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Abstract. We show that then-point correlation function for the fractional parts of a random
linear form inm variables has a limit distribution with power-like tail. The existence of the
limit distribution follows from the mixing property of flows on SL(m+1, R)/SL(m+1, Z).
Moreover, we prove similar limit theorems (i) for the probability to find the fractional part
of a random linear form close to zero and (ii) also for related trigonometric sums. For large
m, all of the above limit distributions approach the classical distributions for independent
uniformly distributed random variables.

1. Introduction
Consider an infinite sequence of numbersλ1, λ2, . . . which is uniformly distributed mod 1,
i.e.

lim
N→∞

#{j ∈ [1, N] : λj ∈ I }
N

= |I | (1.1)
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for any subintervalI of the unit circle. Correlations on the scale of the average spacing
(1/N) between theλj can be measured by then-point correlation densities[16, 25, 30],

Rn(S, N) = 1

N

N∑
j1,...,jn=1

jµ 6=jν ∀µ6=ν

n−1∏
a=1

δN(sa − N(λja − λja+1)) (1.2)

whereS = (s1, . . . , sn−1) ∈ R
n−1, and δN(x) is the Dirac mass on the circle of

lengthN ; it may be identified with a periodic superposition of Dirac masses onR via
δN(x) = ∑

ν∈Zδ(x + Nν), whereδ(x) denotes the standard Dirac delta distribution. The
two-point correlation density

R2(s,N) = 1

N

N∑
j1,j2=1
j1 6=j2

δN(s − N(λj1 − λj2)) (1.3)

is, for instance, the density of all (not just nearest neighbours) spacings. It should
be pointed out that theRn(s,N) are obviouslynot probability densities, but contain
the complete information to determine (through some combinatorial sieving) statistical
measures such as the spacing distribution between nearest (or next-to-nearest etc)
neighbours, see [16, 20, 25] for details. Furthermore, put

Rn(B, N) =
∫
B

Rn(S, N) dS (1.4)

whereB is some bounded domain inRn−1; this represents the number of (n − 1)-
tuple spacingsN(λj1 − λj2, λj2 − λj3, . . . , λjn−1 − λjn) mod NZ

n−1 in B. We will
refer toRn(B, N) as then-point correlation function. In the case whenλ1, λ2, . . . , λN

are independent uniformly distributed (on[0, 1]) random variables (IUDRV), alln-point
correlation functions converge to|B| almost surely, i.e.

lim
N→∞ Rn(B, N) = |B| almost surely, (1.5)

where|B| denotes the Lebesgue measure ofB.
Our investigation here is concerned with the limiting behaviour (N → ∞) of the

correlation densities in the case when the sequenceλ1, . . . , λN is given by the fractional
parts of the linear form ind − 1 variables,

Lm = α1m1 + · · · + αd−1md−1, (1.6)

at the integersmj = 1, . . . , Nj , wherej = 1, . . . , d − 1 andN1 · · · Nd−1 = N . The first
immediate observation will be thatRn(B, N) has, in general, no limit asN → ∞, which
is due to the strong correlations between the values at integers ofLm. Limit distributions
exist only, if the coefficientsαj or the cut-off parameterN are taken to be random. This
fact was proven so far only in the cased = 2 for the consecutive spacing distribution
(Bleher [2, 3] and Greenman [12]) and the distribution of values in small random intervals
(Mazel and Sinai [24]), where it follows from ergodic properties of the continued fraction
map (or rather a natural extension of it). Our approach will avoid the use of a higher-
dimensional analogue of continued fractions, and instead exploit the connection between
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values of linear forms and the dynamics of flows on the quotient space SL(d, R)/SL(d, Z),
which is well known, see for example [6]. The central theorem that we shall use guarantees
the equidistribution of measures concentrated along the unstable fibers of the flow, and
may be regarded as a generalization of the equidistribution theorem forclosedhorocycles
on SL(2, R)/SL(2, Z) (compare [9, 15, 22, 23, 32]). It will be derived as a corollary of the
mixing property of flows on SL(d, R)/SL(d, Z), following ideas of Eskin and McMullen
[9], Kleinbock and Margulis [19], and others (see references in [19]). Equidistribution
theorems of this type are well known in the theory of unipotent flows and translates of
measures on homogeneous spaces, which has been developed mainly by Margulis, Dani,
Ratner, Shah, Mozes and Eskin (see Eskin’s ICM review [8] for references and applications
of the theory to other counting problems).

One physical motivation of our studies is the fact that the spacings between the
fractional parts of a linear form mod 1 are in one-to-one correspondence with the spacings
between eigenvalues of ad-dimensional quantum harmonic oscillator, whereα1, . . . , αd−1

are related to the normal modes of the classical oscillator [1–3, 12, 27, 28]. A further
physical motivation is the interpretation of the fractional parts of a linear form as the quasi-
energies of a certain model kicked quantum system and eigenvalues of related Schr¨odinger
operators with quasi-periodic potentials, see [10, 24] for details and references.

For recent rigorous results on sequences, which behave more generically in the sense
that their correlation functions converge, for example to those of IUDRVs (such as values at
integers of polynomials of degree greater than one) or to those of random matrix ensembles
(such as the zeros of zeta functions), see for instance [16, 20, 23, 30, 31, 33, 41, 42] and
the surveys [4, 34, 35].

2. Results

Basic definitions and notation.The expressionsx �a y and x = Oa(y) both mean
there exists a constantCa (which may depend on some additional parametera) such that
|x| ≤ Ca |y|. The relationx � y meansx = O(y) andy = O(x).

A functionf on a measurable spaceM is calledpiecewise continuousif there exists an
open (not necessarily connected) setU ⊂ M such that (i)f is continuous onU and (ii) the
complement ofU has measure zero.f is calledpiecewise constantif there exist countably
many open setsUi ⊂ M such that (i)f is constant on eachUi and (ii) the complement of⋃

i Ui has measure zero. An example for a piecewise continuous/constant function is the
characteristic function of an open set with boundary of measure zero.

We assume here and in the following that in the limitN → ∞ theNj are of the same
order of magnitude, i.e. more preciselyNj = djN

1/(d−1) + O(1) with positive constants
dj > 0 andd1 · · · dd−1 = 1. We denote byB a bounded open subset inR

n−1 with boundary
of measure zero.

Our main results are as follows (for details see Theorems 3.2–3.4, 3.11, 3.18–3.20).

• The correlation functionRn(B, N) has, in general, no limit for fixedα1, . . . , αd−1

asN → ∞.
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• If α1, . . . , αd−1 are random with continuous joint probability densityh(α1, . . . ,

αd−1), thenRn(B, N) has a limit distribution which is independent ofh, i.e.

lim
N→∞ Prob{Rn(B, N) > X} = 9n,d(X)

where9n,d(X) is continuous and has a power-like tail. More precisely,

9n,d(X) � X−d/(n−1) for X large.

• Ford large, the limit distribution localizes at the value|B|, i.e.

d9n,d(X)
d→∞H⇒ δ(X − |B|) dX.

This follows from the asymptotic behaviour of the moments of9n,d(X) which are
discussed in §3.8. Note thatδ(X − |B|) dX is the corresponding limit distribution
for IUDRVs, because theirn-point correlation functions converge almost surely to
|B|. This answers a question of Greenman on the level spacing distribution of high-
dimensional harmonic oscillators [13].

• Suppose nowα1, . . . , αd−1 are fixed andN is a random variable with a suitable
probability distribution on[1,M] (see Theorem 3.3 for details). Then, for almost all
α1, . . . , αd−1 (with respect to Lebesgue measure), we have

lim
M→∞ Prob{Rn(B, · ) > X} = 9n,d(X)

where9n,d(X) is the same function as in the previous statements.
The above statements generalize analogous results of Bleher [2, 3] and Greenman [12]

for the consecutive spacing distribution in the cased = 2. The two-dimensional case is
easier to handle, because the spacings between nearest neighbours are determined by the
continued fraction expansion ofα1, see [39] for a survey of results, some of which were
later rediscovered in the Physics literature [2, 3, 12, 27, 28]. A particularly remarkable
observation is that, for fixedα1, the nearest-neighbour spacings can take at most three
distinct values [39, 40]; this fact does not generalize tod > 2, where the number of
distinct spacings is in general unbounded, compare [11] for details in the cased = 3.

We shall, furthermore, generalize a result of Mazel and Sinai [24] obtained in the
cased = 2 for the distribution of fractional parts of linear forms in small subintervals
[ξ, ξ + σ/N] of the unit circle. Let us denote byNσ (ξ,N) the number of points in such
an interval, i.e.

Nσ (ξ,N) =
N∑

j=1

∑
ν∈Z

χσ (N(λj − ξ + ν)), (2.1)

whereχσ is the characteristic function of(0, σ ].
Again assumingα1, . . . , αd−1 are random with continuous joint probability density

h(α1, . . . , αd−1), we shall prove the following statements (compare Theorems 4.2–4.5).
• If ξ is a random variable uniformly distributed in[0, 1], Nσ (ξ,N) has a limit

distribution which is independent ofh, i.e.

lim
N→∞ Prob{Nσ ( · , N) = K} = PK(σ)
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for K = 0, 1, 2, . . . , where

∞∑
K=X

PK(σ) � X−(d+1), for X large.

• If ξ = 0, thenNσ (0, N) has a different limit distribution, i.e.

lim
N→∞ Prob{Nσ (0, N) = K} = PK,0(σ )

for K = 0, 1, 2, . . . , where

∞∑
K=X

PK,0(σ ) � X−d , for X large.

• The expectation value ofPK,0(σ ) and the expectation value and first moment of
PK(σ) coincide with those for IUDRVs, but higher moments are different. Ford

large, however, both limit distributions are asymptotically Poisson, i.e.

PK(σ)
d→∞H⇒ σK

K! e−σ , PK,0(σ )
d→∞H⇒ σK

K! e−σ .

As was noted in [24, 38], the asymptotics ofNσ (ξ,N) is closely linked with the
asymptotic behaviour of the trigonometric sums

WN(ξ) = 1

N

N∑
ν=1

N∑
j=1

cos(2πν(λj + ξ)), (2.2)

for which we obtain the following limit theorems, cf. [38] for the cased = 2 (assume
α1, α2, . . . are random as before).
• If ξ is a random variable uniformly distributed in[0, 1], WN(ξ) has a limit

distribution, i.e. in particular

lim
N→∞ Prob{a < WN < b} = 8d(a, b)

except possibly at the discontinuities of8d (of which there are at most countably
many), and we have the asymptotics

1 − 8d(−X,X) � X−(d+1), for X large.

• If ξ = 0, d > 2,

lim
N→∞ Prob{a < WN(0) < b} = 8d,0(a, b)

except possibly at the discontinuities of8d,0 (of which there are at most countably
many), and we have the asymptotics

1 − 8d,0(−X,X) � X−d , for X large.

In the cased = 2 we are only able to prove the above result if the cut-off in the sumWN(0)

is smoothed; see §4.1 for details.
The proof of these limit theorems (cf. Theorems 4.6–4.9) is essentially the same as for

Nσ (ξ,N), combined with methods employed in [21].
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The moments of the limit distributions discussed here are related to the number of
solutions of simultaneous quadratic diophantine equations. These can be solved directly by
elementary methods from number theory, as illustrated for the second moment of8d,0 in
the appendix by Ze´ev Rudnick; compare with Katznelson [17, 18] for related results. Since,
however, only finitely many of these moments do not diverge, this elementary approach
gives no information on the existence of the full limit distributions. Here it is indeed
necessary to apply the above-mentioned equidistribution theorems on SL(d, R)/SL(d, Z).
From the latter approach, explicit formulae for the moments can be derived by means of
classical reduction theory, see §3.7, §3.8 and §4.4.

3. Correlation functions
3.1. Two-point correlations. The two-point correlation density has the representation
(recall the definition (1.3))

Rα
2 (s,N) = 1

N

N1∑
m1,n1=1

· · ·
Nd−1∑

md−1,nd−1=1
m6=n

∑
ν∈Z

δ(s − N(Lm − Ln + ν)). (3.1)

Since the differencekj = mj − nj occurs exactlyNj − |kj | times, we can rewrite (3.1) as

Rα
2 (s,N) =

∑
−N1≤k1≤N1

...
−Nd−1≤kd−1≤Nd−1
(k1,...,kd−1) 6=(0,...,0)

[(
1 − |k1|

N1

)
· · ·
(

1 − |kd−1|
Nd−1

)∑
ν∈Z

δ(s − N(Lk + ν))

]
.

