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Abstract. We study the statistical distribution of nodal domains in the
eigenvectors of quantum chaotic maps in the semiclassical limit. For generic
quantum maps, which are believed to behave statistically like random matrices,
the nodal domains are described by an uncorrelated critical percolation model.
This leads to predictions for the distribution of the number, size and fractal
dimension of the nodal domains, which are tested numerically. Furthermore, we
find that the corresponding nodal lines can be modelled by stochastic Loewner
evolution (SLE) with parameter κ close to 6. Interestingly, the percolation model
and SLE are also found to describe the statistical properties of the nodal domains
for the quantum cat map, which is non-generic in that its spectral statistics do not
fall into any of the random matrix universality classes.
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1. Introduction

The quantum eigenfunctions of classically chaotic systems have a remarkably complex
morphology. Statistically, their fluctuations are believed to be described in the semiclassical
limit by Berry’s random wave model [1], which leads directly to predictions for local measures,
such as value distributions and correlations on length-scales that are of the order of the
de Broglie wavelength. More generally, the random wave model describes the statistical
properties of waves in complex geometries, with applications ranging from optics to the cosmic
microwave background.

One natural way to analyse the morphology of real, scalar eigenfunctions, for example the
eigenfunctions of time-reversal-symmetric systems, is via their separation into nodal domains—
connected regions in which the eigenfunctions have constant sign, separated from each other
by surfaces where the eigenfunctions vanish. This is a particularly useful way of visualizing
patterns in two-degree-of-freedom systems, where the nodal sets are lines separating two-
dimensional nodal domains.

There has recently been considerable interest in the statistical properties of nodal domains
in two-degree-of-freedom billiard systems. It was shown in [2] that fluctuations in the number
of nodal domains in different eigenfunctions have a normal distribution in classically chaotic
systems, and as such are different from those in classically separable systems. For chaotic
billiards, a critical percolation model based on Berry’s random wave model was proposed in [3],
and found to give accurate predictions for the nodal domain statistics. It predicts, for example,
the values of critical exponents associated with the area distribution and fractal dimensions
of the nodal domains. The statistics of the area-to-perimeter ratio of the nodal domains was
considered in [4], where the percolation model was found to describe the larger domains.

Despite the apparent success of the percolation model, it is unsatisfying in some ways.
A systematic derivation of the percolation model for billiard-type systems is still lacking.
Furthermore, a measure proposed by Foltin et al [5], relating to the distance of a nodal line from
a given reference curve, has been shown to have a different scaling behaviour to that expected
from the uncorrelated percolation model; and recent work by Aronovitch and Smilansky [6]
shows that the intersections of nodal lines with a reference curve have different statistics to those
which would be expected for a short-ranged percolation model. On the other hand, Bogomolny
and Schmit [7] have argued that the oscillations in the autocorrelation of random waves are
sufficient to justify the use of short-ranged percolation models.

With the aim of clarifying the connection between chaotic systems and percolation models,
we analyse here a critical percolation model for another class of model quantum chaotic
systems, namely quantum maps. For these we show that the percolation model follows directly
from the standard conjecture that generic quantum maps behave statistically like random
matrices [8], with no additional assumptions. Indeed, it follows from a weaker hypothesis
implied by the random-matrix conjecture. We are able to probe the percolation model for maps
numerically in significantly greater detail than has been achieved for billiard systems. In the
case of a family of maps for which the random matrix conjecture holds, the perturbed cat
maps, we find striking confirmation. The fact that the eigenfunctions of quantum maps are
so well described by a critical percolation model motivates the question: to what extent are
they conformally invariant? In this context, we show that their nodal lines are well modelled
by paths generated by stochastic Loewner evolution (SLE) with a diffusion constant close to 6.
We also explore these connections for a family of maps, the cat maps, which are nongeneric,
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in that they possess arithmetical (i.e. number theoretical) symmetries and so are not expected
to be described by random matrix theory. We find that the connection to percolation theory
and SLE is surprisingly robust in this context. The arithmetical symmetries render these maps
particularly amenable to rigorous analysis, and our results suggest that it might be interesting to
explore their nodal domains in this way.

For generic systems, which we expect to be described by random matrix theory, our
preliminary results and conclusions concerning the percolation model and the connection with
SLE were reported briefly in [9]. Here we present significantly more data in support of our
conclusions, and in particular, provide a new method for analysing them that considerably
improves the accuracy of the estimate of the diffusion constant in the comparison with SLE.
In addition, we provide full details of the calculations outlined in [9]. The results we present for
the cat maps, which are representative arithmetical systems, are also new.

This paper is structured as follows. In the next section, we will outline the percolation
model for maps introduced in [9] and describe the quantum perturbed cat maps, which will be
the basis of our numerical computations. In section 3, we discuss some numerical tests of the
percolation model, and sections 4 and 5 discuss results related to conformal invariance and SLE
that support the links proposed in [9].

2. The percolation model for maps

We consider dynamical systems acting on a periodic phase space. If the configuration space is
L-dimensional, points in the phase space are specified by the coordinate

x =

(
q
p

)
,

where q and p are the L dimensional position and momentum, respectively, and x ∈ T2L . Maps
of this phase space will have quantum eigenfunctions that are periodic, up to phases, in x. With
the requirement that all of these phases are zero, Planck’s constant is restricted to have values
h = 1/N , where N is an integer, and the eigenfunctions are of the form

|9〉 =

∑
Q∈�N

9(Q)|Q〉, (1)

where �N = (Z \ NZ)L , and

〈q|Q〉 =

∑
n∈ZL

δL

(
q −

Q
N

− n
)
. (2)

The Hilbert space is N L dimensional, and the quantum map is a unitary N L
× N L matrix in the

basis consisting of the9(Q) [10]. It will be our aim to use the values of the components of9 to
define a percolation model, by considering the discrete points in the support of the eigenfunction
to correspond with sites in a site percolation model. A site will be considered as occupied in the
event that the (real) eigenfunction is positive at this point.

We now use the key observation of [11]: in the case where the classical map is chaotic and
time reversal symmetric, the statistics of both the eigenvalues and eigenvectors of the quantized
map are expected to be given by the circular orthogonal ensemble (COE) of random matrices.
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Figure 1. Determining the connectivity of the nodal domains.

In particular, the distribution of normalized eigenvectors is uniform over the unit sphere in N L

dimensions under this assumption, that is, its probability density is

P(9)= δ

1 −

∑
Q∈�N

9(Q)2

 . (3)

The important feature of (3) for our purposes is its symmetry under the transformation9(Qi)→

−9(Qi) for any single component Qi ∈�N . This immediately suggests that 9(Qi) > 0 with
probability 1/2, independently of all other components. Hence, one can define an uncorrelated
percolation model for the nodal domains. Note that the independence here is an immediate
consequence of (3), rather than an assumption, as it is in the Bogomolny–Schmit theory [3, 7].

