

‖f (z)‖R′−2δ

|z(z − 1)| dz

� 1

ζ − 1
sup
|z|=ζ

‖f (z)‖R′−2δ � 2ξ‖H‖R′ (5.5)

and

‖H ◦ g − H − {H, G}‖R′−2δ = ‖f (1) − f (0) − f ′(0)‖R′−2δ

� 1

2π

∮
|z|=ζ

‖f (z)‖R′−2δ

|z2(z − 1)| dz

� 1

ζ(ζ − 1)
sup
|z|=ζ

‖f (z)‖R′−2δ � 2ξ 2‖H‖R′ . (5.6)

By the implicit function theorem the maps G �→ g and G �→ H ◦ g are analytic. �

Lemma 5.2. Let σ > 2R2‖Q‖, ε′ > 0 and H ∈ A′
R such that

‖H − H 0‖R < ε′ � σδ

(2π + 1)[1 + 2π + (τ + 1)/R2]
. (5.7)

Then there is G ∈ I−A′
R′ such that

I
−(H + {H, G}) = 0 and ‖G‖′

R′ � δ

(2π + 1)ε′ ‖I
−H‖R′ . (5.8)

Moreover, the map H �→ G is analytic.

Proof. Consider the linear operator associated to H :

F : I
−A′

R′ → I
−AR′ , K �→ I

−{H, K}. (5.9)

It is well defined since

‖I
−{H, K}‖R′ � ‖∇H‖R′ ‖∇K‖R′

� ‖H‖′
R′ ‖K‖′

R′ .

We will show that F−1: I−AR′ → I−A′
R′ is bounded and

‖F−1‖ <
1

πR2σ
(2π+1)R2+τ+1 − 2 2π+1

δ
ε′ � δ

(2π + 1)ε′ . (5.10)

A solution of (5.8) is simply given by G = F−1(−I−H). Therefore, ‖G‖′
R′ �

‖F−1‖ ‖I−H‖R′ .
We start by decomposing any Hamiltonian H = H 0 + F as

H(x, y) =
∑

k

Hk(y) e2π ik·x with Hk(y) =
∑

ν

Hk,νyν .
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Write D0 = ∇2H
0 · ∇1, with ∇1 and ∇2 standing for the derivatives with respect to x and y.

The definition of F in (5.9) yields

F(K) = I
−(F̂ − D0) K = − (

I − I
−F̂D−1

0

)
D0K,

where F̂ (K) = {F, K}. If the inverse of F exists it is given by

F−1 = −D−1
0

(
I − I

−F̂D−1
0

)−1
. (5.11)

The map D−1
0 : I−AR′ → I−A′

R′ is linear and given by

D−1
0 W(x, y) =

∑
k∈Zd−{0}

Wk(y)
2π i(k · ∇2H 0(y))

e2π ik·x, W ∈ I
−AR′ .

For each k ∈ I−, using (3.33) and ‖Q‖ < σ/(2R2) thus |k · Qy/k · ω| < 1/2,

Wk(y)

k · ω
(

1 + k·Qy
k·ω

) = Wk(y)
k · ω

∑
n�0

(
−k · Qy

k · ω

)n

, (5.12)

we get the estimate∥∥∥∥ Wk

k · ∇2H 0

∥∥∥∥
R2

�
∑
n�0

∑
ν

|Wk,ν| R‖ν‖
2 ‖Q‖nRn

2

σn+1‖k‖

<
∑
n�0

∑
ν

|Wk,ν| R‖ν‖
2

σ‖k‖
(

1

2

)n

= 2

σ‖k‖‖Wk‖R2 . (5.13)

Similarly, we find the bound∥∥∥∥ ∇2Wk

k · ∇2H 0

∥∥∥∥
R2

�
∑

ν

2‖ν‖ |Wk,ν|R‖ν‖−1
2

σ‖k‖ <
2τ

σR2
‖Wk‖R2 . (5.14)

Finally, ∥∥∥∥ WkQk
(k · ∇2H 0)2

∥∥∥∥
R2

<
2

σR2‖k‖‖Wk‖R2 . (5.15)

It is now immediate to see that

‖D−1
0 W‖R′ � 2

2πσ
‖W‖R′ and ‖∇1(D

−1
0 W)‖R′ � 2

σ
‖W‖R′ .

Moreover,

∇2

(
Wk(y)

k · ∇2H 0(y)

)
= ∇2Wk(y)

k · ∇2H 0(y)
− Wk(y)Qk

(k · ∇2H 0(y))2
,

which implies

‖∇2(D
−1
0 W)‖R′ <

τ + 1

πσR2
‖W‖R′ . (5.16)

Hence,

‖D−1
0 ‖ <

2

σ

(
1 +

1

2π
+

τ + 1

2πR2

)
.

