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Abstract: Melvin models with irrational twist parameter provide an interesting exam-
ple of conformal field theories with non-compact target space, and localized states which
are arbitrarily close to being delocalized. We study the torus partition sum of these mod-
els, focusing on the properties of the regularized dimension of the space of localized
states. We show that its behavior is related to interesting arithmetic properties of the twist
parameter γ , such as the Lyapunov exponent. Moreover, for γ in a set of measure one
the regularized dimension is in fact not a well-defined number but must be considered
as a random variable in a probability distribution.

1. Introduction

Two dimensional conformal field theories (CFT’s) corresponding to defects embedded
in non-compact target spaces have many applications in string theory and are interesting
in their own right [1, 2].

As in scattering problems in quantum mechanics, the eigenstates of the Hamilto-
nian in such theories split into two classes. One consists of delta-function normalizable
scattering states, which can propagate in the whole non-compact space. The other corre-
sponds to normalizable states localized near the defect. In order to study the defect, one
is particularly interested in the localized states and their interactions with the scattering
states.

An example that has received some attention in recent years is orbifolds of flat non-
compact space. In this case, the delocalized (scattering) states belong to the untwisted
sector of the orbifold, while the localized ones are twisted sector states. For orbifolds
by a finite group, the spectrum of localized states is discrete, with finite gaps between
states. By contrast, orbifolds by infinite groups can have discrete but dense spectra of
states. The latter case is particularly interesting since there is then no sharp distinction
between localized and delocalized states.
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More generally, while orbifolds by finite groups are well-studied, orbifolds by infinite
groups introduce many new features, and have not been well-studied (some work has
been done on time-dependent orbifolds; see [3] for a review). A better understanding of
general CFT orbifolds by infinite groups might provide insights into string cosmology,
the AdS/CFT correspondence, and noncommutative geometry [4].

In this note we will study an orbifold of R × C by the group Z, known as the Mel-
vin model, or the twisted circle. These models were introduced and studied in [5–10].
For further background on the Melvin model see [11, 2] and references therein. We
will see that as we vary the orbifold twist parameter, the model exhibits some unusual
behavior, including divergences associated with a sum over almost delocalized twisted
sector states. These divergences can be quantified using some results from the theory of
Diophantine approximation. For background on Diophantine approximation see, e.g.,
[12–16].

The Melvin CFT is the orbifold

(R × C)/Z, (1.1)

where the generator g, of the group Z acts as

y → y + 2πR,

z → e2πiγ z (1.2)

for (y, z) ∈ R ×C. When γ is rational, e.g. γ = 1/n, one can think of the orbifold (1.2)
as a Zn orbifold of S1 × C. For irrational γ , it is not clear apriori whether (1.1) makes
sense as a CFT (and string theory) background. One of our motivations below will be
to explore this issue, by studying the torus partition sum of the theory. We will see that
for irrational γ the partition sum is very sensitive to the number theoretic properties of
γ (physical effects related to the arithmetic of irrational angles have appeared in some
other recent investigations in string theory; see e.g. [17–19]).

We will mostly focus on the CFT (R × C)/Z. In string theory on R1,6 × (R × C)/Z
the consistency requirements for the existence of the theory are more stringent, and it is
possible that the theory does not exist for irrational γ .

Although the orbifold (1.2) does not have fixed points, one can think of the origin of
the z-plane as the location of a defect, near which the twisted states of the orbifold are
localized. Indeed, consider a low lying state in the w-twisted sector. It winds w times
around the circle R/2πRZ labelled by y. Its endpoints in the z-plane are separated by
the angle 2π‖wγ ‖, where, for a real number x, ‖x‖ denotes the distance to the nearest
integer.1

A classical string placed a distance r from the origin has energy

α′2M2(r) = (Rw)2 + (r‖wγ ‖)2 . (1.3)

When ‖wγ ‖ �= 0, such winding strings are localized near the origin – their wavefunc-
tions fall off exponentially as r → ∞. The radial size of such w-twisted strings goes like
1/‖wγ ‖. In fact, we see from (1.3) that strings stretched in the angular direction of the
z-plane behave as if their effective tension is proportional to ‖wγ ‖; this will be important
for our later discussion. After quantization, the reduced string tension is reflected in the
presence of twisted oscillators for the worldsheet superfield z with moding ‖wγ ‖.

1 Thus, defining the fractional part of x, {x} = x − [x], one has ‖x‖ = min({x}, 1 − {x}).
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For rational γ , the radial size 1/‖wγ ‖ is bounded from above in the twisted sectors.
Thus, there is a clear distinction between localized and delocalized sectors. When γ is
irrational there are twisted sectors that are arbitrarily close to being delocalized, since
‖wγ ‖ is not bounded from below.

To study the theory for irrational γ , we would like to analyze the partition sum
of the CFT (1.1) on a torus with modulus q = e2πiτ ; this corresponds to the trace of
qL0−c/24q̄L̄0−c/24 over the eigenmodes of (L0, L̄0). For non-compact orbifolds, the trace
over the untwisted sector is divergent – it is proportional to the volume of the target space.
Sometimes, it is possible to regulate similar volume divergences by compactifying the
space, but here this is not possible without breaking conformal invariance.

In [20] it was proposed, in a related context, to restrict the trace in the torus partition
sum to the localized states, i.e. to the twisted sectors of the orbifold. This eliminates the
usual volume divergence from the untwisted sector but, as we will see, leaves in some
cases analogous divergences from “almost untwisted” sectors.