In the one-dimensional case, this percolation model was introduced by Keating et al [11].
The eigenfunctions are supported at points j/N , and are periodic under j → j + N . The
eigenfunctions then take the form of a periodic sequence of numbers 9( j), and the number of
nodal domains is equal to the number of sign changes in this sequence. With this definition of
the nodal domains, one can calculate explicitly the distribution of the number of nodal domains.
It is just the binomial distribution. One-dimensional percolation models do not, however, exhibit
critical behaviour, and as such this model cannot display the full range of behaviour apparent in
the model of [3].

Here we consider a generalization of the percolation model of [11] to the case where the
configuration space is two-dimensional. Care must be taken in choosing how the nodal domains
are defined in this case. In figure 1, all possible configurations of four adjacent signs, up to
rotations and sign inversions, are shown. There is an ambiguity in assigning the connectivity in
the third case. We choose the convention (see [9]) that Q is connected to Q ± e1, Q ± e2 and
Q ± (e1 + e2), where ei denotes the ith basis vector. With this choice of connectivity one obtains
a site percolation model on the triangular lattice, which is critical at site occupation probability
1/2 [12].

This is only one of many possible definitions of the percolation model. We may, for
example, deform the lattice by a transformation from the special linear group SL(2,Z).
However, as a coordinate transformation the result of this is simply a unitary transformation
of the basis |Q〉, which leaves the COE invariant and as such has no effect on the expected
eigenvector distribution.

In order to test the percolation model numerically, we consider quantizations of linear,
symplectic maps of the form

xn+1 = Mxn mod 1, (4)
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with

M =

(
A B
C D

)
, (5)

where A, B, C and D are nonsingular 2 × 2 matrices. This is a two-dimensional analogue of the
cat maps used in [11]. In order to justify the COE assumption, we choose maps which are time-
reversal symmetric and are hyperbolic. The hyperbolicity ensures that the maps are chaotic. The
quantization of maps in Sp(4,Z) can be performed by a generalization of the Hannay–Berry
method [10]. The resulting quantized map acts on the wavefunction expressed in the basis |Q〉:

9(Q2)=

∑
Q1∈�N

UQ2,Q19(Q1), (6)

where

UQ2,Q1 =

(
i

N

)L/2 √
det B exp

(
iπ

N

[
Q1 · B−1 A · Q1 + Q2 · DB−1

· Q2 − 2Q2 · (B t)−1
· Q1

])
×
〈
exp

(
iπ
[
Nm · B−1 A · m + 2Q1 · B−1 A · m − 2Q2 · (B t)−1

· m
])〉

m , (7)

where the notation v · V · v involving a vector v and square matrix V is to be understood as vt V v
and (·)t denotes the transpose. The notation 〈· · ·〉m introduced in (7) denotes an average over all
integer vectors m. We give the derivation of this result in the appendix.

The map chosen for numerical studies must be symplectic. This gives six constraints on the
matrix elements. In addition, one requires the map to be time-reversal symmetric. This implies

T MT = M−1, (8)

where T is the time-reversal operator

T =

(
I 0
0 −I

)
, (9)

which gives another five constraints. Hence, there are five free entries in the matrix. In addition
to these constraints, the matrix is required to be hyperbolic, and must satisfy the quantizability
conditions [13]

(AB t)i i = 0, mod 2, i = 1, 2, (10)

(C Dt)i i = 0, mod 2, i = 1, 2. (11)

With these requirements, a computer search in Mathematica was performed to find a suitable
map. One example which we shall work with is the map given by the matrix

M =


2 −2 −2 −1

−2 6 −1 0
16 −39 2 −2

−39 94 −2 6

 , (12)

which has eigenvalues

λ1 = 0.0736202 . . . , λ2 = 0.561177 . . . ,
1
λ1

= 13.5832 . . . , 1
λ2

= 1.78197 . . . .
(13)
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It is clear from (12) that the averaging over integer vectors in (7) can be performed easily in this
case, because detB = −1, and consequently all m in the average are equivalent.

In the case of the cat maps, it is known [10, 14] that the quantum cat map is periodic up
to a phase. This leads to non-generic eigenvalue statistics, which are inconsistent with the COE
assumption. It has been shown [13] that this also applies to maps of the four-torus (i.e. when
L = 2). To remedy this, we follow [11] in adding a nonlinear perturbation to the classical map.
The map is perturbed to have the form ρ ◦ M ◦ ρ, where ρ is the following nonlinear shear in
the momentum:

ρ


q1

q2

p1

p2

=


q1

q2

p1 + k1
4π cos 2πq1

p2 + k2
4π cos 2πq2

 . (14)

The perturbation is added in such a way as to keep the composite map time-reversal invariant.
The quantization of (14) is derived in appendix A.3, and is found to be a diagonal matrix in the
basis |Q〉. Combining (7) with (A.59), the quantization of the perturbed map is given by

UQ,Q′ = −
1

N
exp

[
2π i

N

(
Q ·

(
1 −3

−3 7

)
· Q + Q′

·

(
1 −3

−3 7

)
· Q′ + Q′

·

(
0 1
1 −2

)
· Q
)]

× exp
[

iN

4π

(
k1 sin

2πQ1

N
+ k1 sin

2πQ ′

1

N
+ k2 sin

2πQ2

N
+ k2 sin

2πQ ′

2

N

)]
. (15)

The time reversal symmetry can be seen clearly in (15) from the invariance under Q ↔ Q′. The
quantized map in (15) will be the basis of most of the numerical results presented in the sequel.
We will also present some results for the unperturbed cat maps (k1 = k2 = 0) for comparison.

The hyperbolic toral automorphisms are structurally stable [15]—the periodic orbits are
stable under perturbations. Consider perturbations of the map M . If we choose a constant a
such that

|λi |< a, i = 1, 2, (16)

the perturbed map, written in the form M + f , is hyperbolic provided that

max
x

(∣∣ ∂ f
∂x · x

∣∣
|x|

)
< 1 − a. (17)

For the map (15), this criterion can be applied to give limits on the values of the perturbation
parameters k1 and k2 such that the resulting map is hyperbolic. The domain where this is the
case is shown in figure 2.

We shall also show some calculations for the alternative map given by the matrix

M =


1 2 2 1

−1 5 1 1
4 −10 1 −1

−10 32 2 5

 (18)

with eigenvalues

λ1 = 0.11476 . . . , λ2 = 0.35505 . . . ,
1
λ1

= 8.7137 . . . , 1
λ2

= 2.8165 . . . .
(19)
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Figure 2. The limits on the size of the perturbation parameters k1 and k2 for
map (15).

The perturbed map can be quantized as described above, with the resulting quantized perturbed
map given by

UQ,Q′ =
i

N
exp

[
iπ

N

(
Q ·

(
2 −3

−3 8

)
· Q + Q′

·

(
2 −3

−3 8

)
· Q′

− 2Q′
·

(
1 −1

−1 2

)
· Q
)]

× exp
[

iN

4π

(
k1 sin

2πQ1

N
+ k1 sin

2πQ ′

1

N
+ k2 sin

2πQ2

N
+ k2 sin

2πQ ′

2

N

)]
. (20)

3. Numerical results

We are now equipped to study the nodal domain distribution for the eigenvectors of the quantum
maps (15) and (20), representative examples of which are shown in figure 3. In this study, one
may vary N and the perturbation parameters. When statistical averages are taken, they will be
taken over all eigenvectors of a given map. A further averaging over parameters may also be
taken, and this will be indicated in the text. We also show data for Monte Carlo simulations of
percolation on a 61 × 61 lattice in order to check for finite-size effects

The main numerical tools in this study are the Lapack package, which is used for the
numerical diagonalization of the map (15) and the Hoshen–Kopelman algorithm introduced
in [16], which is a fast method of counting the number of clusters.

