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Abstract. Asymptotic laws for mean multiplicities of lengths of closed geodesics in arithmetic
hyperbolic three-orbifolds are derived. The sharpest results are obtained for non-compact
orbifolds associated with the Bianchi groups SL(2, oK) and some congruence subgroups. Similar
results hold for cocompact arithmetic quaternion groups, if a conjecture on the number of gaps
in their length spectra is true. The results related to the groups above give asymptotic lower
bounds for the mean multiplicities in length spectra of arbitrary arithmetic hyperbolic three-
orbifolds. The investigation of these multiplicities is motivated by their sensitive effect on the
eigenvalue spectrum of the Laplace–Beltrami operator on a hyperbolic orbifold, which may be
interpreted as the Hamiltonian of a three-dimensional quantum system being strongly chaotic in
the classical limit.
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1. Introduction

It is well known that there is a deep connection between the geometric properties of an
n-orbifold (i.e., a space looking locally likeRn modulo the action of a discrete subgroup
of O(n)) and the eigenvalue spectrum of its Laplace–Beltrami operator. According to
Selberg’s theory [1], for finite hyperbolic orbifolds the spectrum is completely determined
by its volume, boundary, conic singularities, and—what is most important—by its closed
geodesics. Their number up to a given lengthl grows exponentially [2]:

N (l) ∼ Ei(τ l) ∼ eτ l

τ l
, l → ∞, (1)

with the so-calledtopological entropyτ , which is τ = n − 1 for hyperbolicn-orbifolds.
The similarity with the famousPrime Number Theorem‘the number of primes belowx is
asymptotically given byx/ logx’ is not by chance, and therefore (1) is often denoted as
Prime Geodesic Theorem.

The exponential proliferation (1) is typical for chaotic classical Hamiltonian systems
[3]. Indeed, the geodesic flow on the unit cotangent bundle of a hyperbolic orbifold reflects
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the properties of an Anosov system [4], which is one of the strongest characterizations of
classical chaos.

Concerning the quantum theory of general strongly chaotic systems, similar trace
formulae as in Selberg’s theory are valid, although only in the semiclassical limit. Such trace
formulae were first discovered by Gutzwiller, see [3] for references. The free motion in a
hyperbolic orbifold can be viewed as a model for strongly chaotic systems, in the sense that
rigorous results allow to explain quantum effects which are as well observed in more realistic
settings. Among all hyperbolic orbifolds the arithmetic spaces are the ones for which most
results have been achieved, mainly in two, and recently also in three dimensions [5, 6]. On
the other hand, arithmetic hyperbolic orbifolds possess a feature which distinguishes them
from all other hyperbolic orbifolds, and from all other chaotic systems investigated up to
now: It is the strong exponential growth of the mean multiplicities in the length spectrum
(i.e., the number of closed geodesics of the same length, averaged over an interval1l),
which is at least

〈g(l)〉 ∼ c
el/2

l
, l → ∞, (2)

for arithmetic hyperbolic two-orbifolds, compare [7–11] and

〈g(l)〉 ∼ c
el

l
, l → ∞, (3)

for arithmetic hyperbolic three-orbifolds.c is a constant depending on the considered
orbifold. We will discuss in detail, for which kind of orbifolds relation (3) can be proved or
conjectured to be valid not just ‘at least’ but exactly, and how (3) serves as an asymptotic
lower bound for any other arithmetic hyperbolic three-orbifold. It is interesting to note that
there are non-arithmetic orbifolds, which show a similar (but weaker) exponential increase
of the multiplicities, e.g., the tetrahedral orbifoldT8, where

〈g(l)〉 ∼ c1
ec2l

l
, l → ∞, (4)

with c1 ≈ 1.410 andc2 ≈ 0.643< 1, which is a numerical result [12].
As a consequence of the strong increase of the mean multiplicities (2), (3) one is able

to explain the attraction of neighbouring eigenvalues of the Laplace–Beltrami operator,
which contradicts the widely accepted belief that, for quantum systems being chaotic in the
classical limit, the energy spectrum shows eigenvalue repulsion. To be more precise, Bolte
[13] has carried out a semiclassical analysis which shows that the short range correlations
of the eigenvalue spectrum of arithmetic surfaces tend to those of a Poisson distribution,
usually expected for integrable systems [14]. Starting with (3), the results of [13] can
be readily extended to three dimensions such that again level attraction is predicted [15].
However, certain assumptions on the characters associated with closed geodesics have to
be made within the analysis in both two and three dimensions. The importance of these
characters is illustrated in [16], where a two-dimensional hyperbolic billiard is presented,
whose quantal spectrum shows level attraction or level repulsion, depending on the choice
of boundary conditions.

Along with the third dimension there comes an additional phase angleφ related to so-
called loxodromic orbits, which describes the twist of the neighbourhood of an orbit after
one traversal. The notation of a complex length` := l + iφ will be introduced, wherel
is the usual (real) length. The mean multiplicity〈g(l)〉 is asymptotically connected with
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the number of closed geodesics (1) and the numberN r(l) of distinct real lengths of closed
geodesics via

〈g(l)〉 ∼ dN (l)

dl

(
dN r(l)

dl

)−1

, l → ∞. (5)

In section 4 we firstly calculate the asymptotics of the counting functionN c(l) of distinct
complex lengths of closed geodesics for hyperbolic orbifolds whose fundamental group
0 = O1 consists of all units of a quaternion orderO with norm one. We call such groups
arithmetic quaternion groupsfor brevity (for definitions see sections 2 and 3). If the set of
traces tr0 of elements of0 is invariant under complex conjugation, then

N r(l) ∼ 1

2
N c(l), l → ∞, (6)

see section 5. Groups which satisfy that condition are for example orientation-preserving
subgroups of reflection groups, i.e., groups generated by the reflections at the faces of a
polyhedron. The sharpest results are obtained for the Bianchi groups SL(2, oK), where
oK is the ring of integers of an imaginary quadratic number fieldK = Q(

√−D), D

a square-free positive rational integer. Bianchi groups are of major importance, as they
form a representative set for the commensurability classes of all non-cocompact arithmetic
lattices in three-dimensional hyperbolic space [17, 18]. Furthermore we investigate certain
congruence subgroups of SL(2, oK). The caseD = 1 is discussed in detail in section 6,
together with those cocompact arithmetic groups, which are of index two in the Coxeter
groupsTi , i = 1, 2, 4, 5, 7, 9, generated by the reflections at the faces of corresponding
Lanńer’s hyperbolic tetrahedra.