The partition sum of the localized states is given by

Zloc(τ ; γ ) := TrHlocq
L0−c/24q̄L̄0−c/24, (1.4)

where Hloc is a sum over twisted sectors

Hloc(γ ) := ⊕‖wγ ‖�=0Hw . (1.5)

The partition sum Zloc(τ ; γ ) is not modular invariant. It transforms under τ → −1/τ

to the trace over the untwisted Hilbert space with a certain projection operator inserted.
This is analogous to what happens for D-branes: the annulus amplitude, which can be
thought of as a trace over open string states whose ends lie on the D-brane, is related by a
modular transformation to a sum over closed strings that can be emitted by the D-brane.

By analogy to the D-brane case, it was proposed in [20] to study the regularized
dimension of the space of localized states, which is given by (1.4) in the limit2 q → 1.
For non-compact orbifolds by finite groups one finds in this limit

Zloc(τ → 0; γ ) ∼ gcl(γ )e
πc
6τ2 . (1.6)

The leading exponential term in (1.6) is universal – it only depends on the central charge
(or dimension of space). Thus, one can think of the quantity gcl as a measure of the den-
sity of localized states. Some properties of gcl for finite orbifold groups were described
in [20].

As we will see, in the irrational Melvin case the coefficient of the exponential in (1.6)
behaves in an unusual way and does not have a good limit as τ2 → 0. First, it diverges
like τ

−b(γ )
2 , with some constant b(γ ) ≥ 1/2. Moreover - and somewhat surprisingly -

the coefficient of this divergence, while it is order 1, does not have a well-defined limit
as τ2 → 0 but varies as a random variable in a probability distribution. We explain this
point, which is somewhat novel in conformal field theory, in Sects. 3.2, 3.3 below. A
rigorous account is given in the appendix. One nice aspect of the discussion is that the
behavior of the regularized dimension is related to the behavior of geodesics on a certain
modular curve.

The regularized dimension of the space of localized states (1.6) is analogous to a
similar regularized dimension which proved useful in RCFT [21]. The D-brane analog
of gcl is the product of the tensions of the D-branes on which the open strings end (see,

2 We set τ1 = 0, such that q = e−2πτ2 , and take τ2 → 0.
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e.g., [22]). Note also that in models with spacetime fermions, the trace in (1.4) is usu-
ally taken to include a factor of (−)F , such that spacetime fermions contribute with a
minus sign, and there are usually large cancellations between bosons and fermions. For
the purpose of estimating the high energy density of states, we should only sum over
spacetime bosons (or over bosons plus fermions); see e.g. [23, 24] for a discussion of
the relevant issues.

In the remainder of this note we will study the behavior of the torus partition sum,
and in particular of gcl (1.6), for irrational Melvin models. The main results are:

(1) When the twist γ of the Melvin model is a Liouville number of a special kind, the
one-loop partition function for bosons and fermions separately diverges for fixed
τ , although the string theory partition sum ZB − ZF is finite. For such twists it is
not clear that the Melvin conformal field theory makes sense. For γ of Diophantine
type this pathology is absent.

(2) The standard definition (1.6) of the regularized dimension determines not a number,
but a random variable in a probability distribution. This is explained heuristically in
Sects. 3.2 and 3.3. A rigorous discussion is given in the appendix.

(3) We can use the continued fraction approximations to γ to define a modular invariant
regulator in the case of irrational twists. We define a degree of delocalization and
show that it is related to the Lyapunov exponent of γ .

2. Torus Partition Sum

Using the definition of the Melvin CFT (1.1), (1.2), one can write the torus partition sum
of the model. In the sector twisted by gs , s ∈ Z (s �= 0), one has: 3

TrHgs g
tqL0−c/24q̄L̄0−c/24

=vol(R)

∣
∣
∣
∣

ϑ
[

ε2
ε1

]

(0|τ)

η3

∣
∣
∣
∣

∫ +∞

−∞
dp

2π
q

α′
4 (p+sR/α′)2

q̄
α′
4 (p−sR/α′)2

e2πi(pR)t

∣
∣
∣
∣

ϑ
[

ε2+sγ
ε1+tγ

]

(0|τ)

ϑ
[ 1

2 +sγ
1
2 +tγ

]

(0|τ)

∣
∣
∣
∣

2

.

(2.1)

The |ϑ/η3| prefactor is the contribution of the (bosonic and fermionic) oscillators on R.
ε1, ε2 = 0, 1

2 label the spin structure of the fermions. The final ratio of theta functions
is the partition function of the N = 2 superfield twisted by gs and projected by gt . Note
that it only depends on the fractional parts {sγ }, {tγ }.

In the orbifold theory we must sum over gt , t ∈ Z, to project onto invariant states,
and divide by the order of the group Z. We interpret

vol(R)/|Z| = 2πR .

3 Our convention for theta functions is

ϑ
[ θ
φ

]

(0|τ)

η
= e2πiθφq( θ2

2 − 1
24 )

∞
∏

n=1

(

1 + e2πiφqn− 1
2 +θ

) (

1 + e−2πiφqn− 1
2 −θ

)

,

where η is the Dedekind eta function.
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There is no factor of the volume of C because we are in a twisted sector. The net result
is that the trace in the gs twisted sector in the orbifold theory is

TrHgs q
L0−c/24q̄L̄0−c/24

= 2πR

∣
∣
∣
∣
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ε2
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∣
∣
∣
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∣
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2

.

(2.2)

In order to evaluate the τ → 0 asymptotics it is convenient to do the Gaussian integral
over p to get

√

R2

α′τ2

∣
∣
∣
∣

ϑ
[

ε2
ε1

]

(0|τ)

η3

∣
∣
∣
∣

∑

t∈Z

e
− πR2

α′
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∣
∣
∣
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[
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∣
∣
∣
∣

2

. (2.3)

Next we have to sum over the different twisted sectors and spin structures. The precise
details of the sum depend on the particular theory – CFT on the orbifold, type 0 or type II
string theory on R1,6 times the orbifold, etc.; see e.g. [25] for a discussion. The different
theories behave in a similar way as far as our analysis is concerned. To be concrete,
consider type IIB string theory on R1,1 × T 5 times the orbifold. Here, T 5 is a five-torus
of volume V5; the compactification is convenient for studying the τ2 → 0 limit of the
partition sum.