3.1. Distribution of the total number of nodal domains

For any site percolation model, the number of clusters, which correspond to the nodal domains,
is expected to have a simple asymptotic form as the number of sites, S, tends to infinity. This is
given by [17]

n = ncS + b + O(S−1). (21)

Here b is a universal constant, dependent only on the geometry of the boundary and the
dimensionality of the underlying space, while nc is dependent on the lattice model and the type
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Q1

Q2

(a) ψ(2676) (b) ψ(2677)

(c) ψ(2678) (d) ψ(2679)

(e) ψ(2680) (f) ψ(2681)

Figure 3. A sequence of typical quantum eigenvectors for the map (15) with
k1 = 0.01 and k2 = 0.02. Each hexagonal face corresponds to one component of
the eigenvector. The blue hexagons correspond to negative components and the
red hexagons correspond to positive components. Two adjacent hexagons of the
same colour lie in the same nodal domain. The largest nodal domain in each case
is highlighted in yellow.

of percolation. In the geometry under consideration, the values of nc and b have been calculated
numerically by Monte Carlo methods [17]:

nc = 0.0176255(5), (22)

b = 0.8783(8). (23)
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Figure 4. The dependence of ν̄ on N 2 with a fit to the predictions of (21) for the
map (20) with k1 = 0.01 and k2 = 0.01. The linear fit gives values nc = 0.0176
and b = 0.7484.

For fixed values of k1 and k2, we consider the dependence of the mean and variance of the
number of nodal domains on N . The mean number of nodal domains, ν̄, is defined by

ν̄ =
1

N 2

N 2∑
i=1

νi , (24)

where νi denotes the number of nodal domains of the ith eigenvector. In figure 4, the behaviour
of ν̄ is shown for map (20) with k1 = 0.01 and k2 = 0.01 as a function of the number of sites,
N 2. By a least-squares linear fit we find nfit

c = 0.0176 and bfit
= 0.7484 in this case. These values

are in good agreement with the values in (22) and (23) computed by Ziff et al [17].
The variance of the number of nodal domains is defined for the quantum map eigen-

vectors by

var(ν)=
1

N 2

N 2∑
i=1

(νi − ν̄)2, (25)

and is expected to increase as 0.0309N 2 from the numerical results of Ziff [17]. The computed
values for map (20) with k1 = 0.01 and k2 = 0.01 are shown in figure 5. The linear fit gives
a value of

σ 2
fit = 0.0295N 2 + 2.80. (26)

For the map given in equation (15), these calculations were repeated for several values of
the perturbation parameters, and the value of the constant α in the equation var(ν)= αN 2 is
shown in table 1, along with values for nc and b. The average values calculated from table 1 are
as follows:

nfit
c = 0.0176, bfit

= 0.9(1), αfit
= 0.0304(7).

The numbers in brackets denote the standard deviations in the data. The error in nc is in the
next digit. These mean values are consistent with the calculations for critical percolation given
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Figure 5. The computed variance, var(ν) for the quantum map (20) with k1 =

0.01, k2 = 0.01. The fit gives the behaviour var(ν)= 0.0295N 2 + 2.80.

in [17]. For comparison, our Monte Carlo simulations of uncorrelated percolation on small
grids of dimension up to 61 × 61 resulted in the fit parameters nc = 0.0176, b = 0.964 and
α = 0.0292.

3.2. Area distribution of nodal domains

The area distribution of the nodal domains is expected to have the following asymptotic form
for clusters containing a large number of sites

n(a)� a−τ , (27)

where τ = 187/91 is the Fisher exponent and the symbol � denotes that each side of the
equation may be bounded by a constant multiple of the other side. This power law was tested
for eigenvectors of the quantum map (15). We define ni(a) as the number of clusters containing
a sites in the ith eigenvector. The average area distribution is then defined as

n̄(a) :=
1

N 2

N 2∑
i=1

ni(a). (28)

The results for k1 = 0.01 and k2 = 0.02 are shown in figure 6. The data show good agreement
with the expected power law behaviour apart from at small values of a, where the power law
behaviour is not expected to hold.

It is appropriate to make a comment at this point about how much we may read into this
apparent agreement. While the appearance of the power law scaling is encouraging, one cannot
extract the value of the exponent from data covering few orders of magnitude. Ideally, one must
examine the area distribution over a much larger range.

3.3. Fractal dimension of the nodal domains

The fractal dimension of critical percolation clusters is non-integer in the limit where the
lattice size tends to infinity, corresponding to the limit N → ∞ in our model. This was
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Table 1. The mean and variance of the number of nodal domains for varying
perturbation parameters.

k1 k2 b nc α

0.01 0.02 0.9803 0.0175 0.0314
0.01 0.03 0.8910 0.0176 0.0309
0.01 0.04 0.9273 0.0176 0.0313
0.01 0.05 0.7920 0.0176 0.0302
0.02 0.01 0.8282 0.0176 0.0308
0.02 0.03 0.9536 0.0176 0.0310
0.02 0.04 0.0517 0.0175 0.0303
0.02 0.05 0.9550 0.0176 0.0319
0.03 0.01 0.8650 0.0175 0.0297
0.03 0.02 0.9069 0.0176 0.0303
0.03 0.04 1.1184 0.0175 0.0299
0.03 0.05 0.9354 0.0176 0.0296
0.04 0.01 0.9023 0.0176 0.0297
0.04 0.02 0.8214 0.0176 0.0300
0.04 0.03 0.9182 0.0176 0.0292
0.04 0.05 0.8049 0.0176 0.0300
0.05 0.01 0.7977 0.0176 0.0300
0.05 0.02 0.9098 0.0176 0.0304
0.05 0.03 0.8564 0.0176 0.0303
0.05 0.04 0.6117 0.0177 0.0310

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

a

n̄
(a

)

Data
Theory

Figure 6. The calculated area distribution for map (15) with N = 61, k1 = 0.01
and k2 = 0.02. The straight line shows a power law decay with the theoretical
value τ = 187/91 predicted by percolation theory.

tested numerically for the eigenvectors of (15). We considered only the case N = 61 and for
each eigenvector found a numerical estimate of the fractal dimension of the largest nodal
domain.
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Figure 7. The computation of the fractal dimension for the largest nodal domain
of the eigenvector of the map (15) with values N = 61, k1 = 0.05 and k2 = 0.1
and eigenvalue φ = −2.3524. The computed value of the fractal dimension from
the linear fit is Dfit

= 1.8998.

In order to estimate the fractal dimension of the nodal domains, we use the box-counting
algorithm [18, section 3.1]. A regular square grid with spacing l is superimposed over the nodal
domain pattern, and the number of boxes, nb(l) intersected by the nodal domain is counted. The
value of nb(l) is then expected to vary according to the formula

nb(l)∝ l−D, (29)

where D is the fractal dimension of the nodal domain. The fractal dimension may then be
extracted by a linear fit to a log–log plot. We use only a 60 × 60 section of the nodal domain.
This ensures that the number of lattice points in each box is an integer, provided we choose l as
a factor of 60.