We shall focus our attention on arithmetic quaternion groupsO1, as they form the
species of groups with the strongest arithmetic structure. In any case, from our detailed
investigation of the length spectra of arithmetic three-orbifolds connected with such groups
we easily obtain bounds forN r(l) and〈g(l)〉 for arbitrary arithmetic three-orbifolds using the
characterization of arithmetic Kleinian groups by Maclachlan and Reid [17]. However, the
relations between the length spectra associated with commensurable groups are in general
not as simple as stated in [9]; we give a counterexample in section 7.

2. Closed geodesics in hyperbolic three-orbifolds

The natural extension of the half plane modelH2 of two-dimensional hyperbolic spaceH2

to three-dimensional hyperbolic spaceH3 is theupper half space

H3 = {(x1, x2, x3) ∈ R3 | x3 > 0}, (7)

equipped with the Riemannian metric

ds2 = κ
dx2

1 + dx2
2 + dx2

3

x2
3

. (8)

The curvature is−1/κ everywhere onH3; we chooseκ = 1. The hyperbolic distance
d(x, x′) of two pointsx, x′ ∈ H3 is then given by

coshd(x, x′) = 1 + (x1 − x ′
1)

2 + (x2 − x ′
2)

2 + (x3 − x ′
3)

2

2x3x
′
3

. (9)

Compared to other models of three-dimensional hyperbolic spaceH3 (see, e.g., [19]), the
main advantage of this model is that the action of the group of isometries has a simple
representation by fractional linear transformations: Setx = x1 +x2i +x3j, with the classical
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quaternions i and j defined by the relations i2 = j2 = −1 and ij+ ji = 0, plus the property
that i and j commute with every real number. 1, i, j and ij form a basis for the classical
Hamilton quaternionsH. The inverse of a quaternionq = q1 + q2i + q3j + q4ij in H is
given byq−1 = |q|−2(q1 − q2i − q3j − q4ij), where|q|2 = q2

1 + q2
2 + q2

3 + q2
4. Then every

orientation-preserving isometryf of H3 has a representation

f (x) = (ax + b)(cx + d)−1 where

(
a b

c d

)
∈ SL(2, C), (10)

while for the orientation-reversing case this matrix should be contained in the coset
SL(2, C)j. The group of orientation-preserving isometries Iso+H3 is thus isomorphic
to PSL(2, C) = SL(2, C)/{±1}, the class of orientation-reversing isometries Iso−H3 is
isomorphic to PSL(2, C)j, cf [20]. Therefore the action ofG := SL(2, C) ∪ SL(2, C)j on
H3 can be defined as the action of the associated isometry. Elements ofG, and hence of
IsoH3, can be classified as follows:

g ∈ G is called. . . , if it is SL(2, C)-conjugate to. . .

plane reflection ±
(

1 0
0 1

)
j

elliptic ±
(

eiφ/2 0
0 e−iφ/2

)
, φ ∈ (0, π ]

inverse elliptic ±
(

0 ieiφ/2

ie−iφ/2 0

)
j, φ ∈ (0, π ]

parabolic ±
(

1 1
0 1

)
inverse parabolic ±

(
1 1
0 1

)
j

hyperbolic ±
(

el/2+iφ/2 0
0 e−l/2−iφ/2

)
, l > 0, φ ∈ [0, 2π)

inverse hyperbolic ±
(

el/2 0
0 e−l/2

)
j, l > 0 .

We call l the real length, φ the phase, and ` := l + iφ the complex lengthof the
transformation. Usually the real length is simply denoted asthe length of the transformation,
but as in this work also complex lengths will play an important role, we will keep the longer
notation. Hyperbolic elements are calledloxodromic, if φ 6= 0.

To construct a hyperbolic manifold or—to be more general—a hyperbolic orbifold, let
us take a discrete subgroup0 of G, and identify all points ofH3, which can be transformed
into each other by an element of0. Such points are called0-equivalentand we put them
into an equivalence class0(x) = {γ (x) | γ ∈ 0} with x ∈ H3. The set of those classes is
the hyperbolic three-orbifold0\H3 = {0(x) | x ∈ H3}. 0\H3 is a manifold, if0 contains
no elements of finite order other than±1. We will call 0 a hyperboliclattice, if the volume
of 0\H3 is finite. If 0\H3 is compact,0 will be called cocompact– which is the case, if
and only if 0 is a lattice containing no parabolic transformations. Discrete subgroups of
SL(2, C) are denoted asKleinian groups.
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One way of visualizing a hyperbolic three-orbifold is to look at the fundamental
cell of the corresponding lattice, where boundary points are identified by certain lattice
transformations. For illustration, see section 6.

Every primitive closed geodesicS0 in 0\H3 lifts to geodesics inH3. Consider one of
those lifts and the groupS of elements in0 leaving it invariant. Letl0 denote the smallest
length of all hyperbolic and inverse hyperbolic transformations inS. Then l0 corresponds
to the length ofS0. The lengths of all other hyperbolic transformations inS are of the form
l = k l0, k ∈ N, (this follows from the discreteness ofS) corresponding to lengths of closed
geodesicsS being multiple traversals ofS0.

We will now give four simple, but very useful relations between the lengths and the
traces of elementsγ in SL(2, C):

trγ = ±2 cosh(l/2) cos(φ/2) ± 2i sinh(l/2) sin(φ/2), (11)

Re2trγ

4 cosh2(l/2)
+ Im2trγ

4 sinh2(l/2)
= 1, (12)

Re2trγ

4 cos2(φ/2)
− Im2trγ

4 sin2(φ/2)
= 1, (13)

and

x± = 1
2

(|tr2γ | ± |tr2γ − 4|) , (14)

where x+ := 2 coshl and x− := 2 cosφ. These relations can be used for elements in
SL(2, C)j, if one replacesγ by γ 2, l by 2l, andφ by 2φ.