The partition function for the twisted (NS,NS) sectors is

Zloc = V5Z


(2π
√

α′τ2)5

√

R2

α′τ2
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(2.4)

Z
 is a Siegel-Narain theta function of signature (5, 5) corresponding toT 5.The behavior
of the partition sum in the limit (1.6) does not depend on the details of the compactifi-
cation.

To analyze the τ → 0 asymptotics of (2.3) we need the following asymptotics for
τ = iβ → 0, with β real:

|η(τ)| → 1√
β

e
− 2π

24β . (2.5)

Similarly,

ϑ
[ θ

φ

]

(0|τ) →







β−1/2e2πiθ q̃
1
2 ‖φ‖2

, if 1
2 < φ < 1,

β−1/2(1 + e2πiθ )q̃
1
2 ‖φ‖2

, if φ = 1
2 ,

β−1/2q̃
1
2 ‖φ‖2

, if 0 ≤ φ < 1
2 ,

(2.6)

where q̃ = exp(−2π/β). Using these asymptotic formulae one can check that the leading
behavior arises from ε1 = t = 0 in (2.3),(2.4). One finds that
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Zloc ∼ 1

16

√

R2τ2

α′ e
2π
τ2

∞
∑

‖sγ ‖�=0

e
− πR2τ2

α′ s2 1

(sin πsγ )2 . (2.7)

Before discussing the mathematical properties of (2.7) let us interpret the crucial factor
1/(sin πsγ )2 in (2.7). As mentioned in the discussion following (1.3), twisted sectors
with ‖sγ ‖ << 1 give rise to nearly delocalized states whose radial size scales like
1/‖sγ ‖. This is reflected in the spectrum of L0 in the following way. In the s-twisted
sector, all states wind s times around the y circle, and thus have a large (for large s)
ground state energy, of order Rs (or L0 ∼ (Rs)2, see (1.3)). This gives the exponential
prefactor in the sum (2.7). On top of this ground state energy, when ‖sγ ‖ is small, one
finds a narrowly-spaced spectrum of states, associated with the twisted oscillators of the
superfield z. This gives the inverse sine factor in (2.7). Thus, we see that this factor is
directly related to the spatial extent of the twisted states.

If γ is rational, γ = p/q in lowest terms,4 (2.7) has a smooth τ2 → 0 limit. The
limit is easily evaluated by setting s = q� + j , 0 ≤ j < q − 1, � ∈ Z to get

Zloc ∼ e2π/τ2
1

16

√

R2τ2

α′

q−1
∑

j=1

∑

�∈Z

e
− πR2q2τ2

α′ (�+j/q)2 1

(2 sin πpj/q)2 . (2.8)

Taking the τ2 → 0 limit we reproduce the familiar expression for the C/Zq orbifold
[20]:

dim Hloc(γ = p/q) = 1

16q

q−1
∑

j=1

1

(sin πpj/q)2 . (2.9)

The trigonometric sum is easily evaluated [20],

dim Hloc(γ = p/q) = 1

48

(

q − 1

q

)

. (2.10)

We see that for rational γ , the Melvin model is closely related to the corresponding C/Zq

orbifold. Note that the result only depends on q and hence is a highly erratic function of
γ ∈ Q. This is the first indication that we are dealing with delicate functions of γ .

3. Comments on the Sum in the Case of Irrational γ

Now we turn to the case of γ irrational. Stripping the universal exponential in (1.6) from
(2.7), we see that to compute gcl we need to evaluate

g(y; γ ) := √
y

∞
∑

s �=0

e−πys2 1

sin2 πsγ
(3.1)

in the limit y → 0 (here y = τ2R
2/α′).

First, note that it is not obvious that the sum converges for finite y (or τ2). Indeed,
we will see in Sect. 4 that for certain transcendental numbers it diverges. However, for

4 Here q is an integer, not to be confused with the modular parameter q = e−2πτ2 .
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a “large” class of irrational numbers, including all algebraic numbers, it does converge.
Recall the standard
Definition. An irrational number is of Diophantine type (K, σ) if for all q ≥ 1,

σq(γ ) := inf1≤s≤q‖sγ ‖ ≥ K

q1+σ
. (3.2)

We denote the set of numbers of Diophantine type (K, σ) by D(K, σ), and we also
denote

D(σ ) := ∪K>0D(K, σ) . (3.3)

If γ is of Diophantine type (K, σ) then g(y; γ ) exists for all positive y. To show this
we use

2‖z‖ ≤ | sin πz| < π‖z‖ , (3.4)

(the best estimate valid for all real, non-integer z) to put upper and lower bounds on
g(y; γ ):

∑

s �=0

1

π2‖sγ ‖2 e−πys2
<
∑

s �=0

e−πys2 1

sin2 πsγ
<
∑

s �=0

1

4‖sγ ‖2 e−πys2
. (3.5)

If γ is of type (K, σ) then

1

‖sγ ‖ ≤ s1+σ /K, (3.6)

and hence by (3.5) the series is bounded above by a convergent sum.
Some interesting facts, which can be found in [12–16] are, first, that the set D(σ ) is

invariant under SL(2, Z) (acting via fractional linear transformations on the elements
of D(σ )). Second, a theorem of Roth says that if γ is algebraic of degree ≥ 2 then it is
of type (K, σ) for all σ > 0 and some K . 5

Diophantine approximation can give us some idea of what the asymptotics of g(y; γ )

might be like. If there are many very good rational approximants to γ then sin πsγ is
“often” close to zero, and we expect a divergence as y → 0. If good rational approx-
imants to γ are “rare” then the lower limit in (3.5) is more accurate and g(y; γ ) will
grow more slowly.