As an example of the method, we now consider one eigenvector of the map (15) with
parameters N = 61, k1 = 0.05 and k2 = 0.01 (a more statistical approach will follow). In
figure 7, a log–log plot of nb(l) versus l is shown for the largest nodal domain. In this case
the slope yields a fractal dimension of Dfit

= 1.8998. This is close to the theoretical value of
D = 91/48(= 1.8958 . . .), especially when one takes into consideration the fact that the data
cover only a small range in l. In order to check that this is not a coincidence, we now consider
ways of combining the data for all eigenvectors.

A cumulative plot of the fractal dimensions of the largest nodal domains is shown in
figure 8. This shows, for a given value of D, the fraction Dc(D) of eigenvectors such that
Dfit 6 D, for a given set pair of perturbation parameters. In this case, one finds a mean
fractal dimension of 1.8579 with a variance of 0.0099. The same calculation for eigenvalues
of map (20) with k1 = k2 = 0.01 gives fractal dimension 1.85(10).

In figure 9, this distribution is shown for several values of the perturbation parameters.
The average fractal dimension over all perturbation parameters and all eigenvalues is equal to
Dfit

av = 1.8571, and the variance is 0.0101. Therefore, there is a statistical error of ±1 in the first
decimal place. The computed fractal dimension is within a standard deviation of its theoretically
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k2 = 0.02. The mean fractal dimension for this set of parameters is D̄ = 1.8579
and its variance is var(D)= 0.0099.
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Figure 9. The cumulative fraction of eigenvectors Dc(D) whose largest nodal
domains have fractal dimension less than D for (15) with N = 61 and 20
different pairs of perturbation parameters k1, k2 ∈ [0.01, 0.05]. There is close
agreement between the curves for different perturbation parameters

predicted value. For comparison, the simulations of uncorrelated percolation on a 61 × 61 lattice
gave a mean fractal dimension of 1.8582 with variance 0.099. This shows that the difference
between the computed fractal dimension and the theoretical value can be attributed to finite-size
effects. As is seen in figure 9, the cumulative distributions of the fractal dimensions agree very
closely for all values of the parameters.
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a function of the number of sites, N 2. The straight line fit gives values for
nc and b.

3.4. The unperturbed cat map

The cat maps themselves do not conform to the random matrix expectations [14]. Instead,
they are representative examples of arithmetic systems in which additional non-generic
number theoretical symmetries lead to atypical eigenvalue and eigenvector statistics (see,
for example [19]). (Indeed, in certain circumstances these symmetries can survive nonlinear
perturbations [20].) An additional complication arises in that there are many values of N for
which a nonvanishing proportion of the eigenvalues are exactly degenerate [10, 14, 21]. This
leads to an ambiguity in the assignment of eigenfunctions. In this study, we restrict our attention
to values of N which give non-degenerate eigenvalues.

The data for the unperturbed map given by (15) with k1 = k2 = 0 were also compared with
the predictions (21)–(23) for the mean number of nodal domains. The data for the mean number
of nodal domains are shown in figure 10. The linear fit gives the values

nfit
c = 0.01757, bfit

= 0.9102.

These values are in good agreement with the predictions in (22) and (23), so at this level the
perturbed and unperturbed maps are similar. The supposed universality of b would then suggest
that these two models lie in the same universality class, in spite of the presence of arithmetical
symmetries. A similar analysis of the behaviour of var(ν) as a function of N gives the value
αfit

= 0.3838N 2, which is larger than the value in the perturbed case. For the map given by (20)
analogous results are not available, because of a lack of values of N giving non-degenerate
eigenvalues and hence a lack of points to extract the straight line fits.

One may also consider the area distribution of the nodal domains of the unperturbed map.
As with the results for the perturbed cat maps, shown in section 3.2, one finds that the area
distribution shows the expected power law behaviour. This is shown in figure 11. These results,
and others to follow, indicate that the percolation model also applies to the cat maps themselves.
It is worth emphasizing in this context that our justification of the percolation model only
requires the joint eigenvector-component probability density (3) to be invariant under the sign
flip 9(Qi)→ −9(Qi) for any single component Qi ∈�N , independently of the signs of the
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Figure 11. The calculated area distribution for the unperturbed map (15).

other components. This is much weaker than the full random-matrix assumption (from which it
follows as a consequence), and may well still hold for the cat maps and other arithmetic quantum
chaotic systems.

4. Conformal invariance and SLE

A recent development in two-dimensional critical systems is the application of conformal
invariance. This allows the calculation of a number of interesting quantities, such as the crossing
probability considered in [22]. This measures the probability that, for critical percolation in
a given domain, there is a percolation cluster connecting two disjoint arcs on the domain
boundary. Here, we test the crossing formula for the map eigenfunctions. In this case, we
consider the probability that there is a nodal domain connecting a fixed section of length x
at Q2 = 0 to Q2 = N − 1, as shown in figure 12.

The method applied in [22] is to find a conformal map which takes the domain to the
upper half of the complex plane. The points on the boundary are then mapped to points z j ,
j = 1, . . . , 4 on the real line. This map is not unique, however, as the upper half-plane is
invariant under the real Möbius transformations

z →
az + b

cz + d
, a, b, c, d,∈ R.

The crossing probability is then a function of the cross ratio η, an invariant under these
transformations defined as

η =
(z2 − z1)(z4 − z3)

(z3 − z1)(z4 − z2)
. (30)

The crossing formula is expressed in terms of the cross ratio as [22]

π((z1, z2), (z3, z4))=
30(2/3)

0(1/3)2
η1/3

2 F1(1/3, 2/3; 4/3; η), (31)

where 2 F1 is a hypergeometric function [23, 15.1.1].
In order to compare our results with this formula, we must decide how the boundaries of

the domain are defined. We have previously been analysing the nodal domains on the torus,
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Figure 12. The geometry for evaluating the crossing probabilities πh and πhv.
The crossing probability πh is the probability of a nodal domain occurring
which touches the boundaries of the parallelogram in the arcs AB and CD. The
probability πhv is the probability that a nodal domain touches the boundary in
each of the arcs AB, BC, CD and DA. The parameter x varies between 0 and 2,
with values x > 1 corresponding to when point B lies on the lower boundary.

while the crossing formula applies to domains with boundaries. We will therefore analyse
the nodal domains in the absence of the periodicity requirement, and consider the domain as
06 Qi 6 N − 1 for i = 1, 2. This changes the assignment of the nodal domains.

Furthermore, we need to find a conformal transformation taking the resulting domain to the
upper half-plane. Such a transformation is derived in [24], where it is found that a map taking
H to the domain we consider is given by the Schwartz–Christoffel transformation

f (z)=

√
3

2

∫ z

0
t−1/3(1 − t)−2/3(1 − t/2)−1/3 dt, (32)

where the branch is chosen such that each of the factors t , (1 − t) and (1 − t/2) have
argument π if they are real and negative. The map from the parallelogram to the upper half-
plane is then given by f −1. This transformation gives the cross ratio η in terms of x , and allows
the measured frequency of crossings to be compared with the Cardy crossing formula (31).