3. Arithmetic hyperbolic three-orbifolds

Before giving a definition of arithmetic hyperbolic three-orbifolds, it is necessary to
introduce the termsquaternion algebraandorder in a quaternion algebra, cf [21].

Let K be a field, andA an algebra overK generated by the elements 1, ω, �, ω�, with
the relations

ω2 = a, �2 = b, ω� + �ω = 0, (15)

wherea, b ∈ K − {0}. ThenA is calledquaternion algebra over K. Every elementα ∈ A

has a unique representation

α = x0 + x1ω + x2� + x3ω�, xj ∈ K.

Then

α† = x0 − x1ω − x2� − x3ω�

denotes the conjugate ofα. The reduced trace and norm are defined by

trAα := α + α† = 2x0 (16)

and

nAα := αα† = x2
0 − x2

1a − x2
2b + x2

3ab. (17)

The field extensionK(ω) is isomorphic toK(
√

a), asω commutes with all elements ofK.
The quaternion algebraA is therefore isomorphic to the matrix algebra{(

x0 + x1
√

a x2 + x3
√

a

b (x2 − x3
√

a) x0 − x1
√

a

) ∣∣∣∣ x0, . . . , x3 ∈ K

}
.

An order O in the quaternion algebraA is a ring of elements ofA with
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(i) the ring of integersoK in K is contained inO,
(ii) the reduced trace and norm of every element inO are integers inK,
(iii) O is generated by four elements that are linearly independent overK.

An order is calledmaximal, if it is not properly contained in any other order. It is easy to
show that trO = {trAα | α ∈ O} is an ideal inoK : Let α ∈ O. Thenrα ∈ O andrα† ∈ O†

for all r ∈ oK , becauseO andO† = {α† | α ∈ O} are rings. It follows thatr trAα ∈ trO
for all r ∈ oK . Together with trAα and trAβ also(trAα − trAβ) is contained in trO.

Now a hyperbolic orbifold is calledarithmetic, if the corresponding lattice0 is
arithmetic. Arithmetic groupsin G are defined as follows [17]: LetK be a number field of
degreed over Q with exactly one complex place. Letφj : K ↪→ C, j = 1, . . . , d denote
the embeddings ofK into the field of complex numbers, such thatφ1 = identity (id), φ2 =
complex conjugation (cc),φj (K) ⊂ R for j = 3, . . . , d . Let furthermoreA be a quaternion
algebra overK. It splits at the complex place, i.e.,

A ⊗φ1(K) C ' M(2, C). (18)

We demand thatA is ramified at the real places,

A ⊗φj (K) R ' H, for j = 3, . . . , d. (19)

It then follows that

A ⊗Q R ' M(2, C) ⊕ H ⊕ . . . ⊕ H. (20)

Let ρ1 be the projection onto the first summand restricted toA, ρ3 the projection onto the
second one, etc.,

ρ1 : A → M(2, C), (21)

ρj : A → H, for j = 3, . . . , d. (22)

If O is an order inA and O1 the group of units ofO with norm one, thenρ1(O1) is a
lattice in SL(2, C), which we will denote as anarithmetic quaternion group. Every group
commensurable withρ1(O1) is calledarithmetic, i.e., if 0∩ρ1(O1) is of finite index in both
0 andρ1(O1). A subgroup of finite index inρ1(O1) is said to bederived from a quaternion
algebra. In the following we will briefly writeO1 instead ofρ1(O1).

The trace of an elementγ ∈ 0 is given by

trγ = trM(2,C)ρ1(α) = trAα, (23)

and the conjugates of the trace by

φj (trγ ) = trHρj (α). (24)

For the determinant we obtain

detγ = nM(2,C)ρ1(α) = nAα, (25)

φj (detγ ) = nHρj (α). (26)

The trace fieldQ(tr0) is naturally contained inK. Moreover, Maclachlan and Reid [17]
have shown thatK even coincides withQ(tr0). It follows from its definition that an
arithmetic group is always of finite covolume, i.e., a lattice. It is cocompact if and only if
A is a division algebra.

As was done by Takeuchi for Fuchsian groups [22], it is possible to characterize
arithmetic Kleinian groups by looking at their traces:

Theorem 1 [17]. 0 is an arithmetic Kleinian group, if and only if0(2) = 〈γ 2|γ ∈ 0〉 (the
group generated by the squares of elements of0) is derived from a quaternion algebra.
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It is clear that a lattice inG is arithmetic, if and only if its subgroup of all orientation-
preserving elements is an arithmetic Kleinian group.

Theorem 2 [17]. Let 0 be a Kleinian group of finite covolume. Then0 is derived from a
quaternion algebra, if and only if

(i) K = Q(tr0) is an algebraic number field, such thatK 6⊂ R and tr0 ⊂ oK ,
(ii) for every embeddingφ : K ↪→ C such thatφ /∈ {id, cc}, φ(tr0) is bounded inC.

Remarks. We can put condition (ii) into a more concrete form:K coincides with the field
K ′, over whichA is defined, because there cannot be a proper complex subfield ofK ′ (K ′

has just one complex place, see also lemma 2). Hence all embeddingsφ /∈ {id, cc} are real.
It is easy to see thatφ(tr0) is contained in the interval [−2, 2], following from the fact that
A ⊗φ(K) R is isomorphic to the Hamilton quaternionsH.

Next consider an arbitrary arithmetic Kleinian group0. It follows from the relation

(trγ )2 = tr γ 2 + 2, (27)

that every trγ ∈ tr0 is the square-root of an integer inQ(tr0(2)). As 0(2) is derived from
a quaternion algebra, for every embeddingφ of Q(tr0(2)) into C such thatφ /∈ {id, cc},
φ({tr γ 2 | γ ∈ 0}) is contained in the interval [−2, 2], and equivalentlyφ(tr20) is contained
in the interval [0, 4], where tr20 denotes the set of squared traces(trγ )2 of 0.