What we can say rigorously is that if γ is of Diophantine type (K, σ) then, from
(3.6),

C1 ≤ g(y; γ ) ≤ C2y
−σ−1 (3.7)

for some constants Ci . Therefore, we can define a non-negative number b(γ ) by :

b(γ ) := inf{b : lim
y→0

ybg(y; γ ) = 0} . (3.8)

We next show that b(γ ) ≥ 1/2.

3.1. A lower bound for b(γ ). To show that g(y; γ ) always diverges for y → 0 at least
as strongly as 1/

√
y, we use the continued fraction expansion in positive integers an:

5 A much easier theorem of Liouville, which is all we need to establish convergence for algebraic
numbers, says that a degree n ≥ 2 algebraic number is of Diophantine type (K, n − 2).



498 D. Kutasov, J, Marklof, G.W. Moore

γ = [a0, a1, a2, . . . ] = a0 + 1
1
a1

+ 1
a2+···

. (3.9)

The integers an are known as partial quotients. The best rational approximants to γ are
always provided by the convergents

pn

qn

:= [a0, . . . , an] (3.10)

in the continued fraction expansion:

|γ − pn

qn

| <
1

q2
n

. (3.11)

The qn grow exponentially as a function of n. Roughly speaking,

qn ∼ ce
1
2 λ(γ )n, (3.12)

and more rigorously: 6

λ(γ ) := 2 lim
n→∞

1

n
log qn . (3.13)

The quantity λ(γ ) is known as the Lyapunov exponent of γ .
Taking a lower bound on g(y; γ ) by summing only over s = qn and using (3.5),

(3.11), one can show that

g(y; γ ) >
2

π2

√
y

∞
∑

n=1

e−πyq2
n

‖qnγ ‖2 >
2

π2

√
y

∞
∑

n=1

q2
ne−πyq2

n . (3.14)

Now, using (3.12) we see that the divergence as y → 0 is at least as strong as

g(y; γ ) ≥ 1

y1/2

2

π3λ(γ )
. (3.15)

3.2. g(y; γ ) and the three gap theorem. Some further insight can be gained on the
behavior of g(y; γ ) as y → 0 using the three-gap theorem of [26].

The asymptotics of g(y; γ ) as y → 0 are the same as the N → ∞ asymptotics of
the sum

gN(γ ) = N−1
N
∑

n=1

‖nγ ‖−b (3.16)

in the case b = 2, where we identify y ∼ 1/N2. It is useful in the discussion to keep b

general.
In the case b ≤ 0, Kronecker’s theorem, which tells us that ‖nγ ‖ are uniformly

distributed implies

gN(γ ) →
∫ 1

0
‖x‖−bdx. (3.17)

6 There are γ ’s for which the limit does not exist.
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The same holds when 0 < b < 1, however one needs to assume γ is Diophantine of
type σ , where σ depends on b. This is because values close to zero might cause some
divergence since ‖x‖−b is unbounded there. Estimates for the case b = 1 are also classic
[27].

We are here interested in b > 1. In this case the sum is dominated by a finite number
of terms. In order to see this, order the points ‖nγ ‖ (n = 1, . . . , N ) in the interval
[0, 1/2] and label them by

0 < ξ1 < . . . < ξN < 1/2. (3.18)

So

gN(γ ) = N−1
N
∑

n=1

ξ−b
n . (3.19)

We now summarize the results of [26]. Label the fractional parts of nγ by

0 < η1 < . . . < ηN < 1. (3.20)

The “three gap theorem” states that every spacing ηn+1 − ηn is equal to either α, β or
α + β, where α = η1 and β = 1 − ηN . In [26] one finds formulae for α, β in terms
of the continued fraction approximation of γ . In particular α and β in general have no
asymptotics as N → ∞.

Now if γ is of bounded type (i.e. if the partial quotients an are bounded by some
constant), one finds immediately from the three gap theorem that there are constants
c, C > 0 such that

c/N ≤ α ≤ C/N, c/N ≤ β ≤ C/N. (3.21)

It is thus natural to write

gN(γ ) = Nb−1
N
∑

n=1

(Nξn)
−b. (3.22)

Since the gaps between the Nηn are bounded from below by a constant, we have c′n ≤
Nξn ≤ C′n for suitable constants c′, C′ > 0. Therefore (and provided b > 1), given
any error threshold ε > 0 we find an Mε so that

lim sup
N→∞

N
∑

n=Mε

(Nξn)
−b < ε. (3.23)

Hence

gN(γ ) = Nb−1
Mε−1
∑

n=1

(Nξn)
−b + O(εNb−1). (3.24)

This means gN(γ ) is of order Nb−1, and furthermore arbitrarily well approximable by a
finite number of terms. Recall the Nξn, n = 1, . . . , Mε , are bounded from above and be-
low and have an explicit expression in terms of the continued fraction approximants of γ .

One important consequence of these considerations is that
√

yg(y; γ ) has no good
asymptotics. The value remains bounded but fluctuates as y → 0. Nevertheless, as we
will see in the next section, this value is governed by a definite probability law.
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3.3. The regularized dimension is a random variable in a probability distribution. We
have seen in the previous subsection that the asymptotic y → 0 behaviour of the function

g(y; γ ) = √
y

∑

m∈Z−{0}

e−πm2y

sin2(πmγ )
(3.25)

is determined by the continued fraction expansion of γ . We will here refine our analysis
by exploiting the dynamical properties of the geodesic flow on the modular surface. The
connection between continued fraction dynamics and geodesic flow is non-trivial but
well understood, cf. [28, 29].