Let us now split up the above sums as∑
(k1,...,kd−1) 6=(0,...,0)

ν

=
∑

(k1,...,kd−1,ν) 6=(0,...,0,0)

−
∑

(k1,...,kd−1)=(0,...,0)
ν 6=0

;

it is suggestive to use the notationkd = ν so that, with the function

τ2(x) =
{

1 − |x|, x ∈ [−1, 1]
0, x /∈ [−1, 1], (3.2)

we eventually obtain

Rα
2 (s,N) =

∑
k∈Zd−{0}

τ2

(
k1

N1

)
· · · τ2

(
kd−1

Nd−1

)
δ(s − Nαk) −

∑
ν∈Z−{0}

δ(s − Nν), (3.3)

with the abbreviationαk = α1k1 + · · · + αd−1kd−1 + kd . In the following we may ignore
the second sum on the right-hand side, since for any compact intervalB∫

B

∑
ν∈Z−{0}

δ(s − Nν) ds = 0 (3.4)

for N large enough.
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The crucial observation is now that we have the representation


k1N
−1
1

...

kd−1N
−1
d−1

Nαk


 = Mk, (3.5)

where

M =




N−1
1

. . .

N−1
d−1

N






1
. . .

1
α1 · · · αd−1 1


 (3.6)

is a matrix in SL(d, R). Let us putk̃ = Mk and define the distribution

D2(s, M) =
∑

k∈Zd−{0}
τ2(k̃1) · · · τ2(k̃d−1)δ(s − k̃d). (3.7)

We clearly get back toRα
2 (s,N) if we chooseM as above. In order to check that (3.7) is

well defined for arbitraryM, we integrate against the characteristic functionχB of some
compact intervalB. It is then obvious that∑

k∈Zd−{0}
τ2(k̃1) · · · τ2(k̃d−1)χB(k̃d)

is a finite sum for any fixedM ∈ SL(d, R). What is most important,D2(s, M) carries the
following invariance property:

D2(s, Mg) = D2(s, M), for anyg ∈ 0, (3.8)

with 0 = SL(d, Z), as can be readily verified. HenceD2(s, M) may be viewed as a
distribution on the quotient space6d = SL(d, R)/0, which has finite volume with respect
to Haar measure [29, 37], cf. also §3.7.

From relation (3.8) it is immediately clear that we cannot expect the two-point
correlation density to converge. The exact asymptotic behaviour is determined by the
geometry of6d , which we shall discuss in more detail later on. Let us first see how
the invariance properties of the two-point correlations carry over to higher correlation
densities.

3.2. n-point correlations. Recall that then-point correlation density is given by,
compare (1.2),

Rα
n (S, N) = 1

N

N1∑
m1

1,...,m
n
1=1

· · ·
Nd−1∑

m1
d−1,...,m

n
d−1=1

mµ 6=mν ∀µ6=ν

∑
ν1,...,νn−1∈Z

×
n−1∏
a=1

δ(sa − N(Lma − Lma+1 + νa)), (3.9)
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whereS = (s1, . . . , sn−1). In the following we shall always use bold letters and lower
indices for vectors in configuration space (such asm = (m1,m2, . . . )) and script letters
and upper indices for vectors in correlation space (such asS = (s1, s2, . . . )). Furthermore
we writexa = (xa

1, xa
2, . . . ) andXj = (x1

j , x2
j , . . . ).

Let us now put
k1 = m1 − m2, . . . , kn−1 = mn−1 − mn,

which in turn means that

m1 = k1 + · · · + kn−1 + mn, . . . ,mn−1 = kn−1 + mn,

or, relating all possible pairsma , mb (a < b),

ma = ka + · · · + kb−1 + mb.

It is not hard to see that the multiplicity ofKj = (k1
j , . . . , k

n−1
j ) is

Nj − max
1≤a≤b≤n−1

∣∣∣∣
b∑

i=a

ki
j

∣∣∣∣,
and then-point correlation density can thus be written as (compare (3.3) and putka

d = νa)

Rα
n (S, N) =

(3.11)∑
k1,...,kn−1∈Zd

τn

(
K1

N1

)
· · · τn

(
Kd−1

Nd−1

)

× δ(s1 − Nαk1) · · · δ(sn−1 − Nαkn−1), (3.10)

where the sum is restricted to

b∑
j=a




k
j

1
...

k
j

d−1


 6= 0, for all 1 ≤ a ≤ b ≤ n − 1 (3.11)

(no restrictions onkj
d ), and the functionτn : R

n−1 → R
+ is defined by

τn(X ) =




1 − max
1≤a≤b≤n−1

∣∣∣∣
b∑

i=a

xi

∣∣∣∣, for max
1≤a≤b≤n−1

∣∣∣∣
b∑

i=a

xi

∣∣∣∣ ≤ 1

0, for max
1≤a≤b≤n−1

∣∣∣∣
b∑

i=a

xi

∣∣∣∣ > 1.

(3.12)

This function is clearly continuous and of compact support. Since we view then-point
densityRα

n (S, N) as a distribution tested against compactly supported functions, it is not
hard to see that—as before forR2(s,N)—we have

Rα
n (S, N) =

(3.14)∑
k1,...,kn−1∈Zd

τn

(
K1

N1

)
· · · τn

(
Kd−1

Nd−1

)

× δ(s1 − Nαk1) · · · δ(sn−1 − Nαkn−1), (3.13)
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for N large enough, where the sum is now restricted to

b∑
j=a

kj 6= 0, for all 1 ≤ a ≤ b ≤ n − 1. (3.14)

It will turn out to be convenient if we understand theNj ∈ R as real variables, taking
relation (3.13) as a definition forRα

n (S, N) at non-integer values.
Put k̃a = Mka with M ∈ SL(d, R), and also set̃Kj = (k̃1

j , . . . , k̃
n−1
j ). The correct

generalization ofD2(s, M) in (3.7) is then

Dn(S, M) =
(3.14)∑

K1,...,Kd∈Zn−1

τn(K̃1) · · · τn(K̃d−1)δ
n−1(S − K̃d), (3.15)

with
δn−1(X ) = δ(x1) · · · δ(xn−1).

We find that the invariance property

Dn(S, Mg) = Dn(S, M), for anyg ∈ 0, (3.16)

holds for generaln > 2 as well. Notice in particular that for anyg ∈ 0 the set of conditions

b∑
j=a

(gkj ) 6= 0, for all 1 ≤ a ≤ b ≤ n − 1 (3.17)

is equivalent to the set (3.14).
We shall be particularly interested in the integrated densities

R
α

n(B, N) =
∫
B

Rα
n (S, N) dn−1S,

Dn(B, M) =
∫
B

Dn(S, M) dn−1S,

for bounded open setsB with boundary of measure zero. Let us summarize the results of
this section in the following proposition.

PROPOSITION3.1. For N large enough, we have

R
α

n(B, N) = Dn(B, M),

with M given by (3.6).

3.3. Limit distributions. We will now state our main results; the proofs are given in the
next two sections. In the following putNj = djN

1/(d−1), for arbitrary constantsdj > 0
(d1 · · · dd−1 = 1), so thatN is the only free parameter. (Recall theNj need not be restricted
to integers.)

THEOREM 3.2. LetB be a bounded open subset inR
n−1 with boundary of measure zero.

Supposeα1, . . . , αd−1 ∈ T are random variables with continuous joint probability density
h(α1, . . . , αd−1). Then the limit

lim
N→∞ Prob{Rα

n(B, N) > X}
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exists for allX > 0 and is given by the continuous function (onR+)

9n,d(X) = µ{M ∈ 6d : Dn(B, M) > X}
µ(6d)

,

which is independent ofh.

Tail estimates and moments of the limit distribution9n,d(X) are given in §3.6 and §3.8.

THEOREM 3.3. LetB be a bounded open subset inR
n−1 with boundary of measure zero.

Suppose now(α1, . . . , αd−1) ∈ T
d−1 are fixed andN ∈ R is a random variable distributed

in [1,M] with probability density(N logM)−1. Then, for almost allα1, . . . , αd−1 (with
respect to Lebesgue measure onT

d−1), we have

lim
M→∞ Prob{Rα

n(B, N) > X} = 9n,d(X)

with the same limit9n,d(X) as in Theorem 3.2. Alternatively, one may also takeN to be a
random integer distributed in[1,M] with probability

log(1 + N−1)∑M
ν=1 log(1 + ν−1)

.

We say(α1, . . . , αd−1) is badly approximable, if there exists a constantc > 0 such that

ρ(α1x1 + · · · + αd−1xd−1) > c(max{|x1|, . . . , |xd−1|})−(d−1)

for all non-zero(x1, . . . , xd−1) ∈ Z
d−1, with ρ(t) = minn∈Z{|t − n|}, see [5, 6, 36] for

more details.

THEOREM 3.4. If α = (α1, . . . , αd−1) is badly approximable, then the set

{Rα

n(B, N) : N ≥ 1}
is bounded inR+. On the other hand, for almost allα (with respect to Lebesgue measure)
the functionR

α

n(B, N) is unbounded asN → ∞.

The key to the proof of the above theorems are dynamical properties of flows on
SL(d, R)/SL(d, Z).

3.4. Flows onSL(d, R)/SL(d, Z). The following analysis holds as well for all other
lattices0 in SL(d, R), but we shall restrict our notation to the case0 = SL(d, Z).

Define the flow8t by the left action

8t : 6d → 6d,

M 7→




e−t

. . .

e−t

e(d−1)t


M.

As a result of §3.2, the behaviour of then-point correlations is determined by the
asymptotic distribution of the trajectory{8t(M) : t ≥ 0}. It is well known that this flow
has the mixing property [26], which can be stated as follows. (Denote byµ the invariant
measure on6d = SL(d, R)/0.)
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THEOREM 3.5. Letf, g ∈ L2(6d,µ). Then

lim
t→±∞

∫
6d

f (8t(M))g(M) dµ(M) = 1

µ(6d)

∫
6d

f dµ

∫
6d

g dµ.

This in particular implies ergodicity.

THEOREM 3.6. Letf ∈ L1(6d,µ). Then forµ-almost allM

lim
T →∞

1

T

∫ T

0
f (8t(M)) dt = 1

µ(6d)

∫
6d

f dµ.

Consider elementsM ∈ SL(d, R) which have a decomposition of the form

M =
(

A b

0 1

)(
e−s1 0

0 e(d−1)s

)(
1 0
l 1

)
(3.18)

whereA ∈ SL(d − 1, R), b is a(d − 1)-dimensional column vector,s ∈ R, l is a(d − 1)-
dimensional row vector,1 is a unit matrix and0 are zero vectors. This provides a local
parametrization of SL(d, R). The Haar measureµ reads in these (local) coordinates

dµ(M) = ed(d−1)s ds dl1 · · · dld−1 db1 · · · dbd−1 dµd−1(A), (3.19)

whereµd−1 is the Haar measure of SL(d − 1, R). The action of the flow8t onM reads

8t(M) =
(

A be−dt

0 1

)(
e−(s+t )1 0

0 e(d−1)(s+t )

)(
1 0
l 1

)
. (3.20)

With the abbreviation
M = [s, l, b, A]

the latter can be expressed as

8t([s, l, b, A]) = [s + t, l, be−dt , A]. (3.21)

Let us denote byd(M, M′) the distance between two points, which is induced by the right-
invariant Riemannian metric on SL(d, R). Due to the right invariance we see that the
distance between the translates8t(M), 8t(M′) (which we may view as two neighbouring
choices of initial conditions) is given by

d(8t(M),8t (M′)) = d([s, ledt , be−dt , A], [s′, l′edt , b′e−dt , A′]).
Hences andA characterize the neutral manifolds of the flow8t , l the unstable andb the
stable ones.

With the above parametrization, we have the following corollary of the ergodic theorem.

COROLLARY 3.7. Letf be bounded and piecewise continuous on6d . Then, for alls ∈ R,
A ∈ SL(d − 1, R) and almost alll ∈ T

d−1 (with respect to Lebesgue measure) we have

lim
T →∞

1

T

∫ T

0
f ([s + t, l, 0, A]) dt = 1

µ(6d)

∫
6d

f dµ.
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Proof. Since the functionfM(M′) = f (MM′) is still right-0-invariant (as a function of
M′), we may assume without loss of generality thats = 0, A = 1.

Suppose, first,f is uniformly continuous. Every point of the form[s, l, b, A] which is
in anε-neighbourhood of the point[0, l, 0, 1], i.e.

d([0, l, 0, 1], [s, l, b, A]) < ε,

stays in anε-neighbourhood of the translated point[t, l, 0, 1], since

d(8t [0, l, 0, 1],8t [s, l, b, A]) = d([0, 0, 0, 1], [s, 0, be−dt , A]) < ε.