The results for the crossing formula are shown in figure 13. The data were obtained by
counting the number of eigenvectors of the map (15) containing a crossing of the type shown in
figure 12, as a fraction of the total number of eigenvectors.

By making the assumption that we obtain the number of crossings of this type by making
N 2 trials of a Bernoulli process with probability given by the Cardy crossing formula, it is
possible to make error estimates and find whether the data lies within a given confidence interval
of the predicted curve. The probability of there being a crossing in any particular realization is
given by πh(η), and hence the probability of there being n realizations containing a crossing is
given by the binomial distribution

p(n, N 2)=

(
N 2

n

)
πh(η)

n(1 −πh(η))
N 2

−n, (33)
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Figure 13. Numerics for the crossing formula for map (15) with N = 61
and varying perturbation parameters, compared with the crossing formula
prediction. The green lines show the upper and lower confidence limits given
by equation (35).

where (a
b ) is the binomial coefficient giving the number of combinations when choosing b

objects out of a total of a possibilities. The binomial distribution tends to a Gaussian for large
N 2. In this case, the distribution of x = n/N 2 is given asymptotically by

P{n/N 2
= x} ∼

N
√

2ππh(η)(1 −πh(η))
exp

(
−

N 2(x −πh(η))
2

2πh(η)(1 −πh(η))

)
. (34)

This is used to put a 95% confidence interval on the measured value of x , which is

πh(η)− 1.96σcross < x < πh(η)+ 1.96σcross, (35)

where the standard deviation σcross for the distribution (34) is given by:

σcross =

√
πh(η)(1 −πh(η))

N
. (36)

The data obtained for a particular realization of the map (15) are shown in figure 13, along
with the errors obtained from formula (35). Any points lying outside these errors would indicate
an error either in the assumed probability function or the assumption that the eigenvectors
are independent. As seen in the figures, this only occurs for small x , where the effects of
the underlying discrete lattice will be most apparent. This difference is attributable to finite
size effects, as demonstrated in figure 14 for data obtained from Monte Carlo simulations of
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Figure 14. Number of crossings as a function of x from Monte Carlo
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crossing formula (31). This shows deviations from the Cardy crossing formula
which lie outside the confidence interval at low values of x .
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Figure 15. Numerics for the crossing formula for map (20), compared with
the crossing formula prediction (31). The outer lines show the upper and lower
confidence limits given by equation (35).

percolation on a 61 × 61 lattice. In this case we also find deviations from the Cardy crossing
formula for small x . These calculations were also repeated for the map given in (20), and the
results are shown in figure 15.

5. SLE calculations

Stochastic Loewner evolution or Schramm–Loewner evolution (SLE), introduced in [25],
is a process for generating self-similar, non self-intersecting curves in two dimensions from a
stochastic differential equation. We shall concentrate on the case of chordal SLE, which relates
to curves in the upper half of the complex plane, henceforth referred to as H.

We consider a curve γ growing from the origin in H∪ {0}. The main idea of this method
is that one can fully describe a given section of the curve by the conformal map g :H \ γ →H.
This conformal map is unique provided that it is required to satisfy the additional condition

lim
z→∞

(g(z)− z)= 0. (37)
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The Laurent expansion of such a map around z = ∞ is consequently required to have the form

g(z)= z +
∞∑

i=1

ai

zi
, (38)

where the first term in this expansion, a1, gives a measure of the ‘size’ of the domain which
is removed by this map. By defining a ‘time’, t such that a1(γ ([0, t]))= 2t , the growth of
the curve may be completely described by the following differential equation for the conformal
map gt :

∂gt(z)

∂t
=

2

gt(z)− ξt
, (39)

where the tip of the curve γ ([0, t]) is mapped to ξt ∈ R. This is the Loewner differential
equation. One can substitute an arbitrary continuous function for ξt and the resulting conformal
maps will describe the growth of a curve in H.

The innovation of Schramm was to allow ξt to be a stochastic variable. Under the condition
that the curves are conformally invariant and are statistically unchanged under reflection through
x = 0, the only possibility for ξt is that it is proportional to a one-dimensional Brownian motion,
i.e. ξt =

√
κBt . The conformal maps then satisfy the stochastic differential equation

∂gt(z)

∂t
=

2

gt −
√
κBt

, g0(z)= z. (40)

The curve is recovered from the map gt using γ (t)= limz→
√
κBt g−1

t (z). This gives a family of
conformally invariant curves generated by a process which is parameterized by κ , and is denoted
SLEκ .

It has been proven by Smirnov [26] that the boundaries of critical percolation clusters
for site percolation on the triangular lattice are described by SLE6. This should also be
true of the boundaries of nodal domains of the quantum map eigenfunctions. We verify this
numerically, following the methods of [27]. The process of extracting a putative SLE trace
from an eigenfunction is shown in figure 16. A nodal line is defined as the boundary between
hexagons with opposite signs. The trace follows a nodal line beginning in the column Q2 = 0
until such a time as it returns to the column Q2 = 0 or alternatively hits one of the other
boundaries. In the first case, the boundary is followed until such a time as another nodal line is
reached, which is then followed into the domain. In the second case, the process is terminated,
and we have our complete trace.

In order to extract the forcing function from the trace, a modified version of the ‘Zipper’
algorithm introduced in [28] is used. This method is reliant on an explicit solution [29] of the
Loewner equation with the driving function

ξt = 2[%t]1/2. (41)

The map gt which solves this equation is given implicitly by

H(gt/t1/2)= 2 ln(z/t1/2), (42)

where

H(G) :=
2y+ ln(G − y−)− 2y− ln(G − y+)

y+ − y−

(43)

with y± = %1/2
± (% + 4)1/2.
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Figure 16. Computing the putative SLE trace from an eigenfunction of the
quantum map. A nodal line beginning in the first column is followed until it
again reaches this column. The boundary is then followed until another nodal
line is reached, and the process continues as before.

The tip of the growing curve at time t is given by the point at which gt(γ (t))= ξt . Hence,
the curve γ (t) defined by equation (42) is given by [29]

γ (t)= Bt1/2, (44)

where the coefficient is given by

B = 2
(
(% + 4)1/2 + %1/2

(% + 4)1/2 − %1/2

)(1/2)(%1/2/(%+4)1/2)

exp
[

1

2
π i

(
1 −

%1/2

(% + 4)1/2

)]
. (45)

The trace corresponding to the driving function (41) is a straight line starting from the origin at
an angle

θ =
π

2

(
1 −

%1/2

(% + 4)1/2

)
to the real axis. Using this formula, it is straightforward to obtain the parameters % and t which
give a conformal map to absorb a given straight line growing from the boundary. This is shown
in figure 17. The main computational difficulty then lies in inverting (42) in order to find
the mapping of the remaining points. This is achieved using Newton’s method, as described
in [28, section 4].