To explain the strategy, note that

g̃(y; γ ) = √
y

∑

(m,n)∈Z2−{0}

e−πym2

π2(mγ + n)2 (3.26)

has the same asymptotic behaviour as g(y; γ ), up to an error of order O(1), i.e.,

g(y; γ ) = g̃(y; γ ) + O(1), (3.27)

uniformly for all γ . (To prove this use the identity

1

sin2(πmγ )
= 1

π2

+∞
∑

n=−∞

1

(mγ + n)2

and add and subtract the (m = 0, n �= 0) terms by hand.) The main idea is now to
construct a certain modular function F(M) on SL(2, Z)\SL(2, R), such that

√
yg̃(y; γ ) = F(M(t)), t = − log y → ∞, (3.28)

where M(t) ∈ SL(2, R) is evaluated along the geodesic

M(t) =
(

1 γ

0 1

)(

e−t/2 0
0 et/2

)

, t ≥ 0. (3.29)

The asymptotics of
√

yg̃(y; γ ) is now entirely determined by the geometric distribution
of the geodesic associated with a particular value of γ . For example:

(a) If γ is a quadratic irrational, then the geodesic M(t) is asymptotic to a closed geo-
desic with period Tγ . Hence

e−t/2g̃(e−t ; γ ) ∼ φ(t), (3.30)

where φ(t) is a bounded periodic function with period Tγ .
(b) If γ is badly approximable by rationals (i.e., Diophantine of bounded type), then

the geodesic M(t) is asymptotic to a geodesic which never leaves a bounded set in
SL(2, Z)\SL(2, R). Hence e−t/2g̃(e−t ; γ ) is bounded for all t . Our analysis will
show that in general F(M) is a non-constant function, hence e−t/2g̃(e−t ; γ ) does
not converge to a constant.
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(c) For almost all γ (with respect to Lebesgue measure) the corresponding geodesic
M(t) becomes equidistributed in SL(2, Z)\SL(2, R), a consequence of the ergo-
dicity of the geodesic flow. Hence the fluctuations of e−t/2g̃(e−t ; γ ) on some long
stretch [0, T ] (T → ∞) have the same probability distribution as the function
F(M), where M varies over SL(2, Z)\SL(2, R). That is,

1

T

∫ T

0
δ(X − e−t/2g(e−t ; γ ))dt −→ P(X)

=
∫

SL(2,Z)\SL(2,R)

δ(X − F(M))dM. (3.31)

Interestingly, the limit distribution has an algebraic tail, P(X) ∼ AX−3/2, and hence
no first moment. See Theorem 1 in the Appendix for details.

4. Divergence for Finite τ

In the previous section we discussed the behavior of the torus partition sum (2.4) in the
limit τ → 0. In this section we will see that for some γ , the sum over twisted sectors
(and thus (3.1)) diverge for finite τ . This point has been mentioned briefly in [30].

The dangerous factor in the partition sum (2.4) is the function

ϑ
[

1
2 + sγ

1
2

]

(0|τ) (4.1)

which appears in the denominator; it becomes very small when ‖sγ ‖ << 1. As we have
seen, this is due to the fact that the corresponding states are nearly delocalized.

Consider

F(x) := ϑ
[

1
2 + x

1
2

]

(0|τ) . (4.2)

It is easy to check that F(x + 1) = F(x) and e−iπxF (x) is an odd function of x given
at small x by

e−iπxF (x) = −(2πτη3)x + +(2π3τ 3E2 − 12π2iτ 2)η3 x3

3!
+ · · · . (4.3)

The convergence of the sum over twisted sectors of (2.4) for fixed τ is controlled by

∞
∑

s=1

1

‖sγ ‖2 e
− πR2

α′ s2 |τ |2
τ2 . (4.4)

As discussed in the previous section, for γ of Diophantine type (K, σ) the sum (4.4)
converges. On the other hand, for certain Liouville numbers the sum actually diverges.
To show this, consider the subsum given by s = qn, where qn is the denominator of the
convergents of γ , (3.10). Then [15]:

1

qn + qn+1
< ‖qnγ ‖ <

1

qn+1
. (4.5)
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Thus, (4.4) is bounded from below by

∑

n

q2
n+1e

−κq2
n , (4.6)

where κ is some constant. Now if

2 log qn+1 − κq2
n = O(1) (4.7)

or is even bounded below by − log n then the series (4.6) diverges.
We can thus construct numbers for which the series (4.6) diverges by considering γ

of the form

γ =
∞
∑

n=1

1

10f (n)
(4.8)

for certain rapidly increasing functions f (n). Indeed we may take the subsum with
s = 10f (n). Then

∣
∣
∣
∣
∣
∣

γ −
n
∑

j=1

1

10f (j)

∣
∣
∣
∣
∣
∣

<
2

10f (n+1)
. (4.9)

Now consider any function f (n) that satisfies an equation of the form

f (n + 1) = f (n) + κ102f (n) + g(n), (4.10)

where g(n) is, say, any positive function of n. Then, using qn = 10f (n) and q2
n+1 <

‖qnγ ‖−2, we see that for such functions f (n) the series (4.4) diverges. Thus, there are
continuum many transcendental numbers for which the sum diverges.

5. An Alternative Regularization Using Continued Fractions

In the previous sections we discussed the regularized number of localized states given
by the partition sum (1.4) in the limit τ → 0. We saw that there are some irrational
numbers for which the sum over localized states diverges even for finite τ . This diver-
gence is due to the effect of “nearly untwisted strings” with ‖wγ ‖ small. It is natural
to ask whether one can regularize this divergence in some other way, consistent with
conformal symmetry and modular invariance.