Hence, by uniform continuity, for every givenδ > 0 we find anε > 0 such that

|f (8t [0, l, 0, 1]) − f (8t [s, l, b, A])| < δ

for all t > 0 and all[s, l, b, A] in theε-neighbourhood. So for allT

1

T

∫ T

0
f (8t [s, l, b, A]) dt − δ <

1

T

∫ T

0
f (8t [0, l, 0, 1]) dt

<
1

T

∫ T

0
f (8t [s, l, b, A]) dt + δ. (3.22)

If, therefore, the limit

lim
T →∞

1

T

∫ T

0
f ([t, l, 0, 1]) dt

did not exist for almost alll and was not equal toµ(6d)−1
∫
6d f dµ, we would have a

contradiction with Theorem 3.6, sinceδ can be made arbitrarily small. Thus the assertion
holds for uniformly continuous functions. The extension to bounded piecewise continuous
functions can be achieved by a standard measure-theoretic argument (approximation from
above and below). 2

COROLLARY 3.8. Let f be bounded and piecewise continuous on6d , and let 0 =
t0 < t1 < t2 → ∞ be a sequence with only accumulation point at infinity, such that
tj+1 − tj → 0. Then, for alls ∈ R, A ∈ SL(d − 1, R) and almost alll ∈ T

d−1 (with
respect to Lebesgue measure) we have

lim
T →∞

1

T

∑
tj ≤T

(tj+1 − tj ) f ([s + tj , l, 0, A]) = 1

µ(6d)

∫
6d

f dµ.

Proof. Assume, first,f is continuously differentiable and of compact support. Therefore
the functionF(t) = f ([t, l, 0, 1]) is uniformly continuous, and we have, in particular, by
the intermediate value theorem

F(t) = F(tj ) + F ′(ξ)(t − tj ) (3.23)

with someξ ∈ [tj , t]. SinceF ′ is uniformly bounded we see that∫ T

0
f ([t, l, 0, 1]) dt −

∑
tj ≤T

(tj+1 − tj ) f ([tj , l, 0, 1]) �
∑
tj ≤T

∫ tj+1

tj

(t − tj ) dt

= 1

2

∑
tj≤T

(tj+1 − tj )
2. (3.24)
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Furthermore,∑
tj ≤T

(tj+1 − tj )
2 � O(T 1/100) +

∑
T 1/100≤tj≤T

(tj+1 − tj )
2

� O(T 1/100) +
∑

T 1/100≤tj≤T

o(1)(tj+1 − tj ) = o(T ). (3.25)

Hence the corollary holds for the above class of functionsf . The extension to bounded
piecewise continuousf is again possible by approximation from above/below. (Bounded
functions can be approximated from above by linear combinations of compactly supported
functions, which we have just discussed, and constant functionsf = const for which the
theorem obviously holds.) 2

Following the lines of the proof of [23, Corollary 5.2] (compare also [9, 19] and
references therein), we exploit the mixing property to show the equidistribution of
measures concentrated along the unstable manifold.

COROLLARY 3.9. Let f be bounded and piecewise continuous on6d , and h be
continuous on the standard(d − 1)-dimensional unit torusTd−1. Then, for everys ∈ R,
A ∈ SL(d − 1, R), we have

lim
t→∞

∫
Td−1

f ([s + t, l, 0, A])h(l) dd−1l = 1

µ(6d)

∫
6d

f dµ

∫
Td−1

h(l) dd−1l,

wheredd−1l = dl1 · · · dld−1.

Proof. As in the proof of Corollary 3.7 we may assume without loss of generality that
s = 0, A = 1.

Let f be a continuous function on SL(d, R), right-0-invariant and compactly supported
when viewed as a function on6d . Furthermore, define the functionH on SL(d, R) by

H(M) = h̃(l)
1

ε
χ
( s

ε

) 1

ε
χε(A)χ(b1) · · ·χ(bd−1) (3.26)

if M admits a representation of the form (3.18) andH = 0 if not, whereχ is the
characteristic function of the interval[−1

2, 1
2] andχε the characteristic function of a ball in

SL(d −1, R) centred atA = 1 with volumeε. The functionh̃ is continuous and compactly
supported. (It will be later related toh byh(l) = ∑

m∈Zd−1 h̃(l+m).) ThusH has compact
support and the integral∫

SL(d,R)

H (M)f (8t(M)) dµ =
∫

SL(d,R)

H ([s, l, b, A])f ([s + t, l, be−dt , A]) dµ

(3.27)

is well defined.

Step (A).f is uniformly continuous (since it is0-invariant and has compact support on
6d ) and therefore we have

f ([s + t, l, be−dt , A]) = f ([s + t, l, 0, A]) + O(e−dt) (3.28)
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uniformly in [s, l, b, A] in the (compact) range of integration. So∫
SL(d,R)

H ([s, l, b, A])f ([s + t, l, be−dt , A]) dµ

=
∫
R

∫
Rd−1

∫
SL(d−1,R)

h̃(l)
1

ε
χ
( s

ε

) 1

ε
χε(A)

× f ([s + t, l, 0, A]) dµd−1 dd−1led(d−1)s ds + O(e−dt ). (3.29)

Step (B).We can rewrite (3.27) as

∫
SL(d,R)

H (M)f (8t(M)) dµ =
∫

6d

(∑
g∈0

H(Mg)

)
f (8t(M)) dµ (3.30)

since8t ◦ f andµ are right-0-invariant. BecauseG(M) = ∑
g∈0 H(Mg) is also right-

0-invariant and in L2(6d,µ), the mixing property guarantees the existence of the limit
t → ∞ of (3.30), whose value is then given by

1

µ(6d)

∫
6d

(∑
g∈0

H(Mg)

)
dµ

∫
6d

f dµ

= 1

µ(6d)

∫
SL(d,R)

H dµ

∫
6d

f dµ

= 1

µ(6d)

∫
6d

f dµ

∫
Rd−1

h̃(l) dd−1l

∫
R

1

ε
χ
( s

ε

)
ed(d−1)sds, (3.31)

where we have used the fact that∫
SL(d−1,R)

χε(A) dµd−1(A) = ε.

Step (C).From steps (A) and (B) we conclude that

lim
t→∞

∫
R

∫
Rd−1

∫
SL(d−1,R)

h̃(l)
1

ε
χ
( s

ε

) 1

ε
χε(A)

× f ([s + t, l, 0, A]) dµd−1 dd−1led(d−1)s ds

= 1

µ(6d)

∫
6d

f dµ

∫
Rd−1

h̃(l) dd−1l

∫
R

χ(s)ed(d−1)εs ds. (3.32)

By the uniform continuity off with respect to the right-invariant metric on SL(d, R), given
anyδ > 0, we find anε > 0 such that

|f ([s + t, l, 0, A]) − f ([t, l, 0, 1])| < δ

uniformly for all s ∈ [−ε, ε], l ∈ R
d−1 andA in a ball centred atA = 1 of volumeε. We
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have the inclusion∫
R

∫
Rd−1

∫
SL(d−1,R)

h̃(l)
1

ε
χ
( s

ε

) 1

ε
χε(A)f ([s + t, l, 0, A]) dµd−1 dd−1led(d−1)s ds − δ

<

∫
R

∫
Rd−1

∫
SL(d−1,R)

h̃(l)
1

ε
χ
( s

ε

) 1

ε
χε(A)f ([t, l, 0, 1]) dµd−1 dd−1l ds

=
∫
Rd−1

h̃(l)f ([t, l, 0, 1]) dd−1l

<

∫
R

∫
Rd−1

∫
SL(d−1,R)

h̃(l)
1

ε
χ
( s

ε

) 1

ε
χε(A)

× f ([s + t, l, 0, A]) dµd−1 dd−1led(d−1)s ds + δ. (3.33)

Because the limitst → ∞ on the left- and the right-hand sides of the above inequality
exist and differ only by 2δ, which can be made arbitrarily small, the limit of the inner term
has to exist as well and is precisely given by

lim
t→∞

∫
Rd−1

h̃(l)f ([t, l, 0, 1]) dd−1l = 1

µ(6d)

∫
6d

f dµ

∫
Rd−1

h̃(l) dd−1l, (3.34)

or

lim
t→∞

∫
Td−1

h(l)f ([t, l, 0, 1]) dd−1l = 1

µ(6d)

∫
6d

f dµ

∫
Td−1

h(l) dd−1l, (3.35)

with h(l) = ∑
m∈Zd−1 h̃(l + m). By standard measure-theoretic tricks (approximation

from above and below), one can show that the above also holds for bounded piecewise
continuous functions. 2

3.5. Proof of Theorems 3.2–3.4.We begin with the following observation.

LEMMA 3.10. Fix X > 0. For B open with boundary of measure zero, the solutionsM of
the equation

Dn(B, M) = X (3.36)

form sets of (Haar) measure zero in6d .

Proof. Cover 6d by a countable union of compact setsS. On each compact setS,
Dn(B, M) has a representation as afinitesum

Dn(B, M) =
(3.14)∑

K1,...,Kd∈Zn−1

τn(K̃1) · · · τn(K̃d−1)χB(K̃d), (3.37)

whereχB is the characteristic function ofB.
Suppose now the set of solutionsM ∈ S of (3.36) has strictly positive measure. Then,

sinceDn(B, M) is piecewise continuous, we find a pointM such that for allM′ in a small
open neighbourhood ofM we haveDn(B, M′) = X. TakingM′ = 8−ε(M), this implies,
in particular,Dn(B,8−ε(M)) = X, for all ε small enough. Now

Dn(B,8−ε(M)) =
(3.14)∑

K1,...,Kd∈Zn−1

τn(e
εK̃1) · · · τn(e

εK̃d−1)χB(e−(d−1)εK̃d ),
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and forε small enough, we claim that

Dn(B,8−ε(M)) =
(3.14)∑

K1,...,Kd∈Zn−1

τn(e
εK̃1) · · · τn(e

εK̃d−1)χB(K̃d). (3.38)

To see why (3.38) is indeed valid, suppose the contrary would be true. Then, sinceχB is
piecewise constant, we would find a constantδ > 0 such that we would have

(3.14)∑
K1,...,Kd∈Zn−1

τn(e
εK̃1) · · · τn(e

εK̃d−1)[χB(e−(d−1)εK̃d ) − χB(K̃d)] ≥ δ

for all 0 < ε < ε0, ε0 small. However, this implies

lim
ε→0

{Dn(B,8−ε(M)) − Dn(B, M)}

= lim
ε→0

(3.14)∑
K1,...,Kd∈Zn−1

τn(K̃1) · · · τn(K̃d−1)[χB(e−(d−1)εK̃d ) − χB(K̃d )] ≥ δ,

which meansDn(B, M′) is discontinuous inM, and thus contradict our assumption that
Dn(B, M′) is constant in a small neighbourhood ofM. Hence (3.38) holds.

Continuing with (3.38), we observe that forε > 0 τn(e
εX ) ≤ τn(X ), with strict

inequality for allX with τn(X ) 6= 0. ThereforeDn(B,8−ε(M)) < X for ε > 0 arbitrarily
small, a contradiction: the set of solutions ofM ∈ S of (3.36) has to be of measure zero.
Finally, a countable union of sets of measure zero has measure zero. The lemma follows.2

In the following we setN1 = c1e
t , N2 = c2e

t , . . . , and thusN andt are related by

N = c1 · · · cd−1e
(d−1)t ,

with (arbitrary) positive constantscj .

Proof of Theorem 3.2.Apply Corollary 3.9 with

s = 1

d − 1
log(c1 · · · cd−1),

A = (c1 · · · cd−1)
1/(d−1)




c−1
1

. . .

c−1
d−1


 ,

and

f (M) =
{

1, if Dn(B, M) > X

0, if Dn(B, M) ≤ X,

which, by virtue of Lemma 3.10 is piecewise continuous. Lemma 3.10 thus also implies
the continuity of9n,d(X). 2

Proof of Theorem 3.3.As for Theorem 3.2, but use now Corollaries 3.7 and 3.8. 2

Proof of Theorem 3.4.It follows from the results in [6] that the set{[t,α, 0, 1]0 : t ≥ 0}
is bounded in6d for badly approximableα. SinceDn(B, M) is bounded on compacta,
the first assertion follows. The second statement follows from ergodicity and the fact that
Dn(B, M) is unbounded on6d (see the next section, Proposition 3.13 for an explicit lower
bound). 2
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3.6. Tail estimates.

