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We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps.
Our model follows directly from the assumption that the quantum maps are described by random matrix
theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated for perturbed
cat maps and supports the use of percolation theory to describe the wave functions of general Hamiltonian
systems. We also demonstrate that the nodal domains of the perturbed cat maps obey the Cardy crossing
formula and find evidence that the boundaries of the nodal domains are described by stochastic Loewner
evolution with diffusion constant � close to the expected value of 6, suggesting that quantum chaotic wave
functions may exhibit conformal invariance in the semiclassical limit.

DOI: 10.1103/PhysRevLett.97.034101 PACS numbers: 05.45.Mt, 03.65.Sq, 11.25.Hf, 64.60.Ak

One of the central problems in the field of quantum
chaos is to understand the morphology of quantum eigen-
functions in classically chaotic systems. In time-reversal-
symmetric systems one can always find a basis in which
these eigenfunctions are real. They can thus be divided into
nodal domains—connected regions of the same sign, sepa-
rated by nodal lines on which the eigenfunctions vanish.
The statistical properties of these nodal domains then con-
stitute a natural way to characterize the morphology of the
eigenfunctions.

Nodal domain statistics were studied for separable bil-
liards in [1], where it was shown that if �n is the number of
nodal domains in the nth energy eigenstate then �n �
�n=n has a limiting distribution as n! 1 with a square-
root singularity at a system-dependent maximum value
�max < 1.

In chaotic systems the eigenfunctions may be modeled
statistically, far from boundaries and turning points, by
random superpositions of plane waves [2]:

 u�x� �

���
2

J

s XJ
j�1

cos�kx cos�j � ky sin�j ��j�; (1)

where �j and �j are random phases. This is known as the
random wave model. Since plane waves are solutions of the
Schrödinger equation for a free particle, r2 � �k2 , the
maxima of any superposition are positive and the minima
are negative. Hence the nodal domains correspond to
groups of either maxima or minima. A given pair of
adjacent maxima (minima) lie in the same nodal domain
if the saddle point between them is positive (negative). The
density of saddles in the random wave model is asymptoti-
cally twice the density maxima or minima. This would be
exactly the case, for example, if the maxima and minima
lay on alternate sites of a square lattice and the saddles on
the corresponding dual lattice, e.g., midway between di-
agonally adjacent maxima (or minima) [although it is
important to note that typical realizations of u�x� are in
fact highly irregular]. The saddles may be thought of as
lying at the midpoints of bonds of the dual lattice connect-

ing the maxima, for example. If the saddle height is posi-
tive, then the corresponding maxima are connected and the
bond may be thought of as ‘‘open’’; if it is negative, the
maxima are not directly connected, and the bond may be
thought of as ‘‘closed.’’ This was the basis of the very inter-
esting suggestion put forward by Bogomolny and Schmit
[3] that statistical properties of nodal domains in the ran-
dom wave model, and hence in quantum chaotic eigen-
functions, correspond to those in critical percolation—
percolation at the critical probability where there is a phase
transition and an infinite spanning cluster emerges. Speci-
fically, Bogomolny and Schmit assumed that the heights of
the saddles are uncorrelated and have equal probability of
being positive or negative, and proposed bond percolation
on a square lattice as a model for nodal domain statistics.
This implies that �n is Gaussian distributed as n varies in
the semiclassical limit. Moreover, it leads to the conclusion
that the scaling exponents associated with critical percola-
tion also characterize properties of the nodal domains in
quantum chaotic eigenfunctions, for example, their area
distribution and fractal dimension.

The predictions of the percolation model are consistent
with numerical computations [3] and experimental mea-
surements [4] of the fluctuation statistics for the nodal
domains of quantum billiards, but the data do not provide
conclusive verification. This is important, because the
model has been the subject of considerable debate. Foltin
has shown that the heights of the saddles in the random
wave model exhibit long range correlations [5], contra-
dicting one of the key assumptions of the percolation
model. Bogomolny has argued that oscillations in the
two-point correlation function are sufficient to ensure the
applicability of the Harris criterion [6] and so guarantee
that the scaling exponents are unaffected [7], but the
issue awaits a more systematic investigation. Moreover,
Foltin, Gnutzmann, and Smilansky have devised a parti-
cular statistical measure for which the percolation model
fails [8]. The range of validity of the model and the pre-
cise assumptions upon which it relies thus remain to be
determined.
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Our purpose here is to establish a percolation model for
quantum torus maps. These are some of the most important
examples of quantum chaotic systems, because one can
find maps that are fully chaotic and quantum mechanically
they are finite dimensional and so easily tractable. We will
show that for these systems there is a critical percolation
model that follows directly from the Bohigas-Giannoni-
Schmit (BGS) conjecture, which asserts that local quantum
fluctuation statistics in classically chaotic systems are
modeled by random matrix theory [9]. This model corre-
sponds to site percolation on a triangular lattice, which
falls into the same universality class as bond percolation on
a square lattice and so has the same critical exponents. The
advantages of investigating the percolation model for maps
are, first, that the assumptions underlying it are very much
more straightforward—one only has to assume the BGS
conjecture, and there are no problems analogous to those
relating to the slow decay of correlations in billiard eigen-
functions—and, second, that one can perform more exten-
sive and controlled numerical computations, leading to
significantly more precise tests of the predictions.