In the case of a general arithmetic lattice0 in G denote by0+ the subgroup of all
orientation-preserving elements. Thenγ 2 ∈ 0+ for all γ ∈ 0, so for every embeddingφ
of Q(tr0+(2)) into C such thatφ /∈ {id, cc}, φ({tr γ 4 | γ ∈ 0}) is contained in the interval
[−2, 2].

4. Number of distinct complex lengths

By relation (11) to each trace trγ of an elementγ in a Kleinian group0 we can associate
a complex length̀ γ = lγ + iφγ . Vice versa, to each complex length`γ there correspond
exactly two traces±trγ , if we assume that−1 ∈ 0. This is true, e.g., for all arithmetic
quaternion groups. If−1 is not contained in0, simply replace0 by 0 ∪ 0(−1), which has
no effect on the length spectrum. Hence the number of distinct complex lengths of closed
geodesics in0\H3,

N c(l) := #{`γ = lγ + iφγ | 0 < lγ 6 l, γ ∈ 0}, (28)

is given by

N c(l) = 1

2
#

{
trγ

∣∣∣∣ Re2trγ

4 cosh2(l/2)
+ Im2trγ

4 sinh2(l/2)
6 1, γ ∈ 0 hyperbolic

}
. (29)

Let us introduce the function

A(x) := #

{
trγ

∣∣∣∣Re2trγ

x + 2
+ Im2trγ

x − 2
6 1, γ ∈ 0

}
. (30)

A(x) additionally counts the distinct traces in the interval [−2, 2], i.e., traces of trivial,
elliptic and parabolic elements in0. Let N be the number of these traces (which is finite,
since there are only finitely many elliptic conjugacy classes), then

N c(l) = 1
2 [A(2 coshl) − N ] . (31)
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First let us concentrate on the length spectrum of an arithmetic quaternion groupO1:
For j = 3, . . . , d, all conjugatesφj (trγ ) of traces are contained in the interval [−2, 2], see
above. Leta := trO and

a� := {s ∈ a | − 2 6 φj (s) 6 2, j = 3, . . . , d}. (32)

We divideA(x) into two parts:

A(x) = E(x) − G(x), (33)

where

E(x) := #

{
s ∈ a�

∣∣∣∣ Re2s

x + 2
+ Im2s

x − 2
6 1

}
(34)

and

G(x) := #

{
s ∈ g

∣∣∣∣ Re2s

x + 2
+ Im2s

x − 2
6 1

}
, (35)

whereg is the set of all elementss ∈ a�, which do not represent a trace of an element of
O1, i.e.,

g = a� − trO1. (36)

The elements ofg will be called gaps in trO1, the corresponding lengthsgaps in the
length spectrum, as their number is conjectured to be small compared toE(x) andN c(l),
respectively (see the conjecture below). It is easy to see that in the case of latticesO1

isomorphic to a Bianchi group0 = SL(2, oK), whereoK is the ring of integers of the
quadratic number fieldK = Q(

√−D), D a square-free positive rational integer [17, 18],
no gaps can occur, since tr0 = oK (compare lemma 1), henceG(x) = 0.

Let us return to the general case, whereO1 is an arbitrary arithmetic quaternion group
in SL(2, C). We will compute the leading order ofE(x) asx → ∞: Every numbers ∈ K

can be represented geometrically as a vectors in C × Rd−2, see [23]:

s ≡
( s1

s3
...

sd

)
:=

( φ1(s)

φ3(s)
...

φd(s)

)
.

Thus the components ofs are the conjugates ofs. We calls the geometric image ofs.
If we represent aZ-module geometrically, we will obtain a Euclidean lattice inC×Rd−2,

whose fundamental cell is spanned by the geometric images of the basis elements of the
module.

As stated above,a = trO is an ideal inoK . Every ideal is anoK -module and hence
a completeZ-module, i.e., there ared linearly independent basis elements. We denote the
geometric image ofa by M and its fundamental cell byFM.

Now E(x) corresponds to the number of lattice points, contained in the elliptic cylinder

E(x) :=
{
s ∈ C × Rd−2

∣∣∣∣Re2s1

x + 2
+ Im2s1

x − 2
6 1, −2 6 sj 6 2, j = 3, . . . , d

}
. (37)

Let Z(x) be the number of lattice points in the cylinder

Z(x) :=
{
s ∈ C × Rd−2

∣∣|s1|2 6 x, |sj | 6 2, j = 3, . . . , d

}
, (38)

then

Z(x − 2) 6 E(x) 6 Z(x + 2) . (39)
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The leading order ofZ(x) is given by a classical result, see, e.g., theorem 1 of chapter V
in [24],

Z(x) = VolZ(x)

VolFM
+ O(x1−1/d), x → ∞. (40)

with VolZ(x) = 4d−2 πx and VolFM = 2−1|Da|1/2, and the discriminantDa of a, hence

Z(x) = 22d−3π

|Da|1/2
x + O(x1−1/d), x → ∞. (41)

Because of (39) we have

Z(x) = Z(x ± 2) + O(x1−1/d) = E(x) + O(x1−1/d), x → ∞, (42)

which gives us the following theorem:

Theorem 3. Let O1 be an arithmetic quaternion group inSL(2, C). Then the number of
distinct complex lengths of closed geodesics is given by

N c(l) = 22d−4π

|Da|1/2
el − 1

2
G(el) + O(el(1−1/d)), l → ∞. (43)

It should be noted that in the non-compact case (d = 2) Z(x) is the number of lattice
points inside a circle of radiusx1/2. The estimate of the remainder function has a long history
in number theory, and there are better results than our trivialO(x1/2), going originally back
to Gauss. To the author’s knowledge the best estimate for a quadratic lattice (corresponding
to Z[ i ]) is by Huxley [25], where the remainder function is of orderO(x23/73+ε), for any
numberε > 0. However, the search for a sharp estimate—known as ‘the classical circle
problem’—is still going on.