THEOREM 3.11. For X0 large enough, there exist constants0 < C1 ≤ C2 < ∞ such that

C1X
−d/(n−1) ≤ 9n,d(X) ≤ C2X

−d/(n−1)

for all X > X0, i.e.9n,d(X) has a power-like tail.

Denote byA the subgroup of positive definite diagonal matrices

a(a) =



a1
. . .

ad


 ∈ SL(d, R), aj > 0

and byN the subgroup of upper triangular matrices

n(u) =




1 u12 . . . u1d

. . .
. . .

...

. . . ud−1,d

1


 ∈ SL(d, R).

Every elementM ∈ SL(d, R) has the unique Iwasawa decomposition

M = ka(a)n(u), (3.39)

with k ∈ SO(d). The Haar measure in these coordinates reads [29]

dµ = ρ(a) dk da(a) dn(u) (3.40)

wheredk, da, dn are Haar measures of SO(d), A, N , respectively. Forρ(a) one has [29]

ρ(a) =
∏

1≤i<j≤d

ai

aj

=
d∏

j=1

a
d−2j+1
j . (3.41)

The following set is an example of aSiegel set[29],

S =
{

ka(a)n(u) : k ∈ SO(d), 0 < aj ≤ 2√
3
aj+1(j = 1, . . . , d − 1), u ∈ FN

}
(3.42)

whereFN is a compact fundamental region ofN/(0 ∩ N). The above set has the property
that it has finite Haar measure, contains one fundamental region of0 and is itself contained
in a finite union of fundamental regions. Therefore, we may obtain upper and lower bounds
for 9n,d(X) by considering the quantity

9̃n,d (X) = µ{M ∈ S : Dn(B, M) > X}
instead. What we will need next are bounds onDn(B, M) in the asymptotic domains of the
Siegel setS. Fix a positive constantK. For l ∈ {1, . . . , d − 1}, put

SK,l =
{

M = ka(a)n(u) ∈ S : al ≤ K ≤ 2√
3
al+1

}
, (3.43)
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and forl = 0, d,

SK,0 =
{

M = ka(a)n(u) ∈ S : K ≤ 2√
3
a1

}
, (3.44)

SK,d = {M = ka(a)n(u) ∈ S : ad ≤ K}. (3.45)

The setsSK,0 andSK,d and clearly compact, fora1 · · · ad = 1, and thusDn(B, M) is
bounded on these two sets. An upper/lower bound for the limit distribution will follow
from an upper/lower bound forDn(B, M) on the non-compactSK,l , l = 1, . . . , d − 1.

LEMMA 3.12. We have

S =
d⋃

l=0

SK,l .

Proof. We use an inductive argument. SupposeM /∈ SK,0. Thena1 <
√

3
2 K < K.

Hence eitherM ∈ SK,1 or a2 <
√

3
2 K < K. In the latter case eitherM ∈ SK,2 or

a3 <
√

3
2 K < K, and so on. Finally, withM /∈ SK,0 ∪ · · · ∪ SK,d−2, we have either

M ∈ SK,d−1 or ad <
√

3
2 K < K. The latter condition impliesM ∈ SK,d . 2

PROPOSITION3.13. For K constant and small enough, we have:
(i) the upper bound

Dn(B, M) �K

1

(a1 · · · al)n−1

uniformly for allM = ka(a)n(u) ∈ SK,l and
(ii) the lower bound

γ (k)

(a1 · · · ad−1)n−1 �K Dn(B, M)

uniformly for all M = ka(a)n(u) ∈ SK,d−1. The functionγ (k) is positive and
bounded for allk ∈ SO(d), and non-zero on a set of strictly positive measure.

Proof. The functionDn(B, M) is of the form

Dn(B, M) =
(3.14)∑

k1,...,kn−1∈Zd

F (Mk1, . . . , Mkn−1) (3.46)

with
F(x1, . . . ,xn−1) = τn(X1) · · · τn(Xd−1)χB(Xd ).

In order to remove the restrictions (3.14) in the summations, we define sums

Cν(B, M) =
∑

k1,...,kν−1∈Zd

Fν(Mk1, . . . , Mkν−1) (3.47)

(without conditions in the summation) so that we can write

Dn(B, M) =
n∑

ν=1

Cν(B, M) (3.48)
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with Fn = F and suitable choices ofFν for ν < n. TheFν can be chosen in such a way
that they are piecewise continuous and of compact support. We will first calculate upper
bounds forCν(B, M).

Since

Mkj = k




a1(k
j

1 + u12k
j

2 + · · · + u1dk
j
d )

...

adk
j
d




with uij in compact sets, we have fora1, . . . , al → 0, al+1, . . . , ad → ∞, the asymptotic
behaviour (view the sum as a Riemann sum)∑

k1,...,kν−1∈Zd

Fν(Mk1, . . . , Mkν−1) ∼ γl(k)

(a1 · · · al)ν−1
, (3.49)

with

γl,ν(k) =
∫

F




k




x1
1
...

x1
l

0
...

0




, . . . , k




xν−1
1
...

xν−1
l

0
...

0







dx. (3.50)

We now find a constantcν,K such that forK small

|Cν(B, M)| ≤ cν,K

(a1 · · · al)ν−1
, (3.51)

and in particular forν = n

Dn(B, M) ≤ Cn(B, M) ≤ cn,K

(a1 · · · al)n−1
. (3.52)

This proves the upper bound. For a lower bound onSK,d−1 notice thata1, . . . , ad−1 → 0
impliesad → ∞. Thus (K small)

Cn(B, M) �K
γd−1,n(k)

(a1 · · · ad−1)n−1
.

The lower bound given in the proposition follows from this relation and the estimate (3.51)
for ν < n, l = d−1. The functionγ (k) in the proposition is equal toγd−1,n(k) in (3.50).2

Before we proceed to prove Theorem 3.11, let us consider the following lemma.

LEMMA 3.14. Let r1 ≥ r2 ≥ · · · ≥ rM−1 > rM > −1 be real numbers. Then

lim
Y→∞ Y rM+1

∫
· · ·
∫

0<xj <1 (j=1,...,M)∏M
j=1 xj <1/Y

M∏
j=1

x
rj
j dxj = 1

(rM + 1)
∏M−1

j=1 (rj − rM)
.

Remark.Replacing the conditions 0< xj < 1 by the more general 0< xj < oj , for
arbitrary constantsoj > 0, obviously changes the limit only by a positive constant.
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Proof (by induction onM). We may assume without loss of generality that we have strict
inequalitiesr1 > r2 > · · · > rM−1 > rM > −1. The general result then follows from
continuity and uniform convergence.

The caseM = 1 is correct. Suppose now that the assertion of the lemma is true for all
M < N . Integrating overxN we see that∫

· · ·
∫

0<xj<1 (j=1,...,N)∏N
j=1 xj <1/Y

N∏
j=1

x
rj
j dxj

= 1

rN + 1

∫
· · ·
∫

0<xj <1 (j=1,...,N−1)
min

{
1,

1

Y
∏N−1

j=1 xj

}rN+1 N−1∏
j=1

x
rj
j dxj .

(3.53)

The latter integral splits into two terms,∫
· · ·
∫

0<xj<1 (j=1,...,N−1)

1<(Y
∏N−1

j=1 xj )−1

N−1∏
j=1

x
rj
j dxj

+ Y−(rN+1)

∫
· · ·
∫

0<xj<1 (j=1,...,N−1)

1>(Y
∏N−1

j=1 xj )−1

N−1∏
j=1

x
rj−(rN+1)

j dxj . (3.54)

By the induction hypothesis, the first contribution is of orderY−(rN−1+1), which is non-
leading sincerN < rN−1. The second term can be written as

Y−(rN+1)

∫
· · ·
∫

0<xj <1 (j=1,...,N−1)

N−1∏
j=1

x
rj−(rN+1)

j dxj

− Y−(rN+1)

∫
· · ·
∫

0<xj<1 (j=1,...,N−1)

1<(Y
∏N−1

j=1 xj )
−1

N−1∏
j=1

x
rj−(rN+1)

j dxj , (3.55)

where again by the induction hypothesis the second contribution is of order

Y−(rN+1)Y−[rN−1−(rN+1)+1] = Y−(rN−1+1)

(use the new sequencer̃j = rj − rN − 1, j = 1, . . . , N − 1; notice, in particular,
r̃N−1 > −1). The first integral evaluates to

Y−(rN+1) 1∏N−1
j=1 (rj − rN)

. 2

Proof of Theorem 3.11.We begin with theupper bound. Proposition 3.13 yields the bound

9̃n,d (X) ≤
∑

l

µ

{
M ∈ SK,l : c

(a1 · · · al)n−1 > X

}

for some constantc > 0 depending onK. An upper bound of the right-hand side is thus∑
l

µ

{
M ∈ S : c

(a1 · · · al)n−1
> X

}
,
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and we are left with the integral

I (X) = µ

{
M ∈ S : c

(a1 · · · al)n−1
> X

}
. (3.56)

Now, (3.56) equals

I (X) =
∫

0<aj≤(2/
√

3)aj+1 (j=1,...,d−1)

(a1···al )
n−1<c/X

k∈SO(d)

ρ(a) dk da(a). (3.57)

Let us introduce new coordinatesbj = aj/aj+1 in terms of which the old ones read

aj =
( d−1∏

ν=1

bν
ν

)−1/d d−1∏
ν=j

bν, ad =
( d−1∏

ν=1

bν
ν

)−1/d

. (3.58)

In particular we have

a1 · · · al =
( l∏

j=1

b
j (d−l)
j

)1/d( d−1∏
j=l+1

b
l(d−j)
j

)1/d

. (3.59)

The Haar measure onA reads in these coordinatesda(a) = dbj/bj and so

ρ(a) da(a) =
d−1∏
j=1

b
j (d−j)
j

dbj

bj

. (3.60)

Thus (3.57) now becomes

I (X) =
∫ d−1∏

j=1

b
j (d−j)

j

dbj

bj

dk (3.61)

with range of integration

0 < bj <
2√
3
,

( l∏
j=1

b
j (d−l)
j

)(n−1)/d( d−1∏
j=l+1

b
l(d−j)
j

)(n−1)/d

<
c

X
, k ∈ SO(d).

A further change of variables

xj =
{

b
j (d−l)
j , j = 1, . . . , l

b
l(d−j)

j , j = l + 1, . . . , d − 1,

leads to

I (X) =
∫

0<xj <oj (j=1,...,d−1)

(
∏d−1

ν=1 xν)(n−1)/d<c/X

k∈SO(d)

l∏
j=1

x
(d−j)/(d−l)

j

dxj

xj

d−1∏
j=l+1

x
j/l

j

dxj

xj

dk, (3.62)

with obvious constantsoj > 0. The application of Lemma 3.14 withrM = 0 (all other
powers are higher,(d − j)/(d − l) > 1 whenj = 1, . . . , l − 1, andj/l > 1 when
j = l + 1, . . . , d − 1) andY = (X/c)d/(n−1) completes the proof of the upper bound.
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A lower boundis, by virtue of Proposition 3.13,

J (X) = µ

{
M ∈ SK,d−1 : c′γ (k)

(a1 · · · ad−1)n−1
> X

}
≤ 9̃n,d (X)

for some constantc′ > 0 depending onK. That is,

J (X) =
∫

0<aj≤(2/
√

3)aj+1 (j=1,...,d−1)

(a1···ad−1)
n−1<(c′γ (k))/X

ad−1<K
k∈SO(d)

ρ(a) dk da(a). (3.63)

Changing variables as before yields integral (3.61) with range of integration

0 < bj <
2√
3
,

( d−1∏
j=1

b
j
j

)(n−1)/d

<
c′γ (k)

X
,

( d−1∏
j=1

b
j
j

)−1/d

bd−1 < K, k ∈ SO(d).

Putxj = b
j

j . This gives

J (X) =
∫ d−1∏

j=1

x
d−j
j

dxj

xj

dk (3.64)

with range of integration

0 < xj <

(
2√
3

)j

(j = 1, . . . , d − 1),

( d−1∏
ν=1

xν

)(n−1)/d

<
c′γ (k)

X
,

x
1/(d−1)

d−1 < K

( d−1∏
ν=1

xν

)1/d

, k ∈ SO(d).