The result of the calculations is a series of times and values of % for each straight line
section as it is absorbed. These may then be used to obtain a value of the forcing function at any
time until the process is stopped. In order to study the statistics of the forcing function, we may
only consider times up to the first time any of the traces reaches the boundary. It is important
to note that this approach is only valid in the case where the trace corresponds to SLE6, as this
has the important locality property (see, for example [30]). This means that the distribution of
its trace in a domain with a boundary is identical to that in the half-plane until the trace touches
the boundary. If this property did not hold, we would have to consider instead an SLE process
confined to the parallelogram. The property of locality is unique to SLE6.
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Figure 17. The line of singularities for maps derived from the Loewner
differential equation with the forcing given by (41).

In order to extract the value of κ from the map eigenfunctions, the forcing function was
calculated for traces taken from each of the eigenfunctions. The statistics of the forcing function
then gives a test of the applicability of the SLE description. The most important statistics
are those for the mean and variance of ξt . According to the SLE description, these should be
given by

〈ξt〉 = 0, 〈ξ 2
t 〉 = κt. (46)

In figure 18, the data for 〈ξ 2
t 〉 are plotted as a function of

√
t for map (15) with k1 = 0.02,

k2 = 0.01. Also shown in this plot are data from Monte Carlo simulations of percolation. In the
time range where both the cat map eigenfunction data and the Monte Carlo simulation data are
available, the variances of the driving functions can be seen to be in close agreement. However,
the best fit to the data from the cat map eigenfunctions is unstable, and we instead make a fit
to the percolation data. This results in the dependence 〈ξ 2

t 〉 = 5.9t + 6.4
√

t , giving a value of
κ = 5.9. This shows that the behaviour of the forcing function is consistent with the expectation
that it is given by SLE6. We note that this type of fit gives a significantly more stable and accurate
result for κ than that originally used in [9]. For another refinement that also improves the fitting
process, see [31]. The data for the quantum map (20) is shown in figure 19. The fit to this data
gives 〈ξ 2

t 〉 = 6.4t + 1.4
√

t − 1.3, again in agreement with the conjectured SLE6 behaviour.
We have also repeated these numerical experiments for the (unperturbed) quantum cat

maps. The data for the unperturbed map (20) are shown in figure 20, and in this case we find
that a fit to the data gives 〈ξ 2

t 〉 = 5.8t + 2.7
√

t − 1.5, again supporting the conjectured SLE6

model for the statistical properties of the nodal lines. It would be most interesting if this could
be proved using the arithmetical techniques available in this case (see, for example [19]).

Appendix. Quantization of torus maps

In this appendix, the quantization procedure used to obtain the quantized map (15) will be
explained. First, the quantization of linear hyperbolic maps of the plane will be derived. The
restriction of these quantum maps to the torus will then be computed and from this we will find
the higher dimensional analogues of the quantized cat maps.

The cat maps are chaotic, linear maps of the torus T2L , and may be written in the following
form:

M :
(

q
p

)
→

(
A B
C D

)(
q
p

)
mod 1, (A.1)
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Figure 18. The variance of the forcing function for eigenfunctions of the
quantum map (15) with k1 = 0.02 and k2 = 0.01. Also shown is the variance
of the forcing function for Monte Carlo simulations of percolation with a fit
of the form ξt = κmt + ct1/2. The least-squares fit gives the values κm = 5.9 and
c = 6.4. The inset figure shows the difference between the driving function of
the perturbed cat map and the percolation simulation, expressed as a fraction
of the perturbed cat map driving function. Note that the perturbed cat map data
terminate at

√
t ' 2.5 in the main plot.

where A, B,C and D are integer L × L matrices and q, p are L dimensional vectors. The
condition that M is an integer matrix derives from the requirement that two points which are
equivalent under translation by an integer vector should transform identically under the action
of M . The requirement that the map is symplectic gives the following conditions:

ADt
− BC t

= I, (A.2)

C Dt
= DC t , (A.3)

C t A = AtC. (A.4)

As discussed in the text, the eigenvectors of the quantized map should be periodic up to a phase
factor. For simplicity, the phase factors are chosen to be zero in this case, giving

ψ(q + ei)= ψ(q), (A.5)

ψ̃(p + ei)= ψ̃(p), (A.6)

where ei are unit vectors in each of the basis directions. (For quantization with other choices of
the phases, see [32].)

A constructive method for finding the quantization of the classical map was also proposed
in [13]. The method used is a Weyl quantization based on the centre and chord representations
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Figure 20. Forcing for unperturbed map (20) with N = 83. The inset shows
the difference between the measured variance and the fit given by 〈ξ 2
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of the classical maps. Quantization conditions for multidimensional cat maps were also derived
in [13]. In this work, we will prefer an alternative method of quantization which is an extension
of the Hannay–Berry method [10] to higher dimensions. This has the advantage that it works
directly with the phase space representation of the map.
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A.1. Quantization on the plane

In the case where C is a nonsingular matrix, the map M may be decomposed as follows:(
A B
C D

)
=

(
I AC−1

0 I

)(
0 −I
I 0

)(
I DC t

0 I

)(
C 0
0 (C t)−1

)
. (A.7)

Each of the matrices in this decomposition may be quantized on the plane by finding the
Hamiltonian which generates the flow, and then solving the corresponding Weyl-ordered
Schrödinger equation. There are three types of matrix in the decomposition (A.7):

M1 =

(
I X
0 I

)
, M2 =

(
0 −I
I 0

)
, M3 =

(
Y 0
0 (Y t)−1

)
. (A.8)

The propagator for matrices of type M1 may be found by considering the time evolution
given by the equations(

q
p

)
→

(
I Xt
0 I

)(
q
p

)
, (A.9)

where X is a symmetric matrix due to the requirement that M1 is symplectic. This time evolution
can be generated from Hamilton’s equations using the Hamiltonian

H1 =
1
2p · X · p. (A.10)

The quantization of the map M1 may then be obtained as the quantum propagator of a system
with Hamiltonian H1 for t = 1. The propagator is given by

ÛM1 = exp

(
−

iĤ1

h̄

)
,

= exp
(

−
ip̂ · X · p̂

h̄

)
. (A.11)

In the momentum representation, this may be written as

〈p′
|ÛM1|p〉 = δ(p − p′) exp

(
−

ip · X · p
h̄

)
. (A.12)

The propagator in the position representation is obtained by inserting the identity

〈q|p〉 = (2π h̄)−L/2 exp
(

iq · p
h̄

)
, (A.13)

and integrating to obtain

〈q′
|ÛM1|q〉 =

∫ ∫
〈q′

|p′
〉〈p′

|ÛM1|p〉〈p|q〉dLp dLp′,

=
1

(2π h̄)L

∫ ∫
e(ip

′
·q′/h̄)δ(p − p′) e−

ip·X ·p
h̄ e−

ip·q
h̄ dLp dLp′,

=
1

(2π h̄)L

∫
exp

[
i

h̄

(
p · (q′

− q)− p · X · p
)]

dLp, (A.14)

where use has been made of equation (A.13). The remaining integral is a Gaussian integral
which may be evaluated to give

〈q′
|ÛM1|q〉 =

1

(2π h̄i)L/2
√

det X
exp

(
i

2h̄
(q − q′) · X−1

· (q − q′)