There has not been a lot of progress in finding asymptotic bounds for the number of
gapsG(x), even in the more simple two-dimensional case. (An explicit list of gaps in
the case of the regular octagon group may be found in [11].) In any case, the following
conjecture seems to be quite natural.

Conjecture 1. Let O1 be an arithmetic quaternion group inSL(2, C). Then the number of
gaps in the complex length spectrum up to lengthl = logx is given by

G(x) = κ x + o(x), x → ∞, (44)

whereκ > 0 is a constant depending only onO1, and small compared to

22d−3π

|Da|1/2
.

One might suspect that evenκ = 0 for all O1.
For a group0, which is derived from a quaternion algebra and therefore is a subgroup of

finite index in an arithmetic quaternion groupO1, one trivially hasN c(l; 0) 6 N c(l; O1).
A more precise relation is not known in general. However, if one considers congruence
subgroups of a Bianchi group, a lot more can be said. Let us define the principal congruence
subgroup

0(n) =
{(

a b

c d

)
∈ SL(2, oK)

∣∣∣∣( a b

c d

)
≡

(
1 0
0 1

)
mod n

}
, (45)

wheren is an ideal inoK . For simplicity we will assume thatn is a principal ideal, i.e.,
n = (N), N ∈ oK . Then we are able to prove
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Lemma 1. An elements ∈ oK is the trace of an element in0(n), n = (N) a principal ideal,
if and only if s ≡ 2 modN2.

Proof. As bc ≡ 0 mod N2, clearly ad ≡ 1 mod N2. Now write a and d in the form
a = Nj +1 andd = Nk +1, wherej, k ∈ oK . It follows thatN(j +k) ≡ 0 modN2. Then
trγ = a + d = N(j + k) + 2 ≡ 2 modN2 is a necessary condition. Now consider the set

M =
{(

N2j + 1 Nj

N 1

)∣∣∣∣j ∈ oK

}
,

which is contained in0(n) and whose set of traces trM contains every desired element.�

Similar results can be obtained for other congruence subgroups, e.g.,

01(n) =
{(

a b

c d

)
∈ SL(2, oK)

∣∣∣∣a ≡ d ≡ 1, c ≡ 0 modn

}
, (46)

where eachs ∈ oK with s ≡ 2 mod N is a trace of an element of01(n), if n = (N).
Theorem 3 can therefore as well be applied for such congruence groups, e.g., by setting
a = (N2) andG(x) = 0 in the case of0(n), if N divides 2, i.e., 2/N ∈ oK . If N does not
divide 2, s ≡ 2 modN2 implies −s 6≡ 2 modN2, hence in this case there is an additional
factor 2:

N c(l; 0(n)) =


1

|N |4 N c(l; SL(2, oK)) + O(el/2), if N divides 2

2

|N |4 N c(l; SL(2, oK)) + O(el/2), otherwise.
(47)

Unfortunately the methods applied above cannot produce analogous results in the general
setting. In any case, from our remarks on Maclachlan and Reid’s theorems 1 and 2
in section 3 it follows that the number of distinct complex lengths of every arithmetic
hyperbolic three-orbifold is of the order

N c(l) = O(el), l → ∞. (48)

5. Number of distinct real lengths. Multiplicities

As we have seen, all traces trγ belonging to the same real lengthl are located on the ellipse

e(x) =
{
s ∈ C

∣∣∣∣ Re2 s

x + 2
+ Im2 s

x − 2
= 1

}
, (49)

with x = 2 coshl. Hence the number of distinct real lengths

N r(l) = #{lγ ∈ (0, l] | γ ∈ 0} (50)

corresponds to the number of ellipsese(x), each of which contains at least one trace trγ .
Defining

B(x) := #{e(y) | a� ∩ e(y) 6= ∅, y 6 x}, (51)

we immediately see that

N r(l) = B(2 coshl) − # gaps in the real length spectrum up tol. (52)

In the following we will restrict ourselves to thoseO1, whose sets of traces trO1 are invariant
under complex conjugation. By that the algebraic set-up is simplified considerably, as can
be drawn from the following lemmata. For example, the subgroup of orientation-preserving
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elements in an arithmetic lattice, generated by the reflections at the faces of a polyhedron,
satisfies this condition. We will also give weaker results for general arithmetic lattices in
G at the end of this section.

Lemma 2 . LetK be a number field with exactly one complex place. IfK is invariant under
complex conjugation, then there exists a real subfieldL, such that the degree ofK overL is
two.

Proof (compare [17]).
Step 1.We show that each proper subfieldM of K is real.
Suppose,M 6= K is a complex subfield ofK, [K : M] = d̃. ThenM has one complex

place. We have denoted the embeddings ofK into C by φ1 = id, φ2 = cc, φj (K) ⊂ R
for j = 3, . . . , d. Let the embeddings ofM into C be φ̂1 = id, φ̂2 = cc, φ̂j (M) ⊂ R for
j = 3, . . . , d/d̃.

Of courseφ1|M = φ̂1, φ2|M = φ̂2. There has to be at least one furtherφj , such that
φj |M = φ̂1. But asφj (K) ⊂ R for j = 3, . . . , d, it follows thatφj (M) = φ̂1(M) = M ⊂ R,
contradiction!

Step 2.Let K = Q(a), a ∈ C. As K is invariant under complex conjugation, we have
a ∈ K and ib := a − a ∈ K. K is the only non-real subfield ofK, thusK = Q(ib).

Let L = K ∩R be the maximal real subfield ofK, thenD := −(ib)2 > 0 is in L, hence
K = L(

√−D) is of degree two overL. �

We conclude that every numbers ∈ K has a representations = t + u
√−D, t, u ∈ L,

D > 0 fixed in L.

We will now look at lattice pointss ∈ trO1 on ellipsese(x), for whichx /∈ L (lemma 3),
and at points on ellipses, for whichx ∈ L (lemma 4).

Lemma 3. Let K, L be as above. Lete(x), x /∈ L, be an ellipse ands ∈ trO1 a point on it.
Then there are exactly three additional points oftrO1 on e(x).