Sinceγ (k) non-zero on a set of strictly positive measure, we find a set in SO(d) of strictly
positive measure for whichγ (k) ≥ ε, for some small constantε > 0. We also assumeK
is so small thatKd ≤ 2/

√
3. Notice also that 1< (2/

√
3)j . Altogether we have therefore

J (X) �
∫ d−1∏

j=1

x
d−j
j

dxj

xj

, (3.65)

with range of integration

0 < xj < 1 (j = 1, . . . , d − 2), 0 < xd−1 < Kd(d−1),( d−1∏
ν=1

xν

)(n−1)/d

<
c′ε
X

, x
1/(d−1)

d−1 < K

( d−1∏
ν=1

xν

)1/d

.

With the abbreviationY = (X/c′ε)d/(n−1) these conditions can also be written as

0 < xj < 1 (j = 1, . . . , d − 2), 0 < xd−1 < Kd(d−1),

xd−1 <
1

Yx1 · · · xd−2
, xd−1 < Kd(d−1)(x1 · · · xd−2)

d−1,
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which, since(x1 · · · xd−2)
d−1 < 1 for 0 < xj < 1, are equivalent to

0 < xj < 1 (j = 1, . . . , d − 2),

0 < xd−1 <
1

Yx1 · · · xd−2
, xd−1 < Kd(d−1)(x1 · · · xd−2)

d−1,

and thus∫ d−1∏
j=1

x
d−j
j

dxj

xj

=
∫

0<xj<1
(j=1,...,d−2)

min

{
Kd(d−1)(x1 · · · xd−2)

d−1,
1

Yx1 · · · xd−2

}

×
d−2∏
j=1

x
d−j
j

dxj

xj

=
∫

0<xj<1
(j=1,...,d−2)

min

{
Kd(d−1),

1

Yxd
1 · · · xd

d−2

}
d−2∏
j=1

x
2d−j−1
j

dxj

xj

=
∫

0<xj<1 (j=1,...,d−2)

0<xd−1<Kd(d−1)

xd−1
∏d−2

j=1 xd
j <1/Y

d−2∏
j=1

x
2d−j−1
j

dxj

xj

dxd−1.

A simple change of variablesξj = xd
j (j = 1, . . . , d − 2) permits the application of

Lemma 3.14 withrM = 0; this gives the correct asymptotics∼ 1/Y . 2

3.7. Averages overSL(d, R)/SL(d, Z). Using classical reduction theory [37], we will
now indicate how to calculate averages over SL(d, R)/SL(d, Z) of sums of the type

G(M) =
∑

m1,...,mr∈Zd

F (Mm1, . . . , Mmr ) (3.66)

for r < d andF compactly supported. The moments of then-point correlation densities
will turn out to be special cases of the above (see the next section). Explicit formulae
will be given only in the casesr = 1, 2. The general case is as elementary, but more
cumbersome to write down.

For a matrixM = (xij )i,j=1,...,d the Haar measuredµ on SL(d, R) can be written as

dµ = δ(1 − detM)

d∏
i,j=1

dxij . (3.67)

With this choice, the volume of6d = SL(d, R)/SL(d, Z) is given by [37]

µ(6d) =
d∏

n=2

ζ(n), with ζ(n) =
∞∑

ν=1

1

νn
. (3.68)

Note that the Haar measuredµ defined in (3.67) differs from that used in §3.5 by a positive
constant, which is worked out in [7]. Throughout this section, we shall mean bydµ

always the Haar measure normalized such that (3.68) holds.Furthermore, formally we
setµ(61) = 1.
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Now consider the decomposition




x11 · · · x1d

...
. . .

...

xd1 · · · xdd


 =




x11 · · · x1r

...
. . .

... 0
xr1 · · · xrr

xr+1,1 · · · xr+1,r det−1(xij )i,j≤r

...
... 1

...
... 0

. . .

xd1 · · · xdr 1




×




1 a11 · · · a1,d−r

. . .
...

...

1 ar1 · · · ar,d−r

x̃11 · · · x̃1,d−r

...
. . .

...

x̃d−r,1 · · · x̃d−r,d−r




(3.69)

whereM̃ = (x̃ij )i,j=1,...,d−r is in SL(d − r, R). This defines a set of new coordinates for
SL(d, R), and, after a straightforward calculation, the Haar measure defined in (3.67) reads
in these coordinates

dµ =


∏

i≤d
j≤r

dxij




 ∏

i≤r
j≤d−r

daij



(

δ(1 − detM̃)

d−r∏
i,j=1

dx̃ij

)
. (3.70)

Let us start with the caser = 1.

THEOREM 3.15. LetF be piecewise continuous and of compact support. Then

1

µ(6d)

∫
6d

∑
m∈Zd

F (Mm) dµ = F(0) +
∫
Rd

F (x) dx.

Proof. Write m = tc where t = gcd(m1, . . . ,md) > 0. Then there is an element
g ∈ 0 = SL(d, Z) such that we have [37]

c = g




1
0
...

0


 . (3.71)

The stabilizer0S of the unit vector on the right-hand side, i.e. the set of allg ∈ 0 with

g




1
0
...

0


 =




1
0
...

0


 ,
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is given by

0S =







1 k1 · · · kd−1

0
... g
0


 : ki ∈ Z, g ∈ SL(d − 1, Z)




. (3.72)

Hence there is a one-to-one correspondence between the primitive vectorsc and the coset
0/0S , and the integral under consideration can be rewritten as

1

µ(6d)

∫
6d

∑
m∈Zd

F (Mm) dµ = F(0) + 1

µ(6d)

∞∑
t=1

∫
6d

∑
g∈0/0S

F


Mg




t

0
...

0




 dµ

= F(0) + 1

µ(6d)

∞∑
t=1

∫
SL(d,R)/0S

F


M




t

0
...

0




 dµ.

(3.73)

In terms of the coordinates (3.69) forr = 1 a fundamental region for SL(d, R)/0S is

{xi1 ∈ R, a1j ∈ [0, 1), M̃ ∈ FSL(d−1,R)/SL(d−1,Z)},
whereFSL(d−1,R)/SL(d−1,Z) is some fundamental region for SL(d − 1, R)/SL(d − 1, Z).
Hence our integral yields

F(0) + µ(6d−1)

µ(6d)

∞∑
t=1

∫
Rd

F (tx) dx = F(0) + µ(6d−1)

µ(6d)

∞∑
t=1

1

td

∫
Rd

F (x) dx, (3.74)

which in turn equals

F(0) + 1

ζ(d)

∞∑
t=1

1

td

∫
Rd

F (x) dx = F(0) +
∫
Rd

F (x) dx. (3.75)

2

Remark on the proof.The above argument leading to (3.74) can in fact be used to quickly
calculate the volume formula (3.68), which was only used in the very last step to deduce
(3.75). Relation (3.74) states that

1

µ(6d)

∫
6d

∑
m∈Zd−{0}

F(Mm) dµ = C

∫
Rd

F (x) dx (3.76)

with the (unknown, we pretend) constant

C = µ(6d−1)

µ(6d)
ζ(d) < ∞,
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which is independent ofF . On the other hand, we also have

1

µ(6d)

∫
6d

∑
m∈Zd−{0}

εdF (εMm) dµ = C

∫
Rd

F (x) dx (3.77)

for everyε > 0. SinceC is independent ofF (and thus also ofε), and since

lim
ε→0

εd
∑

m∈Zd−{0}
F(εMm) = lim

ε→0
εd

∑
m∈Zd

F (εMm) =
∫
Rd

F (x) dx, (3.78)

there is no other choice thanC = 1, and soµ(6d) = ζ(d)µ(6d−1) = ζ(d) · · · ζ(2).

The last observation will simplify calculations for higherr > 1, for example forr = 2.

THEOREM 3.16. Assumed > 2, and let F be piecewise continuous and of compact
support. Then

1

µ(6d)

∫
6d

∑
m1,m2∈Zd

F (Mm1, Mm2) dµ

= F(0, 0) +
∫
Rd

{F(x, 0) + F(0, x)} dx

+
∞∑

t1,t2=1
gcd(t1,t2)=1

∫
Rd

{F(t1x, t2x) + F(t1x,−t2x)} dx +
∫
Rd

∫
Rd

F (x1, x2) dx1 dx2.

In the case of 2< r < d one has a similar sum over integrals ofF over hyperplanes of
dimension 0, d, 2d, . . . , rd.

Proof. Putmj = tj cj wheretj = gcd(mj

1, . . . ,m
j
d) > 0 for j = 1, 2. As above, we have

for someg ∈ 0 = SL(d, Z) the relation

(c1, c2) = g




1 p

0 q

0 0
...

...

0 0


 , (3.79)

where either(p, q) = (0, 0), (p, q) = (±1, 0), (p, q) = (0, 1) or (p, q) with p 6= 0,
q > 1, gcd(p, q) = ±1. The first case corresponds to the contributions

1

µ(6d)

∫
6d

∑
m∈Zd

{F(0, Mm) + F(Mm, 0)} dµ,

and the second to

1

µ(6d)

∫
6d

∞∑
t1,t2=1

gcd(t1,t2)=1

∑
m∈Zd

{F(t1Mm, t2Mm) + F(t1Mm,−t2Mm)} dµ.

These cases can therefore be dealt with by an identical argument to the previous proof; this
explains all terms up to the last term. Assume, therefore, in the following(p, q) = (0, 1)
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or (p 6= 0, q > 1) with gcd(p, q) = ±1. The stabilizer0S of the matrix on the right-hand
side of (3.79) (p, q fixed) reads now

0S =







1 0 k11 · · · k1,d−2

0 1 k21 · · · k2,d−2

0 0
...

... g
0 0


 : kij ∈ Z, g ∈ SL(d − 2, Z)




, (3.80)

and, by the same reasoning as in the previous proof, the integral
1

µ(6d)

∫
6d

∑
t1,t2

∑
c1,c2

F(t1Mc1, t2Mc2) dµ,

where the second sum runs overc1, c2 corresponding to(p, q) of the above type, equals

1

µ(6d)

∫
SL(d,R)/0S

∞∑
t1,t2=1

∑
(p,q)

F


t1M




1
0
0
...

0


 , t2M




p

q

0
...

0





 dµ

= µ(6d−2)

µ(6d)

∞∑
t1,t2=1

∑
(p,q)

∫
Rd

∫
Rd

F (t1x1, t2px1 + t2qx2) dx1 dx2

= C

∫
Rd

∫
Rd

F (x1, x2) dx1 dx2, (3.81)

for some constantC < ∞. Hence we have
1

µ(6d)

∫
6d

{ ∑
m1,m2∈Zd

F (Mm1, Mm2) − F(0, 0) −
∑

m∈Zd

{F(0, Mm) + F(Mm, 0)}

−
∞∑

t1,t2=1
gcd(t1,t2)=1

∑
m∈Zd

{F(t1Mm, t2Mm) + F(t1Mm,−t2Mm)}
}

dµ

= C

∫
Rd

∫
Rd

F (x1, x2) dx1 dx2. (3.82)

We may replace on the left-hand sideF(x1, x2) by ε2dF (εx1, εx2) without changing the
right-hand side. Now observe that in the following, only the first term is of leading order
in ε and, in fact, converges to a Riemann integral:

lim
ε→0

ε2d

{ ∑
m1,m2∈Zd

F (εMm1, εMm2) − F(0, 0) −
∑

m∈Zd

{F(0, εMm) + F(εMm, 0)}

−
∞∑

t1,t2=1
gcd(t1,t2)=1

∑
εm∈Zd

{F(εt1Mm, εt2Mm) + F(εt1Mm,−εt2Mm)}
}

dµ

= lim
ε→0

ε2d
∑

m1,m2∈Zd

F (εMm1, εMm2) =
∫
Rd

∫
Rd

F (x1, x2) dx1 dx2; (3.83)

thusC = 1. 2
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3.8. Moments. We first need to calculate the average of the functionτn defined in (3.12).

LEMMA 3.17. ∫
Rn−1

τn(X ) dX = 1.

Proof. Consider the identity

1 = 1

Nn

N∑
m1,...,mn=1

1. (3.84)

We now use the argument of §3.2 by rewriting the sum overmj as a sum overk1 =
m1 − m2, . . . , kn−1 = mn−1 − mn with multiplicities

N − max
1≤a≤b≤n−1

∣∣∣∣
b∑

i=a

ki

∣∣∣∣,
yielding

1

Nn

N∑
m1,...,mn=1

1 = 1

Nn−1

∑
K∈Zn−1

τn

(
K

N

)
, (3.85)

which in the limitN → ∞ converges to the Riemann integral overτn. 2

The first two moments of the limit distribution for the two-point correlations have the
following explicit expression.