As F̂ : I−A′
R′ → AR′ with ‖F̂‖ � 2 ‖∇F‖R′ � 2 2π+1

δ
‖F‖R (by Cauchy’s estimate),

‖I
−F̂ D−1

0 ‖ <
4

σ

(
1 +

1

2π
+

τ + 1

2πR2

)
‖∇F‖R′ < 1
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and ∥∥∥(I − I
−F̂ D−1

0

)−1
∥∥∥ <

[
1 − 4

σ

(
1 +

1

2π
+

τ + 1

2πR2

)
‖∇F‖R′

]−1

.

Thus F−1 exists given by (5.11) and the estimate (5.10) on its norm follows immediately. �

Consider the pairs R = (ρn + ν, r ′) and R′ = (ρn, r), σ > 2r ′‖Q‖ and H0 = H as given
in theorem 3.6. We are going to iterate the procedure indicated in the previous lemmas. Let a
sequence of Hamiltonians be given by

Hk = Hk−1 ◦ gk, k ∈ N,

where Gk and gk are determined for Hk−1 by lemmas 5.2 and 5.1, respectively. In addition,
denote by

g(k) = g1 ◦ · · · ◦ gk (5.17)

the composition of all symplectomorphisms up to the kth-step so that Hk = H ◦ g(k). In order
to determine the right domains of Hk , Gk and gk , define the sequences

Rk = Rk−1 − 4δk = R − 4
k∑

i=1

δi, (5.18)

with R0 = R and

δk = 1

2k+2
min

{
1,

ν

2π
, r ′ − r

}
� 1

2k
. (5.19)

So, limn→+∞ Rk � R′ componentwise. From now on, assume that

ε′ = min

{
1

2
‖H 0‖R,

σδ1

(2π + 1)(1 + 2π + τ+1
r ′ )

}
. (5.20)

Lemma 5.3. If for every k ∈ N, ‖I−Hk−1‖Rk−1 � ε′/2 and

‖Gk‖′
Rk−1−δk

<
δk

(2π + 1)ε′ ‖I
−Hk−1‖Rk−1 ,

then gk(DRk
) ⊂ DRk−1 and

‖g(k) − Id‖Rk
�

k∑
i=1

δi

ε′ ‖I
−Hi−1‖Ri−1 ,

‖g(k) − g(k−1)‖Rk
� 1

ε′ ‖I
−Hk−1‖Rk−1 . (5.21)

Proof. Recall lemma 5.1 for ξ = ‖I−Hk−1‖Rk−1/ε
′ and check that

‖gk − Id‖Rk
� ‖gk − Id‖Rk−1−3δk

<
δk

ε′ ‖I
−Hk−1‖Rk−1

and Rk + δk < Rk−1 componentwise. Now,

g(k) − Id =
k−1∑
i=1

(gi − Id) ◦ gi+1 ◦ · · · ◦ gk + gk − Id. (5.22)
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Thus,

‖g(k) − Id‖Rk
�

k∑
i=1

‖gi − Id‖Ri
�

k∑
i=1

δi

ε′ ‖I
−Hi−1‖Ri−1 . (5.23)

Furthermore, as

g(k) − g(k−1) = (g(k−1) − Id) ◦ gk − (g(k−1) − Id) + (gk − Id), (5.24)

we get

‖g(k) − g(k−1)‖Rk
� (‖Dg(k−1) − I‖Rk

+ 1) ‖gk − Id‖Rk

� δk

ε′ ‖I
−Hk−1‖Rk−1

(
2π + 1

4δk

k−1∑
i=1

δi

ε′ ‖I
−Hi−1‖Ri−1 + 1

)

� 1

ε′ ‖I
−Hk−1‖Rk−1 . (5.25)

�

Notice that since ε′ � 1
2‖H 0‖R , we have

ε′ � ‖H 0‖R − ε′ � ‖H‖R � ‖H 0‖R + ε′ (5.26)

and also

1
2‖H 0‖R � ‖H‖R � 3

2‖H 0‖R. (5.27)

Lemma 5.4. For any k ∈ N, if ‖I−H‖R � ε′2/(8‖H‖R), then

‖I
−Hk‖Rk

�
(

4‖H‖R

ε′2

)2k−1

‖I
−H‖2k

R � ε′

2
, (5.28)

‖Hk − Hk−1‖Rk
� 4‖H‖R

ε′ ‖I
−Hk−1‖Rk−1 , (5.29)

‖Hk‖Rk
� 2‖H‖R. (5.30)

Proof. We will prove the above inequalities by induction. The generating Hamiltonian
G1 given by lemma 5.2 and the symplectomorphism g1 by lemma 5.1 satisfy ‖G1‖′