Proof. Let s = t + u
√−D, t, u ∈ L be on the ellipse. Thus

t2

x + 2
+ D

u2

x − 2
= 1.

Let s ′ = t ′ + u′√−D ∈ a� be another point one(x), then

t2 − t ′2 + D
x + 2

x − 2
(u2 − u′2) = 0.

As x /∈ L, the same is true for

D
x + 2

x − 2
= D

(
1 + 4

x − 2

)
/∈ L.

The differencest2 − t ′2 andu2 − u′2 hence have to vanish, only the numberss, s, −s and
−s are on the ellipsee(x). s, s, −s and−s are pairwise distinct, if Res 6= 0 and Ims 6= 0.
Indeed, this is the case—otherwise Im2 s = x − 2 or Re2 s = x + 2, and thereforex ∈ L,
which contradicts our assumption. �

Lemma 4. The counting function of all pointss ∈ trO1 that are located on the set of ellipses
{e(y) | 2 < y 6 x, y ∈ L} is of orderO(x1/2), x → ∞.
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Proof. Let s = t + u
√−D ∈ a� be one(y). The equation, which describes the ellipse, is

quadratic iny:

y2 − (t2 + D u2)y + 2(t2 − D u2) − 4 = 0,

or equivalently,

y2 − |s2| y + 2 Res2 − 4 = 0. (53)

s and s are contained in the ring of integersoK , hence|s2| = ss and 2 Res2 = s2 + s2

are also contained inoK and therefore are real algebraic integers ofL, |s2| ∈ oL and
2 Res2 ∈ oL.

y is a zero of a normalized polynomial with integer coefficients contained inoL, hence
y is an algebraic integer. Asy ∈ L, we havey ∈ oL.

For s 6= ±2 the quadratic equation (53) has two distinct solutions, compare (11),

y± = 1

2

[
|s2| ±

√
|s2|2 − 8 Res2 + 16

]
= 1

2

(|s2| ± |s2 − 4|) . (54)

Clearly −2 6 y− 6 2 and y+ > 2. We havey− = ±2 if and only if Ims = 0 resp.
Res = 0. Fory− 6= ±2, e(y−) is a hyperbola, ande(y+) is an ellipse.

Conclusion: The number of pointss ∈ a� that are located on the set of ellipsese(y),
with 2 < y 6 x and y ∈ L, corresponds to the number of pointss ∈ a� that are located
on the real axis, the imaginary axis, and the hyperbolase(y), −2 < y < 2, y ∈ L, and for
which

Re2s

x + 2
+ Im2s

x − 2
6 1. (55)

To give an estimate for that number, consider the geometric image ofy ∈ L. Let
φ̂1 = id, φ̂k, k = 2, . . . , d/2 be the embeddings ofL in R andyk = φ̂k(y) the components
of a vectory ∈ Rd/2. (d is even, sinceK is of degree two overL.)

The identity embedding ofL lifts to the identityφ1 and the complex conjugationφ2 of
K, every other embedding ofL lifts to two corresponding embeddingsφj of K. Now we
have

−2 6 φj (s) 6 2, j = 3, . . . , d,

becauses ∈ a�. The same is true fors, thusφj (|s2|) = φj (ss) andφj (2 Res2) = φj (s
2+s2)

are bounded forj = 3, . . . , d. In that case the solutionsφj (y) of

φj (y)2 − φj (|s2|) φj (y) + 2φj (2 Res2) − 4 = 0

are bounded, as they depend continuously on the coefficients.y is contained in the ring of
integersoL, the vectorsy describe lattice points inRd/2, whose componentsy2, . . . , yd/2

are bounded, as we have seen.y determines a hyperbola, if it is contained in the interval
(−2, 2). Therefore in this case the first componenty1 = y is bounded, too. We conclude
that the number of hyperbolas, which contain pointss ∈ a�, is finite.

Let us pick one fixed hyperbola, and determine the number of pointss ∈ a� on it, which
satisfy (55). A trivial estimate yieldsO(x1/2), x → ∞. For the number of pointss ∈ a�
on the real and on the imaginary axis we get the same result. As the number of hyperbolas
is finite, the number of all points on hyperbolas, on the real and on the imaginary axis is
as wellO(x1/2). �

We are now prepared to state our main theorem:
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Theorem 4(a). Let O1 be an arithmetic quaternion group inSL(2, C), whose set of traces
trO1 is invariant under complex conjugation. Then the number of distinct real lengths of
closed geodesics is given by

N r(l) = 22d−5π

|Da|1/2
el − 1

4
G(el) + O(el(1−1/d)), l → ∞. (56)

Proof. Following lemma 3 and lemma 4, we have

N r(l) = 1

2
N c(l) + O(el/2), l → ∞. (57)

�

Again, much better remainder estimates are possible in the non-compact case:

Theorem 4(b). Let O1 = SL(2, oK), K = Q(
√−D), D ∈ N square-free. Then the number

of distinct real lengths of closed geodesics is given by

N r(l) =


π

4
√

D
el + 1

2

(
1 + 1√

D

)
el/2 + O(RD(el)), if D ≡ 1, 2 mod 4

π

2
√

D
el + 1

2

(
1 + 1√

D

)
el/2 + O(RD(el)), if D ≡ 3 mod 4,

(58)

whereRD(x) denotes the remainder function of the classical circle problem for a lattice
corresponding to the geometric image ofoK .

Proof. Consider firstD ≡ 1, 2 mod 4. Then an integer ofQ(
√−D) is of the form

s = m + n
√−D, with m, n ∈ Z. This meansoK = Z[

√−D], henceDa = −4D. As y± is
an algebraic integer (see above) and rational,y± is clearly inZ. Let us have a look at the
lattice points ofZ[

√−D] on the hyperbolas

e(−1) : m2 − 1
3 D n2 = 1

e(0) : m2 − D n2 = 2 (59)

e(1) : m2 − 3D n2 = 3.

These Diophantine equations admit an explicit solution, see, e.g., [26]. It follows easily
that the number of integer solutions inside the ellipsee(x) is of orderO(logx), x → ∞,
hence negligible.