THEOREM 3.18. Assume for simplicityB is an interval symmetric about the origin. Then
the expectation value is given by∫ ∞

0
X d92,d(X) = |B|,

and the second moment reads ford > 2

∫ ∞

0
X2 d92,d(X) = |B|2 + 2



(

2

3

)d−1

+ 2
∞∑

p,q=1
p<q

gcd(p,q)=1

1

qd

(
1 − 1

3

p

q

)d−1




|B|.

Proof. Notice that we have for the expectation value∫ ∞

0
X d92,d(X) = 1

µ(6d)

∫
6d

D2(B, M) dµ (3.86)

which may be written as

1

µ(6d)

∫
6d

[∑
m

F(Mm) − F(0)

]
dµ (3.87)
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with

F(x) = τ2(x1) · · · τ2(xd−1)χB(xd). (3.88)

The expectation value can now be readily calculated from Theorem 3.15. The second
moment follows similarly from Theorem 3.16 applied to∫ ∞

0
X2 d92,d(X) = 1

µ(6d)

∫
6d

D2(B, M)2 dµ

= 1

µ(6d)

∫
6d

[∑
m

F(Mm) − F(0)

]2

dµ (3.89)

with

F(x1, x2) = τ2(x
1
1)τ2(x

2
1) · · · τ2(x

1
d−1)τ2(x

2
d−1)χB(x1

d)χB(x2
d). (3.90)

2

The expectation value of the three-point correlations is as follows.

THEOREM 3.19. Letd > 2. Then∫ ∞

0
X d93,d(X) = |B| +

∞∑
p,q=1

gcd(p,q)=1

1

(p + q)d−1

∫
R

χB(px, qx) dx

+ 2
∞∑

p,q=1
p<q

gcd(p,q)=1

1

qd−1

∫
R

χB(px,−qx) dx.

Proof. We have ∫ ∞

0
X d93,d(X) = 1

µ(6d)

∫
6d

D3(B, M) dµ (3.91)

which we write as

1

µ(6d)

∫
6d

[ ∑
m1,m2

F(Mm1, Mm2)

−
∑
m

{F(Mm, 0) + F(0, Mm) + F(Mm,−Mm)} − F(0, 0)

]
dµ (3.92)

with

F(x1, x2) = τ3(x
1
1, x2

1) · · · τ3(x
1
d−1, x

2
d−1)χB(x1

d, x2
d ). (3.93)

Apply again Theorem 3.16 and Lemma 3.17. 2

We conclude the discussion of moments with a remark on the general case.
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THEOREM 3.20. We have∫ ∞

0
Xk d9n,d(X)

{
< ∞, if d > (n − 1)k

= ∞, if d ≤ (n − 1)k

and, forn, k fixed,

lim
d→∞

∫ ∞

0
Xk d9n,d(X) = |B|k,

which coincides with thekth moment of the Dirac distribution

d9(X) = δ(X − |B|) dX.

Proof. The first assertion follows from the tail estimate given in Theorem 3.11. The
asymptotic behaviour for larged is evident in the casesn = 2, 3, k = 1, 2 discussed
above. The general case is similar, the only term, which does not depend ond, is |B|k.
All other terms involve convergent series (ford large enough) whose limit vanishes as
d → ∞. 2

Some further analysis shows that the limit value|B|k is approached exponentially fast
in d (k, n fixed); in the casesn = 2, 3, k = 1, 2 this is evident from the explicit formulae
given above.

4. Values in small intervals
A statistic which is closely related to then-point correlation density is the probability of
findingK values of the linear formLm in a random interval[ξ, ξ +σ/N] of the unit circle,
whereξ is a uniformly distributed random variable on[0, 1), andσ is a fixed constant
measuring the size of the interval in units of the mean spacing. To be more precise, we are
interested in the random variable

N α
σ (ξ,N) =

N1∑
m1=1

· · ·
Nd−1∑

md−1=1

∑
ν∈Z

χσ (N(Lm − ξ + ν)), (4.1)

χσ being the characteristic function of the interval(0, σ ], and in its probability distribution

Pα
σ (N) = Prob{N α

σ ( · , N) = K}. (4.2)

The expectation value is clearly

EN α
σ ( · , N) =

∫ 1

0
N α

σ (ξ,N) dξ = σ, (4.3)

and a short calculation shows that thenth moment can be written as

EN
α
σ ( · , N)n =

∫ 1

0
N

α
σ (ξ,N)n dξ

= 1

N

N1∑
m1

1,...,mn
1=1

· · ·
Nd−1∑

m1
d−1,...,m

n
d−1=1

∑
ν1,...,νn−1∈Z

×
∫ σ

0
χσ (N(Lm1 − Lmn + ν1) + ξ)χσ (N(Lm2 − Lmn + ν2) + ξ)

· · ·χσ (N(Lmn−1 − Lmn + νn−1) + ξ) dξ, (4.4)
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and is therefore related to then-point correlations via

EN α
σ ( · , N)n =

∫
Rn−1

Cα
n (S, N)ρσ (S) dn−1S (4.5)

with

Cα
n (S, N) =

∑
k1,...,kn−1∈Zd

τn

(
K1

N1

)
· · · τn

(
Kd−1

Nd−1

)

× δ(s1 − Nαk1) · · · δ(sn−1 − Nαkn−1), (4.6)

and

ρσ (S) =
∫ σ

0
χσ (s1 + · · · + sn−1 + ξ)

× χσ (s2 + · · · + sn−1 + ξ) · · · χσ (sn−2 + sn−1 + ξ)χσ (sn−1 + ξ) dξ,

which clearly has compact support. Its L1-norm reads∫
Rn−1

ρσ (S) dS = σn. (4.7)

The combinatorial argument which relates then-point densitiesCα
n (S, N) andRα

n (S, N)

can be found, for example, in [25, 30].
The invariance properties ofN α

σ ( · , N) itself can be expressed in terms of the group G
defined as the semi-direct product G= SL(d, R) n R

d with multiplication law

{M1, x1}{M2, x2} = {M1M2, x1 + M1x2}. (4.8)

A natural action of this group onRd is given by{M, x}y = x + My. We now define the
function

Vσ ({M, x}) =
∑

m∈Zd

χ1(m̃1) · · ·χ1(m̃d−1)χσ (m̃d), (4.9)

wherem̃ = {M, x}m. By a similar argument as in the last section, this function can be
shown to be right invariant under the discrete subgroup3 = SL(d, Z) n Z

d and may thus
be viewed as a function on the manifold� = G/3. We clearly have

N α
σ (ξ,N) = Vσ ({M, x}) (4.10)

for

{M, x} =







N−1
1

. . .

N−1
d−1

N






1
. . .

1
α1 · · · αd−1 1


 ,




0
...

0
Nξ






.

As for then-point correlations, the representation (4.10) implies that we cannot expect
Pα

σ (N) to converge, since it behaves similar to a function on6d along some (in general,
infinite) trajectory.

The following observation will be useful later (Theorem 4.2).
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LEMMA 4.1. Fix some non-negative integerK. The solutionsM of the equation

Vσ ({M, x}) = K (4.11)

form a set with boundary of measure zero in�.

Proof. As in the proof of Lemma 3.10, cover� with countably many compact sets
and consider the above equation on each set separately. On each compact set the sum
representingVσ ({M, x}) is a finite superposition of piecewise constant functions which
take values in the non-negative integers. The boundary of the set of solutions of (4.11) is
therefore contained in the set of discontinuities, and thus of measure zero. 2

4.1. Limit distributions. Tail estimates.The following results are, again, a consequence
of equidistribution (this time on SL(d, R) n R

d ), as we shall see in the next section. In the
following put, again,Nj = djN

1/(d−1), for arbitrary constantsdj > 0 (d1 · · · dd−1 = 1).
We defineNσ (ξ,N) at non-integerNj by simply replacingNj by its integral part in the
definition (4.1).

THEOREM 4.2. Supposeα1, . . . , αd−1 ∈ T are random variables with continuous joint
probability densityh(α1, . . . , αd−1), andξ is a uniformly distributed random variable on
[0, 1). Then the limit

lim
N→∞ Prob{Nσ ( · , N) = K}

exists for allσ ∈ R+, K = 0, 1, 2, . . . , and is given by

PK(σ) = µG{{M, x} ∈ � : Vσ ({M, x}) = K}
µG(�)

,

which is independent ofh.

Note thatPK(σ) is well defined, due to Lemma 4.1.

THEOREM 4.3. For K0 large enough, there exist constants0 < C1(σ ) ≤ C2(σ ) < ∞
such that

C1(σ )X−(d+1) ≤
∞∑

K=X

PK(σ) ≤ C2(σ )X−(d+1)

for all X > X0, i.e.PK(σ) has a power-like tail.

The above theorems generalize a result of Mazel and Sinai [24] valid for d = 2, constant
h, σ ≤ 1, which was obtained by different methods. They are able to give an explicit
formula for the limit distribution since in the rangeσ ≤ 1 the sum∑

m∈Z2

χ1(m̃1)χσ (m̃2),

defining Vσ ({M, x}) has a particularly tractable form. In principle, it should also be
possible to explicitly calculate the limit distribution in the above range for higherd > 2,
but this requires a more detailed study of the geometry of the fundamental domain than we
want to carry out here.

The probability of finding values close to zero has the following limiting behaviour.
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THEOREM 4.4. Supposeα1, . . . , αd−1 ∈ T are random variables with continuous joint
probability densityh(α1, . . . , αd−1). Then the limit

lim
N→∞ Prob{Nσ (0, N) = K}

exists for allσ ∈ R+, K = 0, 1, 2, . . . , and is given by

PK,0(σ ) = µ{M ∈ 6d : Vσ ({M, 0}) = K}
µ(6d)

,

which is independent ofh.

THEOREM 4.5. For K0 large enough, there exist constants0 < C1(σ ) ≤ C2(σ ) < ∞
such that

C1(σ )X−d ≤
∞∑

K=X

PK,0(σ ) ≤ C2(σ )X−d

for all X > X0, i.e.PK,0(σ ) has a power-like tail.

The proofs of the last two theorems are almost identical with those for the two-point
correlations (and will therefore be omitted), sinceVσ ({M, 0}) can be identified with a
function on6d .

We conclude this section with the limit theorems of the trigonometric sumsWN(ξ),

WN(ξ) = 1

N

N∑
ν=1

N1∑
m1=1

· · ·
Nd−1∑

md−1=1

cos(2πν(Lm + ξ)), (4.12)

compare (2.2); recall thatN = N1 · · ·Nd−1, hence 1/N normalizes exactly by the square-
root of the number of summands involved.

THEOREM 4.6. Supposeα1, . . . , αd−1 ∈ T are random variables with continuous joint
probability densityh(α1, . . . , αd−1), andξ is a uniformly distributed random variable on
[0, 1). Then there is a function8d(a, b), decreasing ina, increasing inb and continuous
except for at most countably manya, b ∈ R, such that

lim
N→∞ Prob{a < WN < b} = 8d(a, b)

except possibly at the discontinuities of8d(a, b).

THEOREM 4.7. For X0 large enough, there exist constants0 < C1 ≤ C2 < ∞ such that

C1X
−(d+1) ≤ 1 − 8d(−X,X) ≤ C2X

−(d+1)

for all X > X0 .

THEOREM 4.8. Let d > 2. Supposeα1, . . . , αd−1 ∈ T are random variables with
continuous joint probability densityh(α1, . . . , αd−1). Then there is a function8d,0(a, b),
decreasing ina, increasing inb and continuous except for at most countably many
a, b ∈ R, such that

lim
N→∞ Prob{a < WN(0) < b} = 8d,0(a, b)

except possibly at the discontinuities of8d,0(a, b).
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We are only able to prove the above theorem in the cased = 2, whenWN is replaced
by the smoothed sum

W̃N(ξ) = 1

N

∞∑
ν=1

N1∑
m1=1

· · ·
Nd−1∑

md−1=1

f
( ν

N

)
cos(2πν(ξ + Lm)), (4.13)

where the cut-off functionf is of Schwartz class, for example smooth and compactly
supported. The limit distribution will then depend onf .

THEOREM 4.9. For X0 large enough, there exist constants0 < C1 ≤ C2 < ∞ such that

C1X
−d ≤ 1 − 8d,0(−X,X) ≤ C2X

−d

for all X > X0.

The proof of these limit theorems combines arguments from the proofs of Theorems 4.2
and 4.3 with arguments from [21] and will only be sketched in §4.3.

4.2. Flows onSL(d, R)n R
2/SL(d, Z)n Z

2. In analogy with the flow8t discussed in
the previous section we shall now consider the flow

2t : � → �,

{M, x} 7→







e−t

. . .

e−t

e(d−1)t


 , 0




{M, x}.