Replacing C by, say, a sphere of finite radius breaks conformal symmetry, and intro-
duces subtle questions of orders of limits. Similarly, putting a cutoff on the sum over twist
sectors breaks modular invariance. One simple way to regulate the volume divergence
is to use the continued fraction expansion of γ ,

γ = [0, a1, a2, . . . ] . (5.1)

Cutting off the continued fraction at a finite place leads to the rational convergents:

γ (n) := [0, a1, a2, . . . , an] := pn

qn

. (5.2)
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For the rational twists γ (n) we have a clear separation of localized from delocalized
states and the regularized dimension of the space of localized states is (2.10)

dim Hloc(γ
(n)) = 1

48

(

qn − 1

qn

)

. (5.3)

Similarly, other correlation functions in the orbifold CFT are well-defined for finite n.
One can formally think of the original orbifold with twist parameter γ as the limit

n → ∞ of (5.2). Of course, qn → ∞ as n → ∞, but it does so at different rates for
different γ ’s; the rate depends sensitively on γ through the Lyapunov exponent (3.13).

The exponential growth of qn suggests that we should define an “entropy of delocal-
ization” by considering the limiting behavior of Sn(γ ) = log dim Hloc(γ

(n)). With this
measure of delocalization we have

log dim Hloc(γ1)

log dim Hloc(γ2)
= lim

n→∞
Sn(γ1)

Sn(γ2)
= λ(γ1)

λ(γ2)
. (5.4)

Some interesting facts about λ(γ ), which can be found in [31], are the following.
First, for almost every γ , λ(γ ) is given by Khinchin’s constant

λ0 = π2

6 log 2
. (5.5)

Moreover, the range of λ(γ ) as γ runs over irrational numbers in (0, 1) is

[2 log
1 + √

5

2
, ∞) . (5.6)

Thus, the entropy of delocalization is a nontrivial function of the twist parameter γ of
the Melvin model.

Remarks.

1. One very interesting property of the Lyapunov exponent λ(γ ) is that it is invari-
ant under SL(2, Z) acting on γ via fractional linear transformations. This is easily
seen since γ → γ + 1 obviously does not change the exponent while, for γ =
[0, a1, a2, . . . ] we have 1/γ = [a1, a2, a3, . . . ], so {1/γ } = [0, a2, a3, . . . ].

2. The Lyapunov exponent of γ is indeed a Lyapunov exponent for a dynamical system,
namely that defined by the Gauss map T (x) = {1/x}, which shifts the entries of the
continued fraction expansion. In this context it is quite amusing to note that a naive
analysis of the GLSM description for the Melvin model discussed in [11] appears to
lead to a connection between 2D RG flow and the Gauss map. If we choose a GLSM
with gauge group R with gauge group action (X1, X2, P ) → (eiγ θX1, e

−iθX2, P +
iθ), then the standard analysis of the D-term equation

γ |X1|2 − |X2|2 = p1 (5.7)

suggests that the Melvin geometry with twist parameter γ and radius R flows to that
with twist parameter {1/γ } and radius R/γ . Thus, at least as long as R remains small,
the flow from the UV to the IR acts as a Gauss map on γ .

3. Some other interesting relations of Lyapunov exponents to areas of physics are ex-
plored in [32].

4. The approach of this section has the advantage that it can be easily extended to other
twisted tori geometries Cd × Rd ′

/
, where 
 acts by linear transformations in Cd

and by translations in Rd ′
.
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6. Melvin Models in String Theory

So far we have been focusing on the conformal field theory of the Melvin orbifold,
and the divergences associated with the sums over twisted sectors in defining partition
functions in this CFT. In string theory we have the further complication that we must
integrate amplitudes over moduli space.

We have seen that for certain irrational numbers γ , the partition function of the twisted
(NS,NS) sectors, which contain spacetime bosons, is divergent for fixed τ . In type II
string theory, what enters into the torus amplitude – the one loop contribution to the
cosmological constant – is the difference of spacetime bosons and fermions,

√

R2

α′τ2

∑

(s,t) �=(0,0)

e
− πR2

α′
|t+sτ |2

τ2

∣
∣
∣
∣

∑

ε1,ε2
ηε1,ε2

(ϑ
[

ε2
ε1

]

(0|τ)

η

)3
ϑ
[

ε2+sγ
ε1+tγ

]

(0|τ)

ϑ
[ 1

2 +sγ
1
2 +tγ

]

(0|τ)

∣
∣
∣
∣

2

, (6.1)

where ηε1ε2 = ±1 are described in [25]. It is still the case that the denominator of (6.1)
is small in sectors with t = 0 and small ‖sγ ‖ (4.1). However, the numerator goes to
zero as well, due to the standard Riemann identity, or more physically because when
‖sγ ‖ → 0, one is approaching the untwisted contribution, which vanishes due to the
standard supersymmetric cancellations. However, when tγ is a good approximation to
an odd integer the numerator does not cancel the denominator. 7 In this case there are
potential divergences such as those discussed in Sect. 4.

In addition to this, for other one loop amplitudes we expect that the sum over twisted
sectors s will again be problematic. This is compounded by the fact that we must integrate
over moduli space, since the integral over τ2 has the form

∫ ∞
dτ2τ

ν
2 e−s2τ2 ∼ 1

s(ν+1)/2
. (6.2)

Thus the exponential suppression in s is replaced by power law suppression, which can
be easily overwhelmed by 1/‖sγ ‖2 even for algebraic irrationals γ . For this reason, it is
far from clear to us that Melvin spacetimes with irrational values of γ are well-defined
string backgrounds. This issue merits further investigation.