We find that the percolation model for maps is extremely
accurate in that the critical scaling exponents associated
with the nodal domains are very close to those predicted by
percolation theory. Moreover, the agreement goes beyond
scaling laws: the nodal domains of the quantum maps we
study also obey the Cardy crossing formula, which, in
percolation theory, gives the probability of there being a
cluster spanning the system between specified sections of
the boundary [10]. We verify that Cardy’s formula is
satisfied within the random wave model as well. This
suggests that both linear superpositions of random waves
and quantum chaotic eigenfunctions may exhibit confor-
mal invariance in the semiclassical limit. Finally, the link
between processes governed by stochastic Loewner evo-
lution (SLE) and statistical models has recently been the
focus of considerable attention. SLE constitutes a method
for analyzing random self-avoiding curves whose contin-
uum limit is conformally invariant. Essentially, these
curves are generated by conformal transformations which
satisfy a stochastic differential equation depending upon a
driving function that is proportional to a Brownian motion
[see, e.g., [11] ]. Critical percolation is believed to relate to
SLE with diffusion constant � � 6. For percolation on a
triangular lattice this has been established rigorously [12].
On the basis of the percolation model one would expect
nodal lines to behave like processes governed by SLE with
� � 6. We find evidence that this is the case for quantum
maps.

The systems we study correspond to chaotic sympletic
maps acting on the unit 2L-dimensional torus, which is
viewed as their phase space. Such maps can be quantized
using an approach introduced by Hannay and Berry [13].
The Hilbert space has finite dimension NL, where N plays
the role of the inverse of Planck’s constant. Quantum maps
correspond to unitary matrices U acting on wave functions
in this Hilbert space so as to generate their (discrete) time

evolution. In the position representation these wave func-
tions take values on an L-dimensional lattice. For example,
when L � 1 the wave functions take values �c1; c2; . . . ; cN�
at positions q � Q=N, 0 � Q<N; and when L � 2 they
take values �c1; c2; . . . ; cN2� at positions on the square
lattice q � �Q1=N;Q2=N�, 0 � Q1, Q2 <N. We shall be
concerned with the quantum map eigenvectors. If the map
is time-reversal symmetric (and so U is symmetric), the
components of the eigenvectors are real. For a given ei-
genvector, we can thus split the quantum lattice into re-
gions such that the components associated with neigh-
boring sites have the same sign. These regions then corre-
spond to nodal domains.

When L � 1 this can be done straightforwardly: if sites
lying next to each other on the one-dimensional lattice
have eigenvector components cj with the same sign then
they constitute part of the same nodal domain. When L �
2 the situation requires more careful consideration, be-
cause one needs a convention for deciding whether lattice
points that are diagonal neighbors and have eigenvector
components with the same sign lie in the same nodal
domain or not. Consider, for example, when the eigenvec-
tor components associated with a group of four lattice
points which form a square have signs in a checkerboard
arrangement, e.g., on the top row �� , and underneath
�� . Are the pluses automatically part of the same nodal
domain, or the minuses? We take as our convention that
lattice points are connected along diagonals running from
the top left to the bottom right; so in the example just given
it is the pluses that are connected. This takes us from the
original square lattice to the triangular lattice. Nodal do-
mains then correspond to regions on this triangular lattice
in which connected points have the same sign. Our con-
vention is, of course, one of many possibilities. However,
we note that it is necessary to incorporate diagonal neigh-
bors for the definition of nodal domains to be consistent
with that in billiards, and that all of the conventions we
have tested which do this lead to the same results.

In order to develop a statistical model for the nodal
domains we now need to introduce a statistical ansatz for
the signs. According to the BGS conjecture, for generic,
classically chaotic, time-reversal-symmetric systems sta-
tistical properties of the matrix U should coincide with
those of random matrices taken from the circular orthogo-
nal ensemble of random matrix theory. The probability
density for the eigenvectors c � �c1; c2; . . . ; cNL� is then
uniform on the hypersphere c � c � 1. Crucially for us, it
follows immediately that the sign of a given component is
equally likely to be positive or negative and that these signs
are independent of each other at different sites, i.e., they
are uncorrelated.

When L � 1 this model was explored in [14]. When
L � 2 it corresponds directly to site percolation on a
triangular lattice, which falls into the same universality
class as the Bogomolny-Schmit model. This means that the
critical exponents associated with the nodal domain statis-
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tics will be the same. We note that in our case these have
been established rigorously for percolation [12].