The number of points on the real axis insidee(x), x > 2, is clearly

2
√

x + 2 + O(1) = 2
√

x + O(1), x → ∞, (60)

while the number of points on the imaginary axis is

2√
D

√
x + 2 + O(1) = 2√

D

√
x + O(1), x → ∞. (61)

What ellipsese(y) intersect both axes at integer points? Supposes1 = m1 ∈ Z is
on e(y), i.e., m1 = ±√

y + 2 ∈ Z. If s2 = n
√−D is another point one(y), then

n2 = ±√
(y − 2)/D = ±

√
(m2

1 − 4)/D ∈ Z. Thusm1 andn2 necessarily satisfy

m2
1 − D n2

2 = 4. (62)
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The number of integer solutions of (62) inside the ellipsee(x) is of order O(logx),
see above. Therefore the number of all lattice pointss ∈ Z[

√−D] on the ellipses
{e(y) | 2 < y 6 x, y /∈ Q} adds up to

E(x) − 2

(
1 + 1√

D

)√
x + O(logx), x → ∞, (63)

while the number of lattice points on the set of ellipses{e(y) | 2 < y 6 x, y ∈ Q} yields
altogether

2

(
1 + 1√

D

)√
x + O(logx), x → ∞. (64)

There are four points on ellipsese(y) with irrational y, compare lemma 3, and—up to
O(logx) exceptions—two points on ellipsese(y) with rationaly. This proves the first case
of the theorem.

Now considerD ≡ 3 mod 4. Here we haveoK = Z[ 1+√−D

2 ], henceDa = −D. For

the remainder estimates, replace the latticeZ[ 1+√−D

2 ] by {m/2 + n/2
√−D | m, n ∈ Z} to

obtain an equivalent situation as in the first case. �

Together with (5) the mean multiplicities in length spectra of three-orbifolds associated
with arithmetic quaternion groupsO1 are now asymptotically given by

〈g(l)〉 ∼ c
el

l
, l → ∞, (65)

with

c =
(

22d−5π

|Da|1/2
− κ

4

)−1

, (66)

whereκ is small compared to 22d−3π |Da|−1/2 or even zero, if conjecture 1 holds. Recall
that κ = 0, if O1 = SL(2, oK).

In order to make a statement on arbitrary arithmetic lattices, it follows from the obvious
boundN r(l) 6 N c(l) and from the estimate (48) that there is a constantC > 0 such that

lim
l→∞

el/ l

〈g(l)〉 = C, (67)

which gives an asymptotic lower bound for the multiplicities.

6. Examples

The simplest arithmetic lattice in SL(2, C) one can think of is the Picard group SL(2, Z[ i ] ).
It is generated by one half-turn and two parabolic translations,(

0 −1
1 0

)
,

(
1 1
0 1

)
, and

(
1 i
0 1

)
.

A fundamental cell of SL(2, Z[ i ] ) is given by

F0 =
{
x ∈ H3

∣∣1 6 |x|, −1/2 6 −x2 6 x1 6 1/2

}
, (68)

see figure 1. According to lemma 1 and theorem 3, we obtain for the number of distinct
complex lengths

N c(l) = π

2
el + O(e(23/73+ε)l), ε > 0, l → ∞, (69)
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asDa = −4. The number of distinct real lengths reads

N r(l) = π

4
el + el/2 + O(e(23/73+ε)l), ε > 0, l → ∞, (70)

compare theorem 4(b).

Figure 1. Fundamental cell of the Picard group. Boundary points are identified by half-turns
through the axesDMAB , DMBC , DMCA andBMCA, whereMAB denotes the midpoint between
A andB, MBC the one betweenB andC, etc.

Another interesting example of an arithmetic quaternion group is the cocompact lattice
T +

2 , which is the subgroup of all orientation-preserving elements in the tetrahedral reflection
group having the Coxeter diagram [27]

T2 =

©

©

©

©

.

Each vertex© describes a face of the tetrahedron. The vertices are connected by graphs
consisting of 0, 1, 2, . . . lines, which represent an edge with dihedral angleπ/2, π/3, π/4,
. . ., respectively.T2 is therefore generated by the reflections at the faces of the hyperbolic
tetrahedronABCD with dihedral angles

6 BC = π/2, 6 CA = π/2, 6 AB = π/3,

6 DA = π/2, 6 DB = π/5, 6 DC = π/3,
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compare figure 2.T +
2 is of index two inT2 and generated by half-turns through the axes

BC andCA, and a 2π/3-turn throughAB. If we embed the tetrahedron into the upper half
spaceH3 like in figure 2, the generators will be represented by the SL(2, C)-matrices(

0 − 1
2(

√
3 − i)

1
2(

√
3 + i) 0

)
,

(
0 i
i 0

)
,

and

( 1
2 + 1

6

√
−3 + 2

√
5

√
3 − 1

6

(
1 +

√
5
) √

3

1
6

(
1 +

√
5
) √

3 1
2 − 1

6

√
−3 + 2

√
5

√
3

)
.

It is worth mentioning thatT +
2 is a subgroup of index two in the group0 having the smallest

covolume of all arithmetic Kleinian groups. This means,0\H3 is the smallestorientable
arithmetic hyperbolic orbifold, see [28].

Figure 2. A Fundamental cell of the subgroupT +
2 of orientation-preserving elements inT2 is

the tetrahedronABD′D. Boundary points are identified by the generators ofT +
2 : two half-turns

through the axesBC and CA, and a 2π/3-turn throughAB. The tetrahedronABCD is the
fundamental cell ofT2, generated by the reflections at the faces ofABCD.

Let us turn to the arithmetic description ofT +
2 . It can be viewed as the groupO1 of

units with norm one of an arbitrary maximal order in the quaternion algebraA, defined

over the number fieldK = Q
(√

3 − 2
√

5
)

by the relationsω2 = −1, �2 = −3, see [29].

trT +
2 is invariant under complex conjugation, thus theorem 4 applies. To determineDa, we

make use of
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Lemma 5. Let O1 be an arithmetic quaternion group with trace fieldK. If O1 contains a
rotation through2π/3, thentrO = oK .