7. Discussion

The discussion of the previous sections suggests that physics is not continuous as a func-
tion of γ . This may seem physically unreasonable. How can continuous changes of a
magnetic field lead to discontinuous conformal field theory or string theory amplitudes?
There is a well-known precedent for this kind of behavior, namely the Azbel-Hofstadter
model of an electron in a magnetic field in the presence of a periodic potential [33]. The
spectrum of the Schrödinger operator is a sensitive function of the magnetic field, and
depends on its arithmetic nature.

It has been claimed that Melvin models provide a smooth interpolation between IIB
and 0A string theory and this has been used to argue that the endpoint of 0A tachyon
condensation is the IIB theory [34, 35, 11]. It is possible that the interpolating string
theories with irrational γ do not exist, thus calling these claims into question.

7 We thank the referee for pointing out this subtlety.
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A natural class of questions which arise in the context of our considerations have
to do with asking “how many” γ ’s or “how often” a γ leads to a divergent model, or
to a model with fixed Lyapunov exponent, and so forth. These are subtle and difficult
questions. They have been the subject of much research. To quote one nice result [31],
the set of γ such that λ(γ ) takes a value larger than the Khinchin constant λ0 (5.5) has
positive Hausdorff dimension. Further discussion of such matters would take us into the
subject of measure and category [36], so this seems a good place to stop.
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Appendix A. Detailed Proof of (3.31)

A.1. Sums over lattice points. For any M ∈ SL(2, R) consider the sum

F(M) =
∑

m∈Z2−{0}
f ( mM), (A.1)

where m runs over all non-zero integer row vectors, and f is a positive function on R2.
Since the modular group SL(2, Z) leaves the lattice Z2 and the origin 0 invariant, we
have immediately

F(KM) = F(M) (A.2)

for every K ∈ SL(2, Z). F may thus be viewed as a function on the homogeneous space
SL(2, Z)\SL(2, R). There is a simple formula for the average of F with respect to Haar
measure dM , normalized as a probability measure so that

∫

SL(2,Z)\SL(2,R)

dM = 1. (A.3)

We then have
∫

SL(2,Z)\SL(2,R)

F (M)dM =
∫

R2
f (x)dx. (A.4)

This is a special case of Siegel’s weight formula for SL(d, R); for a proof see e.g.
Theorem 3.15 of [37].

The function g̃(y; γ ) is connected to an automorphic function F of the above form:
choose

f (x1, x2) = e−πx2
1

π2x2
2

. (A.5)

Then, at the point

M =
(

1 x

0 1

)(

y1/2 0
0 y−1/2

)

, (A.6)
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we have

F(M) = √
y g̃(y; x). (A.7)

The space SL(2, Z)\SL(2, R) can be identified with the unit tangent bundle of the
modular surface by means of the Iwasawa decomposition

M =
(

1 x

0 1

)(

y1/2 0
0 y−1/2

)(

cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)

; (A.8)

z = x + iy are the standard upper half plane coordinates and the angle θ ∈ [0, 2π)

describes the direction of the unit tangent vector at z. This identification induces the

following action of a matrix

(

a b

c d

)

∈ SL(2, R) on a point M = (z, θ):

(

a b

c d

)

(z, θ) =
(

az + b

cz + d
, θ − 2 arg(cz + d)

)

. (A.9)

A fundamental domain of SL(2, Z) in these coordinates is

F = {(z, θ) : |z| > 1, |x| < 1/2, θ ∈ [0, 2π)}. (A.10)

The normalized Haar measure reads

dM = 3

2π2

dx dy dθ

y2 . (A.11)

The geodesic flow on SL(2, Z)\SL(2, R) is represented by the right translation

M(0) �→ M(t) = M(0)�t , �t =
(

e−t/2 0
0 et/2

)

. (A.12)

The values of g̃(y; x) are thus those of F(M) evaluated along a geodesic M = M(t)

with initial condition M(0) =
(

1 x

0 1

)

.

A.2. Singularities. To analyze the singularities of F(M) we split

F(M) = F0(M) + F1(M), (A.13)

where F0, F1 are defined in the same way as F above with f replaced with

f0(x1, x2) = e−πx2
1

π2x2
2

χ0(x2) (A.14)

and

f1(x1, x2) = e−πx2
1

π2x2
2

χ1(x2), (A.15)
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respectively. χ0 and χ1 are continuous functions with values in [0, 1] such that χ0(x) +
χ1(x) = 1, and

χ1(x) =
{

1, x ∈ [−ε, ε]
0, x /∈ [−ε(1 + ε), ε(1 + ε)]

(A.16)

for some fixed ε > 0. (The extra (1 + ε) factor is used to accommodate the continuity
of χ1; we think of χ0 and χ1 as smoothed characteristic functions.)

By construction, F0 is a continuous function on all of SL(2, Z)\SL(2, R). This
manifold has one cusp at y → ∞. The asymptotic behaviour is here

F0(M) ∼
∑

n�=0

f0

(

(0, ny−1/2)

(

cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

))

∼ C0(θ) y1/2 (A.17)

as y → ∞,where

C0(θ) =
∫ ∞

−∞
f0

(

(0, r)

(

cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

))

dr

= 1

π2

∫ ∞

−∞
e−π [r sin(θ/2)]2

[r cos(θ/2)]2 χ0(r cos(θ/2))dr. (A.18)

Note that C0(θ) = O(1) for all θ .
We re-write F1 as a sum over primitive lattice points p,

F1(M) =
∞
∑

l=1

∑

p
f1(l pM). (A.19)

For every primitive lattice point p there is a K ∈ SL(2, Z) such that p = (0, 1)K . The
subgroup 
∞ ⊂ SL(2, Z) of elements K such that (0, 1)K = (0, 1) is


∞ =
{(

1 n

0 1

)

: n ∈ Z
}

, (A.20)

and hence there is a one-to-one correspondence between primitive lattice points and the
coset 
∞\SL(2, Z). We have therefore