)
. (A.15)
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The map M2 may be considered as the t = 3π/4 case of the time evolution given by(
q
p

)
→

(
I cos t I sin t

−I sin t I cos t

)(
q
p

)
. (A.16)

This time evolution may be derived from the Hamiltonian

H2 =
p2 + q2

2
, (A.17)

which is the Hamiltonian for a multidimensional harmonic oscillator. The propagator for the
one-dimensional harmonic oscillator is given, for example in [33], by

〈q ′
|Û |q〉 =

1
√

2π h̄
exp

(
−

iπσt

4

)
| sin t |−1/2 exp

(
i
(q2 + q ′2) cos t − 2qq ′

2h̄ sin t

)
, (A.18)

where σt = 2ν + 1 for νπ < t < (ν + 1)π . The matrix M2 does not mix different components
of the position and momentum, so the propagator for the L dimensional system is simply the
product of several one-dimensional propagators:

〈q′
|e−iH2t/h̄

|q〉=
1

(2π h̄)L/2
exp

(
−

iπLσt

4

)
| sin t |−L/2 exp

(
i
(q2 + q′2) cos t − 2q · q′

2h̄ sin t

)
. (A.19)

Setting t = 3π/4 in this expression gives

〈q′
|ÛM2|q〉 =

1

(2π h̄)L/2
exp

(
iq · q′

h̄
−

3π iL

4

)
. (A.20)

Finally, the propagator for matrices of type M3 may be considered as the t = 1 quantum
propagator for classical motion given by(

q
p

)
→

(
eZt 0
0 e−Z t t

)(
q
p

)
, (A.21)

where Z is a matrix defined such that eZ
= Y . The Hamiltonian which generates this classical

motion is given by

H3 = p · Z · q, (A.22)

which leads to a Weyl-ordered Hamiltonian given by

Ĥ 3 = q̂ · Z t
· p̂ −

ih̄ Tr Z

2
. (A.23)

The wavefunction may then be found by solving the time-dependent Schrödinger equation
derived from this Hamiltonian, given by(

q · Z t
·
∂

∂q
+

Tr Z

2
+
∂

∂t

)
ψ(q, t)= 0. (A.24)

Define a matrix S containing the right eigenvectors of Z t such that S−1 Z t S = V where V is
a diagonal matrix containing the eigenvalues of Z t . By making the coordinate transformation
r = Stq in (A.24) one may obtain(

r · V ·
∂

∂r
+

Tr Z

2
+
∂

∂t

)
ψ ′(r, t)= 0, (A.25)
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26 (
L∑

i=1

∂

∂si
+

Tr Z

2
+
∂

∂t

)
χ(s, t)= 0, (A.26)

where the second equation is obtained by a coordinate transformation r = exp(V s). Now define
an orthogonal matrix R such that the top row is given by

R1,i =
1

√
N
, (A.27)

and make a further coordinate transformation x = Rs/
√

N to obtain the equation(
∂

∂x1
+
∂

∂t
+

Tr Z

2

)
F(x, t)= 0. (A.28)

This has the solution

F(x, t)= G(x1 − t, x2, . . . , xL) exp
(

−
Tr Z(x1 + t)

4

)
. (A.29)

By solving this equation with the initial condition ψ(q, 0)=8(q), and substituting back for x
in terms of q we obtain the solution

ψ(q, t)= exp
(

−
Tr Zt

2

)
8(Y −1q). (A.30)

This means that the quantum propagator, in the position representation, may be written as

〈q′
|UM3|q〉 =

1
√

det Y
δ(q − Y −1q′). (A.31)

A unitary map corresponding to the composition of two classical maps is given, up
to a constant phase, by the product of their corresponding quantum maps. By using the
decomposition (A.7) and inserting the identity operator

∫
|q〉〈q|dq three times, we obtain the

following formula for the quantized map on the plane, under the assumption that the matrices
A, B, C and D are non-singular:

〈q2|U |q1〉 =

∫ ∫ ∫
(ih)−L/2√
det(AC−1)

exp
[

i

2h̄

(
(x1 − q2) · C A−1

· (x1 − q2)
)]

×
1

hL/2
exp

(
ix1 · x2

h̄
−

3π iL

4

)
(ih)−L/2

√
det(DC t)

× exp
[

i

2h̄
(x3 − x2) · (C

t)−1 D−1
· (x3 − x2)

]
δ(q1 − C−1x3)

√
det C

dx3 dx2 dx1. (A.32)

The integral over x3 may be performed using the properties of the Dirac delta function. First,
we choose a basis in x3 which consists of the eigenvectors of C . Then use the fact that
δ(ax)= δ(x)/|a|, where a is a constant. The integral over x3 gives

〈q2|U |q1〉 =

√
det C

det(AD)

(
1

ih3

)L/2 ∫ ∫
exp

[
i

2h̄

(
(x1 − q2) · C A−1

· (x1 − q2)
)]

× exp
[

i

2h̄

(
2x1 · x2 + (Cq1 − x2) · (C

t)−1 D−1
· (Cq1 − x2)

)]
dx2 dx1. (A.33)
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The substitutions y1 = x1 − q2 and y2 = x2 − Cq1 in (A.33) give an equation which, after
completing the square and using the symplectic condition (A.4) in the form (C t)−1 At

= AC−1,
may be written as

〈q2|U |q1〉 =

√
det C

det(AD)

(
1

ih3

)L/2 ∫ ∫
exp

[
−

i

2h̄
(y2 + Cq1) · AC−1

· (y2 + Cq1)

]

× exp
[

i

2h̄
(y1 + AC−1(y2 + Cq1)) · C A−1

· (y1 + AC−1(y2 + Cq1))

]
× exp

[
i

2h̄
y2 · (C t)−1 D−1

· y2 + 2q2 · (y2 + Cq1)

]
dy2 dy1. (A.34)

Performing the Gaussian integration over y1 in this formula gives

〈q2|U |q1〉 =
1

det D

(
1

h

)L

exp
(

i

2h̄
(2q2 · C · q1 − q1 · C t A · q1)

)∫
dy2

× exp
[

i

2h̄

(
y2 · [(C t)−1 D−1

− AC−1]y2 − 2y2 · A · q1 + 2q2 · y2

)]
. (A.35)

Using the symplectic conditions again, it can be shown that (C t)−1 D−1
− AC−1

= −B D−1. By
using this in (A.35) and completing the square, we obtain

〈q2|U |q1〉 =
1

det D

(
1

h

)L

exp
[

i

2h̄
(2q2 · Cq1 − q1 · C t A · q1 + (Aq1 − q2) · DB−1

· (Aq1 − q2))

]
×

∫
exp

[
−

i

2h̄
(y2 + Aq1 − q2) · B D−1

· (y2 + Aq1 − q2)

]
dy2. (A.36)

Integration over y2 and the identity At DB−1 A − C t A = B−1 A, which again follows from the
symplectic conditions, lead to our final expression for the propagator

〈q2|U |q1〉 =
iL/2

√
hL det B

exp
[

i

2h̄
(q2 · DB−1

· q2 + q1 · B−1 A · q1 − 2q2 · (B t)−1
· q1)

]
. (A.37)

This propagator is valid for all linear, hyperbolic maps on the plane with nonsingular A, B,
C and D.