Proof. The trace of a rotation through 2π/3 is one. From 1∈ trO and from the fact that
trO is an ideal inoK , the lemma immediately follows. �

We concludea = oK , henceDa is the discriminant of the fieldK = Q
(√

3 − 2
√

5
)

,

which is DK = −275. The degree ofK clearly isd = 4.
In the same manner the subgroupsT +

i of orientation-preserving elements in the Coxeter
groups

T1 =

©

©

©

©

�
�
�
�

T4 =

©

©

©

©

T5 =

©

©

©

©

T7 =

©

©

©

©

T9 =

©

©

©

©

can be defined as arithmetic quaternion groupsO1. The corresponding quaternion algebras
may be looked up in [29]. It follows from the Coxeter diagrams that every group
Ti contains a 2π/3-turn, hence againDa = DK . For T1, T4, T5, T7, T9 we have

K = Q
(√

(1 − √
5)/2

)
, Q

(√
−1 − 2

√
5
)

, Q
(√

−1 − 2
√

2
)

, Q
(√

(−1 − 5
√

5)/2

)
,

Q
(√

−5 − 4
√

5
)

, thusDK = −400, −475, −448, −775, −1375, respectively, and each

time d = 4.

7. Remarks on arithmetic two-orbifolds

Hyperbolic two-orbifolds may be represented as the quotient0\H2, where the upper half
planeH2 can be viewed as a plane inH3, e.g., by settingx2 = 0. The group of isometries
of H2 is then the subgroup of Iso+H3 leaving the plane invariant, which is

IsoH2 ' PSL(2, R) ∪ PSL(2, R)σ, (71)

with

σ =
(

i 0
0 −i

)
.

Note that PSL(2, R)∪PSL(2, R)σ is isomorphic to PGL(2, R), but PSL(2, C) is isomorphic
to PGL(2, C).

Restricting the action toH2, one sees that PSL(2, R) preserves and PSL(2, R)σ reverses
orientation (σ is now a reflection at a line). Discrete subgroups of SL(2, R) are called
Fuchsian groups. An arithmetic group in SL(2, R) ∪ SL(2, R)σ is defined via a quaternion
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algebraA over a totally real algebraic number fieldK such thatA splits exactly at one
place ofK, i.e.,

A ⊗Q R ' M(2, R) ⊕ H ⊕ . . . ⊕ H. (72)

If ρ1 denotes the projection onto the first summand, restricted toA, andO is an order inA,
then every group commensurable withρ1(O1) (or briefly O1) will be called an arithmetic
group.

The characterization of arithmetic groups in SL(2, R), given by Takeuchi [22], is similar
to the one for groups in SL(2, C), see theorems 1 and 2.

As there are no loxodromic elements in IsoH2, the relation between the traces of
hyperbolic (resp. inverse hyperbolic) transformationsγ ∈ SL(2, R)∪SL(2, R)σ and lengths
of closed geodesics is rather simple:

trγ = ±2 cosh(lγ /2) (resp.±2i sinh(lγ /2)), (73)

compare (11), while for elliptic (resp. inverse elliptic elements)

trγ = ±2 cos(φγ /2) (resp.±2i sin(φγ /2)). (74)

Now consider the trace fieldQ(trO1) of a unit groupO1. It coincides withK. Let K have
degreed over Q and denote byφj , j = 1, ..., d, the embeddings ofK into R. Further, we
suppose thatA splits at the first place and consequently define

a� := {s ∈ a | − 2 6 φj (s) 6 2, j = 2, . . . , d}, (75)

with the ideala = trO. As above, let

g = a� − trO1

denote the set of gaps, and

G(x) := #{s ∈ g | |s| 6 x}. (76)

Bolte shows

Theorem 5 [9]. Let O1 be an arithmetic quaternion group inSL(2, R). Then the number of
distinct lengths of closed geodesics is given by

N r(l) = 22d−2

|Da|1/2
el/2 − 1

2
G(el/2) + O(el(1−1/d)/2), l → ∞. (77)

(Note that the connection between our ideala and the moduleM used in [9] isa = 2M,
henceDa = 22dDM.) In analogy to conjecture 1 we formulate

Conjecture 2. Let O1 be an arithmetic quaternion group inSL(2, R). Then the number of
gaps in the length spectrum up to lengthl = 2 logx is given by

G(x) = κ x + o(x), x → ∞, (78)

whereκ > 0 is a constant depending only onO1, and small compared to

22d−1

|Da|1/2
.

This is a little more cautious thanκ = 0 assumed in [9].
To derive the number of distinct lengthsN r(l; 0) for general arithmetic Fuchsian groups

0, Bolte claims that if0 and0′ are commensurable, then

I ′ N r(l; 0) ∼ I N r(l; 0′), l → ∞, (79)
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whereI is the index of0 over0 ∩0′, andI ′ the index of0′ over0 ∩0′. This is, however,
not true in general. We will give a simple counter example: To stand on solid ground,
let us choose the modular group0 = SL(2, Z), where no gaps occur (compare lemma 1).
SL(2, Z) is the group of units with norm one in the quaternion order M(2, Z). Clearly
a = Z with Da = 1, d = 1, therefore

N r(l; 0) = el/2 + O(1), l → ∞. (80)

Now consider the principal congruence group

0(N) =
{(

a b

c d

)
∈ SL(2, Z)

∣∣∣∣( a b

c d

)
≡

(
1 0
0 1

)
mod N

}
, (81)

then0′ = 0(N) ∪ 0(N)(−1) is of finite index in SL(2, Z),

I =


6 , if N = 2

N3

2

∏
p|N

(
1 − 1

p2

)
, if N > 2,

I ′ = 1, (82)

see [30, 31]. Following lemma 4, tr0(N) = {s ∈ Z | s ≡ 2 modN2}, hence

N r(l; 0′) = N r(l; 0(N)) =


1

4
el/2 + O(1), if N = 2

2

N2
el/2 + O(1), if N > 2,

(83)

which contradicts (79).
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