We now test the percolation model for a particular
family of quantum torus maps. In essence, we are seeing
whether this family is described sufficiently accurately by
random matrix theory (RMT) for the model to apply.
Linear maps are not sufficient for our purpose: because
of nongeneric arithmetical symmetries they are not de-
scribed by RMT [15]. Instead, we take a linear map com-
posed with a nonlinear perturbation. Specifically, we use
M � � � A � � with

 A:

q1

q2

p1

p2

0
BBB@

1
CCCA!

2 �2 �2 �1
�2 6 �1 0
16 �39 2 �2
�39 94 �2 6

0
BBB@

1
CCCA

q1

q2

p1

p2

0
BBB@

1
CCCAmod1 (2)

and � a nonlinear periodic shear in momentum: p1 !

p1 �
k1

4� cos�2�q1�, p2 ! p2 �
k2

4� cos�2�q2�. The map
M is time-reversal symmetric and, for sufficiently small
values of the perturbation parameters, completely chaotic.
The corresponding quantum map, a unitary matrix of
dimension N2, can be written down easily using the pre-
scriptions in [13,16] [for the explicit formula, see [17] ].
We now compare statistical properties of the nodal do-
mains of this map with those of percolation clusters.

Consider first the distribution of the number n of nodal
domains. For percolation on N2 sites this should be a
Gaussian with mean ncN2 � b� o�1� and variance cN2,
where Monte Carlo simulations give nc � 0:0176 . . . , b �
0:878 . . . , and c � 0:0309 . . . [18]. For the quantum map
we find a Gaussian distribution with a mean and variance
consistent with the percolation formulas. The data are
shown in Fig. 1. For the distribution of areas a of the nodal
domains, the percolation model predicts a scaling law a��,

with � � 187=91. A log-log plot of the data for the eigen-
vectors of the quantum map is shown in Fig. 2.

The percolation model also implies that the nodal do-
mains should have a fractal dimension D � 91=48 �
1:89 . . . . Data for the quantum map, obtained using a
box-counting algorithm and shown as a log-log plot in
Fig. 3, are consistent with this.

One of the key features of critical percolation is that it
has a conformally invariant limit. This underlies the use of
conformal field theory in deriving the Cardy crossing
formula, for example, and the link with SLE. Given the
success of the percolation model in describing scaling
exponents associated with their nodal domains, it is natural
to ask whether random waves and quantum eigenfunctions
are also conformally invariant in the semiclassical limit.
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FIG. 1 (color online). The mean (red circles) and variance
(blue squares) of the number of nodal domains for the quantum
map with k1 � 0:04 and k2 � 0:01. The linear fit for the mean
(solid line) gives nc � 0:0176 and b � 0:902, while the fit for
the variance (dashed line) gives c � 0:0297.
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FIG. 2 (color online). Frequency of nodal domains as a func-
tion of area. The solid (red) line shows the data and the dashed
(blue) line the theoretical power law with exponent � � 187=91.
Here N � 61, k1 � 0:04, and k2 � 0:01.
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FIG. 3 (color online). A box count for the largest nodal domain
of an eigenvector of the map with N � 61, k1 � 0:01, and k2 �
0:02. The linear fit corresponds to a fractal dimension of 1.8774.
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For the eigenvectors of the quantum map, we can deter-
mine the probability �h�x�, defined with respect to an
average over different eigenstates, that there exists a nodal
domain that spans the triangular lattice defined above,
connecting a specified section of length x on the left-
hand boundary of the unit square representing the torus
to any part of the right-hand boundary. We also test the
nodal domains of realizations of the random wave model
using the same geometry. The results are shown in Fig. 4
together with Cardy’s formula for �h�x� [10].

To explore the connection with SLE we use an idea
introduced in [19] to test conformal invariance in 2D
turbulence. SLE generates curves from a stochastic differ-
ential equation, the Loewner equation, dependent on a

driving function 	�t�, which is proportional to a
Brownian motion. We consider curves constructed from
the nodal lines of our quantum map and invert the Loewner
equation to find the corresponding driving function 	�t�.
For each eigenvector, we select curves by following a
nodal line, keeping lattice points at which the eigenvector
is positive to the right. Upon hitting the left boundary of the
lattice, the curve continues along the boundary, in such a
way that it can always be connected to the right-hand
boundary without crossing itself, until it reaches another
nodal line, which it then follows. The process is stopped
when the curve reaches any of the other boundaries. The
empirical driving is then computed by inverting the
Loewner equation. The results are shown in Fig. 5. The
fact that 	�t� generated from the curves has variance �t is
consistent with Brownian motion, and so with the SLE
interpretation. This is further supported by the observation
that 	�t� has a Gaussian value distribution (see the inset).
The best fit to the diffusion constant is � 	 5:3, which is
close to the theoretical value, � � 6, for the boundaries of
percolation clusters.

The fact that the crossing formula applies and the link
with SLE holds is evidence of conformal invariance. It is
natural to conjecture that this will extend to generic quan-
tum chaotic eigenfunctions in the semiclassical limit.
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FIG. 4 (color online). Numerically computed crossing proba-
bilities for map eigenvectors when N � 61, k1 � 0:01, and k2 �
0:02 (red diamonds) and 2000 realizations of the random wave
model (blue squares), compared with Cardy’s formula (solid
line).
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FIG. 5 (color online). Variance of 	�t� as a function of t. The
inset shows the distribution of the rescaled driving function for
t � 0:3 (red circles), t � 0:4 (blue squares), and t � 0:45 (green
diamonds) with the expected Gaussian shown as a solid line.
Here N � 61, k1 � 0:02, and k2 � 0:01.
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