A.2. Quantization on the torus

Now consider the quantum equivalent of a classical map on the 2L-dimensional torus.(
qn+1

pn+1

)
=

(
A B
C D

)(
qn

pn

)
mod 1. (A.38)

As discussed in section 2, the periodicity of the phase space restricts the wavefunctions to be
supported on a discrete set of points in both position and momentum. The action of the plane
propagator (A.37) on a wavefunction is given by

ψ(q2)=

∫
〈q2|U |q1〉ψ(q1) dq1, (A.39)
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Taking an eigenfunction of the form (1), we find that the quantum map takes ψ(q1) to ψ(q2),
given by

ψ(q2)=
(iN )L/2

√
det B

exp
[
iπNq2 · DB−1

· q2

] ∑
Q1∈�N

9(Q1)

× exp
[

iπ

N
(Q1 · B−1 A · Q1 − 2Nq2 · (B t)−1

· Q1)

]
hN (q2,Q1), (A.40)

where

hN (q2,Q1)=

∑
l∈ZL

exp
[

iπN

(
l · At(B t)−1

· l + 2
(

AQ1

N
− q2

)
· (B t)−1

· l
)]
. (A.41)

This sum may be evaluated by writing l = m + 2B tn, where m is an integer point in the
transformation of the unit cell, �, by the matrix 2B t , and n ∈ Z L . This gives

hN (q2,Q1)=

∑
m∈2B t�

exp
[

iπN

(
m · At(B t)−1

· m + 2
(

AQ1

N
− q2

)
· (B t)−1

· m
)]

×

∑
n∈Z L

exp
[

iπN

(
4m · At

· n + 4n · B At
· n + 4

(
AQ1

N
− q2

)
· n
)]
. (A.42)

The second sum can be evaluated using the Poisson summation formula,∑
l∈Z L

f (l)=

∑
l′∈Z L

∫
x∈RL

f (x) exp(2π il′ · x) dLx. (A.43)

We observe that in (A.42) the majority of the terms are integer multiples of 2π . Hence the sum
over n becomes∑
n∈ZL

exp (−4π iNn · q2) =

∑
n′∈Z L

∫
x∈RL

exp
(
2π ix · n′

− 4π iNx · q2

)
dLx,

=

∑
n′∈Z L

δL
(
n′

− 2Nq2

)
,

=
1

(2N )L

∑
n′∈Z L

δL

(
q2 −

n′

2N

)
, (A.44)

where (A.43) has been utilized in the second line. Consequently, each component of q2 is
restricted to be a half-integer multiple of 1/N .

The function hN may now be rewritten as

hN (q2,Q1)=
1

(2N )L

∑
n′∈Z L

∑
m∈2B t�

exp (i8(m)) δL

(
q2 −

n′

2N

)
, (A.45)

where

8(m) := Nπ

(
m · At(B t)−1

· m + 2
(

AQ1

N
−

n′

2N

)
· (B t)−1

· m
)
. (A.46)
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Consider the change in the phase 8(m) when m is shifted by B te j , where e j is a unit vector in
the direction of the j th Cartesian axis. This gives

8(m + B te j)−8(m)= Nπe j · B At
· e j + 2Nπe j · At

· m + 2π
(

AQ1 −
n′

2

)
· e j ,

= Nπ(B At) j j −πn′

j + 2πl, (A.47)

where l is an integer. In order that the sum over m in (A.42) is nonzero, the change in phase
must be an integer multiple of 2π . Hence, the sum is nonzero only if

N (B At) j j − n′

j = 0 mod 2 ∀ j ∈ {1, . . . , L}. (A.48)

The map is quantizable if ψ(q2) is supported at points Q2/N with Q2 ∈ Z L . This implies that
each component of n′ is even, and if the map is to be quantizable for all N we require

(AB t) j j = 0 mod 2 ∀ j ∈ {1, . . . , L}. (A.49)

We note that the number of integer points in 2B t� is 2LdetB. This leads to our final expression
for hN :

hN (q2,Q1)=
det B

N L

∑
Q2∈Z L

δL

(
q2 −

Q2

N

)

×

〈
exp

[
iπN

(
m · At(B t)−1

· m + 2
(

AQ1

N
−

Q2

N

)
· (B t)−1

· m
)]〉

m

, (A.50)

where the angle brackets denote averaging over integer vectors m. Substituting this into (A.40)
leads to

ψ(q2)=

∑
Q2∈Z L

∑
Q1∈N�

UQ2,Q19(Q1)δ
L

(
q2 −

Q2

N

)
, (A.51)

with

UQ2,Q1 =

(
i

N

)L/2 √
det B exp

(
iπ

N

[
Q1 · B−1 A · Q1 + Q2 · DB−1

· Q2 − 2Q2 · (B t)−1
· Q1

])
×
〈
exp

(
iπ
[
Nm · B−1 A · m + 2Q1 · B−1 A · m − 2Q2 · (B t)−1

· m
])〉

m . (A.52)

This is the quantization of the unperturbed map in L dimensions. This map has the property that
UQ2+Nn,Q1 = UQ2,Q1 . Hence, the transformed wavefunction may be written as

ψ(q2)=

∑
Q2∈�N

∑
Q1∈�N

UQ2,Q19(Q1)〈q2|Q2〉. (A.53)

This shows that the quantum propagator on the torus is equivalent to an N L
× N L matrix

transformation of the functions 9(Q).

A.3. Perturbed cat maps

As shown by Keating [14], the arithmetic symmetries of cat maps lead to a non-generic
spectrum. In [11, 34] these symmetries were removed by the addition of a small non-linear
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perturbation of the map. The perturbation used was a shear in the momentum. An analogous
perturbation for the hyperbolic toral automorphisms is

ρ


q1

q2

p1

p2

=


q1

q2

p1 + k1
4π cos 2πq1

p2 + k2
4π cos 2πq2

 . (A.54)

This perturbation is periodic under q → q + m, where m is an integer vector. The quantum
propagator for this evolution may be found by considering the continuous-time evolution given
by

ρt


q1

q2

p1

p2

=


q1

q2

p1 + k1t
4π cos 2πq1

p2 + k2t
4π cos 2πq2

 . (A.55)

This time evolution is generated by the Hamiltonian

Hk1,k2 = −
k1

8π2
sin 2πq1 −

k2

8π2
sin 2πq2, (A.56)

and consequently the evolution operator corresponding to (14), which is given by ρt=1, is

〈q|U |q′
〉 = δ2(q − q′) exp

[
ik1 sin(2πq1)

8π 2h̄

]
exp

[
ik2 sin(2πq2)

8π2h̄

]
. (A.57)

The quantum propagator acts on the basis |Q〉 as

〈q|U |Q〉 =

∑
Q′∈�N

〈q|Q′
〉UQ′,Q (A.58)

with

UQ′,Q = δQ,Q′ exp
[

iNk1

4π
sin
(

2πQ1

N

)
+

iNk2

4π
sin
(

2πQ2

N

)]
. (A.59)
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