F1(M) =
∞
∑

l=1

∑

K∈
∞\SL(2,Z)

f1((0, l)KM). (A.21)

Due to the rapid decay of f1 this is essentially a finite sum. To understand the singularities
of F1 consider the term corresponding to K = 1,

∞
∑

l=1

f1((0, l)M) = y

cos(θ/2)2

∞
∑

l=1

e−πl2y−1 sin(θ/2)2

π2l2 χ1(ly
−1/2 cos(θ/2)). (A.22)

The main singularity of this function is at θ = π , and we note that for θ → π ,

∞
∑

l=1

f1((0, l)M) ∼ 4y

π2(θ − π)2

∞
∑

l=1

e−πl2y−1

l2 . (A.23)
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The singularities of F1(M) are the images of the two-dimensional subspace {(z, θ) :

θ = π} under the action of

(

a b

c d

)

∈ 
∞\SL(2, Z),

(

a b

c d

)

{(z, θ) : θ = π} = {(z, θ) : θ = π − 2 arg(cz + d)}, (A.24)

where (c, d) runs over all primitive lattice points in Z2 − {0}.

A.3. Limit theorems. Our main application of the above construction is the following.

Theorem 1. There is a probability density P(X) on R+ with the following properties:

1. There is a set of x of full measure such that, for any bounded continuous function
φ : R+ → R,

lim
T →∞

1

T

∫ T

0
φ(e−t/2g(e−t ; x))dt =

∫ ∞

0
φ(X)P (X)dX; (A.25)

2. For any bounded continuous function φ : R+ → R,

lim
y→0

∫ 1

0
φ
(√

yg(y; x)
)

dx =
∫ ∞

0
φ(X)P (X)dX; (A.26)

3. As X → ∞,

P(X) ∼ AX−3/2, (A.27)

with

A = 3

2π3

∫ ∞

0

( ∞
∑

l=1

e−πl2y−1

l2

)1/2
dy

y3/2 . (A.28)

Note that the limiting distribution does not possess a first moment,
∫ ∞

0
XP(X)dX = ∞. (A.29)

Thus, there is no “average” value of gcl for Melvin models.
To prove the above limit theorem, we note that the ergodicity of the geodesic flow

and the equidistribution of long closed horocycles on SL(2, Z)\SL(2, R) imply the
following statements, cf. [37].

Theorem 2.

1. There is a set of x of full measure such that, for any bounded continuous function
G : SL(2, Z)\SL(2, R) → C,

lim
T →∞

1

T

∫ T

0
G

((

1 x

0 1

)

�t

)

dt =
∫

SL(2,Z)\SL(2,R)

G(M)dM; (A.30)
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2. For any bounded continuous function G : SL(2, Z)\SL(2, R) → C,

lim
y→0

∫ 1

0
G

((

1 x

0 1

)(

y1/2 0
0 y−1/2

))

dx =
∫

SL(2,Z)\SL(2,R)

G(M)dM. (A.31)

Now take any compactly supported continuous function φ : R+ → R and set
G(M) = φ(F (M)). Then for ε > 0 small enough

G(M) = φ(F0(M)), (A.32)

and hence G(M) is bounded continuous, in view of the above singularity analysis. The-
orem 2 therefore implies the first two statements of Theorem 1, for compactly supported
continuous test functions φ, with

P(X) =
∫

SL(2,Z)\SL(2,R)

δ(X − F(M))dM. (A.33)

The extension to bounded continuous φ follows from a standard probabilistic argument.

A.4. Tail estimates. Consider first the large X asymptotics of

P1(X) =
∫

SL(2,Z)\SL(2,R)

δ(X − F1(M))dM

=
∫

SL(2,Z)\SL(2,R)

δ



X −
∑

K∈
∞\SL(2,Z)

∞
∑

l=1

f1((0, l)KM)



 dM

∼
∫

SL(2,Z)\Uσ

δ



X −
∑

K∈
∞\SL(2,Z)

∞
∑

l=1

f1((0, l)KM)



 dM, (A.34)

where Uσ = SL(2, Z){(z, θ) : θ ∈ π + [−σ, σ ]} is a small neighbourhood of the
singular set (A.24) on which F1(M) is large. Since the K sum is essentially finite, we
may choose σ > 0 small enough so that the overlap of the neighbourhoods K{(z, θ) :
θ ∈ π + [−σ, σ ]} for different K is negligible. Hence for X → ∞,

P1(X) ∼
∑

K∈
∞\SL(2,Z)

∫

SL(2,Z)\Uσ

δ

(

X −
∞
∑

l=1

f1((0, l)KM)

)

dM

=
∫


∞\Uσ

δ

(

X −
∞
∑

l=1

f1((0, l)M)

)

dM

= 3

2π2

∫ 1

0

∫ ∞

0

∫ π+σ

π−σ

δ

(

X −
∞
∑

l=1

f1((0, l)M)

)

dx dy dθ

y2

∼ 3

2π2

∫ ∞

0

∫ σ

−σ

δ

(

X − 4h(y)

θ2

)
dy dθ

y2

= 3

2π2X3/2

∫ ∞

0

√

h(y)
dy

y2 , (A.35)
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where

h(y) = y

π2

∞
∑

l=1

e−πl2y−1

l2 . (A.36)

Since F0(M) has its only singularity in the cusp y → ∞,

P0(X) =
∫

SL(2,Z)\SL(2,R)

δ(X − F0(M))dM

∼ 3

2π2

∫ 2π

0

∫ ∞

0
δ(X − C0(θ)y1/2)

dy dθ

y2

= 3

π2X3

∫ 2π

0
C0(θ)2dθ. (A.37)

So P(X) ∼ P1(X) for large X, and the proof of Theorem 1 is complete.
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