In terms of the coordinates{M, x} = {[s, l, b, A], x} (recall the parametrization (3.18)) the
action of the flow reads

2t({[s, l, b, A], x}) =




[s + t, l, be−dt , A],




x1e
−t

...

xd−1e
−t

xde(d−1)t






.

Let us now understand the following generalization of Corollary 3.9.

THEOREM 4.10. Letf be bounded and piecewise continuous on�, andh be continuous
on the standard(d − 1)-dimensional unit torusTd−1. Then, for everys ∈ R, A ∈
SL(d − 1, R), we have

lim
t→∞

∫ 1

0

∫
Td−1

f

({
[s + t, l, 0, A],

(
0

ξe(d−1)t

)})
h(l) dd−1l dξ

= 1

µG(�)

∫
�

f dµG

∫
Td−1

h(l) dd−1l,

whereµG denotes the Haar measure ofG.
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Proof. As in the proof of Corollary 3.7 we may assume, without loss of generality, that
s = 0, A = 1 (same argument).

Since the function

F(M) =
∫
Td

f ({M, 0}{1, x}) ddx

satisfies the conditions of Corollary 3.9, we have

lim
t→∞

∫
Td

∫
Td−1

f ({[t, l, 0, 1], 0}{1, x})h(l) dd−1l ddx

= 1

µ(6d)

∫
6d

F dµ

∫
Td−1

h(l) dd−1l

= 1

µG(�)

∫
�

f dµG

∫
Td−1

h(l) dd−1l. (4.14)

(Notice that we may think of� as a product6d times the unit torusTd , hence we have, in
particular,dµG = dµ ddx.)

Let us denote bydG( · , · ) the distance induced by the right-invariant metric on G. Then
we have (with the abbreviationlx = l1x1 + · · · + ld−1xd−1)

dG


{[t, l, 0, 1], 0}




1,




x1
...

xd−1

xd






,




[t, l, 0, 1],




0
...

0
(lx + xd)e(d−1)t









= dG






[0, 0, 0, 1],




x1e
−t

...

xd−1e
−t

0






,




[0, 0, 0, 1],




0
...

0
0







 � e−t , (4.15)

uniformly for xj ∈ [0, 1). Therefore, iff is continuous and has compact support, we
obtain by uniform continuity

lim
t→∞

∫
Td

∫
Td−1

f ({[t, l, 0, 1], 0}{1, x})h(l) dd−1l ddx

= lim
t→∞

∫
Td

∫
Td−1

f

({
[t, l, 0, 1],

(
0

(lx + xd)e(d−1)t

)})
h(l) dd−1l ddx. (4.16)

Substituting in the last integralxd by ξ = xd + lx yields∫
Td

∫
Td−1

f

({
[t, l, 0, 1],

(
0

(lx + xd)e(d−1)t

)})
h(l) dd−1l ddx

=
∫ 1

0

∫
Td−1

f

({
[t, l, 0, 1],

(
0

ξe(d−1)t

)})
h(l) dd−1l dξ, (4.17)

which gives the theorem for compactly supported continuous functions. The result for
bounded piecewise continuousf follows from approximation from above/below as before
in the proof of Corollary 3.9. 2
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4.3. Proof of Theorems 4.2–4.9.

Proof of Theorem 4.2.Proceed similarly as for the Theorem 3.2, but use Lemma 4.1 instead
of Lemma 3.10. 2

For the proof of Theorem 4.3 we need the following bounds onVσ ({M, x}).
PROPOSITION4.11. For K constant and small enough, we have:
(i) the upper bound

Vσ ({M, x}) �K
γl,max(xl+1al+1, . . . , xdad)

a1 · · · al

uniformly for allM = ka(a)n(u) ∈ SK,l , x ∈ [−1
2, 1

2]d , and
(ii) the lower bound

γd−1(k, xdad)

a1 · · · ad−1
�K Vσ ({M, x})

uniformly for all M = ka(a)n(u) ∈SK,d−1, x ∈ [−1
2, 1

2]d . The function
γl,max(tl+1, . . . , td ) ≥ 0 is compactly supported and bounded onR

d−l , and non-
zero on a set of strictly positive measure; the functionγd−1(k, td) ≥ 0 is compactly
supported and bounded onSO(d) × R, and non-zero on a set of strictly positive
measure.

Proof. The functionVσ ({M, x}) has a representation of the form

Vσ ({M, 0}{1, x}) =
∑

m∈Zd

F (M(m + x))

with F compactly supported, non-negative and piecewise constant. We have for
a1, . . . , al → 0, al+1, . . . , ad → ∞, x ∈ [−1

2, 1
2]d , the asymptotic relation (recall the

discussion in the proof of Proposition 3.13)

Vσ ({M, 0}{1, x}) ∼ γl(k, al+1xl+1, . . . , adxd)

a1 · · · al

, (4.18)

with

γl(k, tl+1, . . . , td ) =
∫

F




k




x1
...

xl

tl+1
...

td







dx. (4.19)

Theupper boundfollows now if we put

γmax,l(tl+1, . . . , td ) = max
k∈SO(d)

γl(k, tl+1, . . . , td ).

The lower boundis obtained, forK constant and small enough, sincea1, . . . , ad−1 → 0
impliesad → ∞. 2
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Proof of Theorem 4.3.By virtue of Proposition 4.11 we can giveupper boundson∑
K≥X PK(σ) (apply the same argument as in the proof of Theorem 3.11) by considering

the integrals (l = 1, . . . , d − 1)

I (X) =
∫

0<aj≤(2/
√

3)aj+1 (j=1,...,d−1)

[γmax,l (al+1xl+1,...,adxd)]/[a1···al]>X

k∈SO(d)

x∈[− 1
2 , 1

2 ]d

ρ(a) da(a) dk dx, (4.20)

wheredx is the standard Lebesgue measure. We relax the conditionx ∈ [−1
2, 1

2]d
immediately tox ∈ R

d .
Integration over the variablesk, x1, . . . , xl is trivial, and substitutingxj = tj a

−1
j for

j = l + 1, . . . , d yields

I (X) �
∫

0<aj ≤(2/
√

3)aj+1 (j=1,...,d−1)

[γmax,l (tl+1,...,td )]/[a1···al]>X

(tl+1,...,td )∈Rd−l

ρ(a)

al+1 · · · ad

da(a) dtl+1 · · · dtd . (4.21)

Sinceγmax,l is compactly supported, we have for some constantc > 0

I (X) �
∫

0<aj ≤(2/
√

3)aj+1 (j=1,...,d−1)

c/a1···al>X

ρ(a)

al+1 · · · ad

da(a)

=
∫

0<aj ≤(2/
√

3)aj+1 (j=1,...,d−1)

c/a1···al>X

a1 · · · alρ(a) da(a).

Changing variables as before (proof of Theorem 3.11) yields the integral

∫
0<xj<oj (j=1,...,d−1)

(
∏d−1

ν=1 xν)1/d<c/X

l∏
j=1

x
[(d−j)/(d−l)]+(1/d)

j

dxj

xj

d−1∏
j=l+1

x
(j/ l)+(1/d)

j

dxj

xj

, (4.22)

with suitable constantsoj , and the expected upper bound follows from Lemma 3.14 with
rM = 1/d.

By Proposition 4.11, thelower boundto be proved is obtained from the integral

J (X) =
∫

0<aj ≤(2/
√

3)aj+1 (j=1,...,d−1)

ad−1<K<(2/
√

3)ad

[γd−1(k,adxd)]/[a1···ad−1]>X
k∈SO(d)

x∈[− 1
2 , 1

2 ]d

ρ(a) da(a) dk dx. (4.23)

The parameterK is here related to the asymptotic regimeSK,l of the Siegel domain, and
is of course not related to theK used inPK(σ).

As above we integrate overx1, . . . , xd−1 and substitutexd = ta−1
d . This gives

J (X) =
∫

0<aj ≤(2/
√

3)aj+1 (j=1,...,d−1)

ad−1<K<(2/
√

3)ad

[γd−1(k,t )]/[a1···ad−1]>X
k∈SO(d)
|t |<ad/2

ρ(a)

ad

da(a) dk dt. (4.24)
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We haveK < 2√
3
ad and so

J (X) ≥
∫

0<aj ≤(2/
√

3)aj+1 (j=1,...,d−1)

ad−1<K
[γd−1(k,t )]/[a1···ad−1]>X

k∈SO(d)

|t |<(
√

3/4)K

ρ(a)

ad

da(a) dk dt. (4.25)

After the usual change of variables we find that

J (X) �
∫ d−1∏

j=1

x
(d−j)+(1/d)

j

dxj

xj

dk dt (4.26)

with range of integration

0 < xj <

(
2√
3

)j

(j = 1, . . . , d − 1),

( d−1∏
ν=1

xν

)1/d

<
γd−1(k, t)

X
,

x
1/(d−1)

d−1 < K

( d−1∏
ν=1

xν

)1/d

, k ∈ SO(d), |t| <

√
3

4
K.

The asymptotics of this last integral can be calculated with the same method used in the
end of the proof of Theorem 3.11. The only crucial difference is that in the application of
Lemma 3.14 we haverM = 1/d instead of zero. 2

Proof of Theorems 4.4 and 4.5.Almost identical to the proofs for the two-point
correlations, sinceVσ ({M, 0}) can be identified with a function on6d . 2

Sketch of the proof of Theorems 4.6–4.9.We can writeWN(ξ) as

WN(ξ) = 1

2N

∑
ν∈Z

N∑
j=1

χ
( ν

N

)
exp(2π i ν(λj + ξ)) − 1

2, (4.27)

whereχ is the characteristic function of the interval[−1, 1]. Let us now replaceχ with a
smooth, compactly supported functionf and study

W̃N(ξ) = 1

2N

∑
ν∈Z

N∑
j=1

f
( ν

N

)
exp(2π iν(λj + ξ)) − 1

2f (0) (4.28)

instead. Using the Poisson summation formula for the sum overν we obtain

W̃N (ξ) = 1

2

∑
ν∈Z

N∑
j=1

f̂ (N(λj + ξ + ν)) − 1
2f (0), (4.29)

f̂ being the Fourier transform off . Reviewing the proofs of Theorems 4.2–4.5 one can
conclude that Theorems 4.6–4.9 indeed hold forW̃N(ξ). Finally the density argument in
[21, §7] shows that the smoothness condition can be dropped. The main condition for this
argument to work is that the expectation and variance satisfy (note that

∫
h(α) dd−1α = 1

by definition)

lim
N→∞ EW̃N = lim

N→∞

∫ 1

0

∫
Td−1

h(α)W̃N (ξ) dξ dd−1α = 0, (4.30)

lim
N→∞ EW̃2

N = lim
N→∞

∫ 1

0

∫
Td−1

h(α)|W̃N (ξ)|2 dξ dd−1α = 1

4

∫
f (t)2 dt, (4.31)
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independent of the smoothness off , which can be readily verified. In the caseξ = 0, the
expectation value still vanishes:

lim
N→∞ EW̃N = 1

2
lim

N→∞

∫
Td−1

h(α) W̃N (0) dd−1α = 0, (4.32)

but it is more complicated to obtain analogous relations for the variance. By a standard
density argument, we may assume, without loss of generality,h has a finite Fourier
expansion and consider each term of the expansion separately. ForN large, the zeroth
Fourier coefficient corresponds to∫ 1

0

∫
Td−1

|W̃N(ξ)|2 dξ dd−1α

∼ 1

(2N)2

∑
0<m1≤d1N

1/(d−1)

...
0<md−1≤dd−1N

1/(d−1)

∑
0<n1≤d1N

1/(d−1)

...
0<nd−1≤dd−1N

1/(d−1)

∑
ν,µ∈Z

νmj=µnj

f
( ν

N

)
f
(µ

N

)
− 1

4f (0)2.

(4.33)

The latter equals

1

(2N)2

∑
0<m1≤d1N

1/(d−1)

...
0<md−1≤dd−1N

1/(d−1)

∑
0<n1≤d1N

1/(d−1)

...
0<nd−1≤dd−1N

1/(d−1)

∑
ν,µ6=0

νmj =µnj

f
( ν

N

)
f
(µ

N

)
. (4.34)

Generalizing the derivation given in the appendix to general piecewise continuous and
compactly supported cut-off functionsf , we find ford > 2

lim
N→∞

∫ 1

0

∫
Td−1

|W̃N(0)|2 dξ dd−1α =




1

2

∞∑
ν,µ=1

gcd(ν,µ)=1
µ≤ν

1

νd

∫
f (t)f

(µ

ν
t
)

dt




− 1

4

∫
f (t)2 dt, (4.35)

while in the cased = 2 we observe a logarithmic divergence which is why our argument
fails in this case. Forf ≥ 0 andf (t) ≥ f (t ′) for |t| < |t ′| we have∫

f (t)f
(µ

ν
t
)

dt ≤
∫

f (t)2 dt.