R0−δ1
�

δ1‖I−H‖/[(2π + 1)ε′], ‖g1 − Id‖R0−3δ1 < ‖I−H‖Rδ1/ε
′ and I−H1 = I−H ◦ g1 − I−(H +

{H, G1}). Hence,

‖I
−H1‖R1 � ‖H ◦ g1 − H − {H, G1}‖R1 � 2

(‖I−H‖R

ε′

)2

‖H‖R (5.31)

and

‖H1 − H‖R1 � ‖∇H‖R1‖g1 − Id‖R1 � 2π + 1

4ε′ ‖I
−H‖R‖H‖R � 2

ε′ ‖I
−H‖R‖H‖R. (5.32)

Thus, equations (5.28) and (5.29) are valid for k = 1 and so is (5.30) because ‖H1‖R1 �
‖H1 − H‖R1 + ‖H‖R .

Now, assume that the inequalities are true for k. Under these conditions, lemma 5.2
guarantees the existence of Gk+1 so that

‖Gk+1‖′
Rk+1

� δk+1

(2π + 1)ε′ ‖I
−Hk‖Rk

(5.33)
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and lemma 5.1 yields gk+1. Therefore, I−Hk+1 = I−Hk ◦ gk+1 − I−(Hk + {Hk, Gk+1}) and

‖I
−Hk+1‖Rk+1 � ‖Hk ◦ gk+1 − Hk − {Hk, Gk+1}‖Rk+1

� 2

(‖I−Hk‖Rk

ε′

)2

‖Hk‖Rk

�
(

4‖H‖R

ε′2

)2k+1−1

‖I
−H‖2k+1

R . (5.34)

Similarly,

‖Hk+1 − Hk‖Rk+1 � ‖∇Hk‖Rk+1‖gk+1 − Id‖Rk+1

� 2π + 1

4δk+1ε′ ‖I
−Hk‖Rk

δk+1‖Hk‖Rk

� 4

ε′ ‖I
−Hk‖Rk

‖H‖R. (5.35)

Finally, making use of the above inequality,

‖Hk+1‖Rk+1 � ‖H‖R +
k+1∑
i=1

‖Hi − Hi−1‖Rk+1

� ‖H‖R +
4‖H‖R

ε′

k+1∑
i=1

‖I
−Hi−1‖Ri−1

� ‖H‖R + ‖H‖R

k+1∑
i=1

(
4‖H‖R‖I−H‖R

ε′2

)2i−1

�
(

1 +
k+1∑
i=1

1

22i−1

)
‖H‖R < 2‖H‖R. (5.36)

�

Theorem 3.6 will now be a consequence of the result below noticing that ‖H 0‖R �
R2‖ω‖ + (dR2

2/2)‖Q‖ � R2(‖ω‖ + dσ/4).

Theorem 5.5. If

‖H − H 0‖R < ε = ε′2

12‖H 0‖R

� ε′2

8‖H‖R

, (5.37)

then there exists g = limk→+∞ g(k) ∈ GR′ such that I−H ◦ g = 0 on DR′ . Furthermore, the
maps G: H �→ g and U : H �→ H ◦ g are analytic and

‖g − Id‖R′ � 1

ε
‖I

−H‖R, (5.38)

‖H ◦ g − H 0‖R′ �
(

1 +

√
12‖H 0‖R

ε

)
‖H − H 0‖R. (5.39)

Proof. Lemmas 5.3 and 5.4 imply that the sequence g(k) converges to a map g: DR′ → DR

which is analytic and symplectic, and H∞ = limk→+∞ Hk = H ◦ g. Moreover, I−H ◦ g =
I−H∞ = 0. Since the convergence is uniform, the maps H �→ g and H �→ H ◦g are analytic.
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Notice that
+∞∑
i=1

(
4‖H‖R‖I−H‖R

ε′2

)2i−1

� 4‖H‖R‖I−H‖R

ε′2 +
+∞∑
i=1

(
4‖H‖R‖I−H‖R

ε′2

)2i

�
(

1 +
16‖H‖R

3ε′2 ‖I
−H‖R

)
4‖H‖R

ε′2 ‖I
−H‖R

� 20‖H‖R

3ε′2 ‖I
−H‖R � 1

ε
‖I

−H‖R. (5.40)

The inequality in (5.38) follows by taking the limit k → +∞ in (5.21). That is,

‖g − Id‖R′ �
+∞∑
i=1

δi

ε′ ‖I
−Hi−1‖Ri−1 � 1

ε
‖I

−H‖R. (5.41)

Now,

‖H∞ − H 0‖Rk
� ‖H − H 0‖R +

+∞∑
i=1

‖Hi − Hi−1‖Ri

�
(

1 +

√
12‖H 0‖R

ε

)
‖H − H 0‖R,

where we have used lemma 5.4 and the fact that ‖I−H‖R � ‖H − H 0‖R . �
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