Using the relation (see appendix)

∞∑
ν,µ=1

gcd(ν,µ)=1
µ≤ν

1

νd
= ζ(d − 1)

ζ(d)
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we obtain the upper bound (cf. appendix)

lim
N→∞

∫ 1

0

∫
Td−1

|W̃N(0)|2 dξ dd−1α ≤ 1

4

(
2
ζ(d − 1)

ζ(d)
− 1

)∫
f (t)2 dt (4.36)

which in turn gives, also, an upper bound for

lim
N→∞

∫ 1

0

∫
Td−1

h(α)|W̃N (0)|2 dξ dd−1α,

proportional to
∫

f (t)2 dt , which is all we need for our density argument to work.
However, terms of the form∫ 1

0

∫
Td−1

e2π i(k1α1+···+kd−1αd−1)|W̃N(0)|2 dξ dd−1α

actually vanish when at least one of thekj is not zero (we will not prove this here), so

lim
N→∞

∫ 1

0

∫
Td−1

h(α)|W̃N (0)|2 dξ dd−1α (4.37)

coincides with the limit (4.35). 2

4.4. Moments. The first two moments of8d , 8d,0 and their relativesPK(σ), PK,0(σ )

follow from the calculations carried out in the proof of Theorems 4.4 and 4.5, above.
Equivalently, they are also an immediate consequence of Theorems 3.15 and 3.16:
Theorem 3.15 for the first moment of8d,0(a, b) andPK,0(σ ), and for the second moment
of 8d(a, b) and PK(σ); and Theorem 3.16 for the second moment of8d,0(a, b) and
PK,0(σ ). Note that for instance

∞∑
K=0

KnPK,0(σ ) = 1

µ(6d)

∫
6d

Vσ ({M, 0})n dµ. (4.38)

Recall also that
∑∞

K=0 Kn PK(σ) is related to the expectation value of then-point
correlations, relation (4.5).

The results are as follows.

THEOREM 4.12.
∞∑

K=0

KPK(σ) = σ,

∞∑
K=0

K2PK(σ) = σ 2 + σ.

These moments coincide with those of a Poisson distribution. The third moment will
deviate in a similar way as the expectation value three-point correlations, compare (4.5)
and Theorem 3.19.

THEOREM 4.13.
∞∑

K=0

KPK,0(σ ) = σ,

∞∑
K=0

K2PK,0(σ ) = σ 2 +
(

2
ζ(d − 1)

ζ(d)
− 1

)
σ (d > 2).
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In the limit d → ∞ all moments converge to the moments of a Poisson distribution.

THEOREM 4.14. Fix n ∈ N. Then

lim
d→∞

∞∑
K=0

KnPK(σ) =
∞∑

K=0

Kn σK

K! e−σ

and

lim
d→∞

∞∑
K=0

KnPK,0(σ ) =
∞∑

K=0

Kn σK

K! e−σ .

Proof. Thenth moment ofPK(σ) is related via (4.5) to the expectation value of then-point
correlations, which converge to the limit given by IUDRVs (Theorem 3.20). The analogue
of relation (4.5) of course exists also for IUDRVs; this proves the first statement.

Let us turn to the second assertion. Recall that due to (4.38) we have to calculate (n < d)

1

µ(6d)

∫
6d

∑
m1,...,mn∈Zd

F (Mm1, . . . , Mmn) dµ (4.39)

with

F(x1, . . . ,xn) =
n∏

j=1

χ1(x
j

1) · · ·χ1(x
j

d−1)χσ (x
j
d ). (4.40)

As in the proof of Theorems 3.15 and 3.16, we putmj = tj cj where tj =
gcd(mj

1, . . . ,m
j
d) > 0 for j = 1, . . . , n < d. All terms with tj > 1 will later lead to

contributions which vanish asd → ∞.
For any given(c1, . . . , cn) we find someg ∈ 0 = SL(d, Z) such that

(c1, . . . , cn) = g




1 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

...
. . .

. . .
...

0 · · · · · · 0 ann

0 · · · · · · · · · 0
...

...

0 · · · · · · · · · 0




, (4.41)

with certain restrictions on theaij . It is for example possible that thej th column consists
only of zeros, i.e.a1j = 0, . . . , ajj = 0. This would eventually lead to some integral over
F(x1, . . . ,xn) with xj = 0. However, for our special choice ofF in (4.40) we find easily
thatF(x1, . . . ,xn) = 0 wheneverxj = 0, and thus the resulting integral vanishes.

Suppose now that|aij | > 1. This will lead to contributions which will vanish when
d → ∞, and we will not deal with that case any further either.

We are thus left withaij = ±1. In this case it is always possible to find an element
g ∈ 0 = SL(d, Z) such that theaij are of the following form:
(a) in every column there is only one non-zeroaij = ±1;
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(b) in every row there is at least oneaij ≥ 0.
Terms with negativeaij = −1 would, however, lead to contributions containing terms

of the form
F(. . . ,x, . . . ,−x, . . . ),

which are zero due to our special choice (equation (4.40)) ofF .
Let us therefore consider the only remaining case when allaij are zero or+1. The

set of upper triangular(n × n)-matrices with only one+1 in every column is in one-to-
one correspondence with the set partitions of{1, . . . , n} into ν disjoint non-empty subsets
[F1, . . . ,Fν], whereν = 1, . . . , n: to a given partition[F1, . . . ,Fν] we can associate the
matrix with coefficients (denote byis is the smallest element ofFs)

aij =
{

1, if i = is andj ∈ Fs , for somes = 1, . . . , ν

0, otherwise.

From this and a generalization of the arguments for Theorem 3.16 we obtain (denote by
Pν the collection of all partitions intoν sets)

1

µ(6d)

∫
6d

∑
m1,...,mn∈Zd

F (Mm1, . . . , Mmn) dµ

=
n∑

ν=1

∑
[F1,...,Fν ]∈Pν

∫
Rν

F (x1, . . . ,xn)

∣∣∣∣
xi = xj if i, j are in the same setFs

dxi1 · · · dxiν

+ [terms of lower order ind]. (4.42)

The reason why all coefficients in front of the integrals areC = 1 follows from a
consequent application of the argument given at the very end of §3.7.

The integration can be carried out term by term, and our final result is

1

µ(6d)

∫
6d

∑
m1,...,mn∈Zd

F (Mm1, . . . , Mmn) dµ =
n∑

ν=1

|Pν |σν, (4.43)

where|Pν | is the number of partitions of{1, . . . , n} into ν sets. The right-hand side of
(4.43) represents exactly thenth moment of a Poisson distribution. 2

Finally, for the moments of8d(X,∞) we have the following.

THEOREM 4.15.∫ ∞

−∞
X d8d(X,∞) = 0,

∫ ∞

−∞
X2 d8d(X,∞) = 1

4 .

THEOREM 4.16. ∫ ∞

−∞
X d8d,0(X,∞) = 0,∫ ∞

−∞
X2 d8d,0(X,∞) = 1

4

(
2
ζ(d − 1)

ζ(d)
− 1

)
(d > 2).

Again, higher moments converge ford → ∞ to the moments of the limit distribution
corresponding to IUDRVs. Note that this distribution is not Gaussian; some of its
properties are discussed in [38].
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Appendix: The number of solutions of simultaneous quadratic equations.
We consider the number of integer solutions of the system of quadratic equationsaxi =
byi, i = 1, . . . , f where the variables lie in a large box. By using elementary methods
from number theory, we can show the following.

THEOREM A.1. For f ≥ 1 let Nf (T ) be the number of positive integer solutions of the
system

axi = byi, i = 1, . . . , f, a, b < T, xi, yi < T 1/f . (A.1)

Then asT → ∞:
(1) for f ≥ 3,

Nf (T ) = Cf T 2 + O(T ), Cf = 2ζ(f )

ζ(f + 1)
− 1;

(2) for f = 2,

N2(T ) =
(

2ζ(2)

ζ(3)
− 1

)
T 2 + O(T logT );

(3) for f = 1,

N1(T ) = 2

ζ(2)
T 2 logT + O(T 2),

whereζ(s) = ∑
n−s is the Riemann zeta function.

Remarks.
(1) Recall thatζ(2) = π2/6, and there are similar formulae forζ(2k).
(2) The constantsCf decrease monotonically to one asf → ∞. The first few values

areC2 = 1.7368. . . , C3 = 1.22125. . . , C4 = 1.0875. . . , C5 = 1.0385. . . , etc.
(3) For an application of these methods to other counting problems, see Katznelson

[17, 18].

Proof. For every integerd ≤ T , let Nf (T , d) be the number of solution of the system
(A.1) with the extra condition gcd(a, b) = d. We first estimateNf (T , d).

For sucha, b write a = Ad, b = Bd with A,B ≤ T/d coprime. Thenaxi = byi if
and only ifAxi = Byi and sinceA,B arecoprime, this happens if and only if for some
integerzi ,

xi = Bzi, yi = Azi

where now

zi ≤ min

(
T 1/f

A
,
T 1/f

B

)
= T 1/f min

(
1

A
,

1

B

)
.
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Therefore

Nf (T , d) =
∑

A,B≤T/d
gcd(A,B)=1

(
T 1/f min

(
1

A
,

1

B

))f

= T
∑

A,B≤T/d
gcd(A,B)=1

min

(
1

A
,

1

B

)f

. (A.2)

We rearrange the sum overA,B as

∑
A,B≤T/d

gcd(A,B)=1

min

(
1

A
,

1

B

)f

= 2
T/d∑
A=1

∑
B≤A

gcd(A,B)=1

1

Af
− 1

by taking the casesA ≤ B andB ≤ A separately, with identical contributions, and the pair
A = B = 1 is counted twice so needs to be subtracted once. Thus

Nf (T , d) = 2T

T/d∑
A=1

∑
B≤A

gcd(A,B)=1

1

Af
− T = 2T

T/d∑
A=1

φ(A)

Af
− T ,

whereφ(n) is the number ofB ≤ n coprime ton (Euler’s function). Therefore

Nf (T ) =
T∑

d=1

Nf (T , d) = 2T
∑
d=1

T/d∑
A=1

φ(A)

Af
− T 2. (A.3)

Now change the order of summation to evaluate the contribution of the first term:

T∑
d=1

T/d∑
A=1

φ(A)

Af
=

T∑
A=1

∑
D≤T/A

φ(A)

Af

=
T∑

A=1

φ(A)

Af

∑
D≤T/A

1

=
T∑

A=1

φ(A)

Af

(
T

A
+ O(1)

)

= T

T∑
A=1

φ(A)

Af+1
+ O

( T∑
A=1

φ(A)

Af

)
.

We thus have

Nf (T ) = 2T 2
T∑

A=1

φ(A)

Af+1
+ O

(
T

T∑
A=1

φ(A)

Af

)
− T 2.

Note that forf > 2, the series
∑

φ(A)/Af converges, in fact fors > 1:

∞∑
n=1

φ(n)

ns
= ζ(s − 1)

ζ(s)
(A.4)

and

T∑
A=1

φ(A)

Af +1
= ζ(f )

ζ(f + 1)
+ O(T 1−f ), f > 1. (A.5)
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Therefore forf ≥ 3 we have

Nf (T ) =
(

2ζ(f )

ζ(f + 1)
− 1

)
T 2 + O(T ). (A.6)

For the remaining cases, we use (see, for example, Hardy and Wright [14] for a similar
formula for

∑
n≤x φ(n)) ∑

n≤T

φ(n)

n2
= logT

ζ(2)
+ O(1).

Thus forf = 2

N2(T ) = 2T 2
T∑

A=1

φ(A)

A3 + O

(
T

T∑
A=1

φ(A)

A2

)
− T 2

=
(

2ζ(2)

ζ(3)
− 1

)
T 2 + O(T logT ) (A.7)

and forf = 1 useφ(n) ≤ n and so
∑

n≤T φ(n)/n � T . Thus

N1(T ) = 2T 2
T∑

A=1

φ(A)

A2 + O

(
T

T∑
A=1

φ(A)

A

)
− T 2

= 2

ζ(2)
T 2 logT + O(T 2). (A.8)

This concludes the proof. 2
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