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polynomial type estimate for the size of the smallest nontrivial integral solution
of the inequality | Q(z) |< € (for the case n > 5).
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Horospheres, Farey fractions and Frobenius numbers
JENS MARKLOF

Frobenius numbers. Let Z¢ = {a = (a1,...,aq4) € Z : ged(aq,...,aq) = 1}
be the set of primitive lattice points, and Z%2 the subset with coefficients a; > 2.

Given a € 2@2, the Frobenius number F'(a) is defined as the largest integer that
does not have a representation of the form m - a with m € Z<¢,. In the case
of two variables (d = 2) Sylvester showed that F(a) = ajas — a1 — ap. No such
explicit formulas are known in higher dimensions [10]. In his studies of “arithmetic
turbulence”, Arnold [2] conjectured that F'(a) should fluctuate wildly as a function
of a. The following theorem establishes the existence of a limit distribution for
these fluctuations. As we shall see, the key in the proof of this statement uses a

novel interpretation of the Frobenius number in terms of the dynamics of a certain
flow ®' on the space of lattices I'\G, with G := SL(d,R), T := SL(d, Z).

Theorem 1 ([7]). Let d > 3. There exists a continuous non-increasing function
Wq: Rxo = Rxo with Wg(0) = 1, such that for any bounded set D C RL with
boundary of Lebesque measure zero, and any R > 0,

1 - F I(D
(1) Jim ﬁ#{a €Z%,NTD: o ..,CSLM > R} _ VZ((d)) U4(R).

Variants of Theorem 1 were previously known only in dimension d = 3 in the
work of Bourgain and Sinai [4], and Shur, Sinai and Ustinov [13]. For d = 3
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Ustinov [14] derived an explicit formula for the limit density,
(2)
0 0<t
12

(5-va-1) (V3 <
%(t\/garccos (tf/—;; ) + \/752 4log (t2 3)) (2 <t).

For arbitrary d > 3, the limit distribution ¥4(R) is given by the distribution of
the covering radius of the simplex A = {a: € ]R{if)l cx-e < 1}, e:=(1,1,...,1),
with respect to a random lattice in R9~1 [7]. Here, the covering radius (sometimes
also called inhomogeneous minimum) of a set K C R9~! with respect to a lattice
L C R% 1 is defined as the infimum of all p > 0 with the property that £ +
pK = R%!. To state this result precisely, let Z¢~'A be a lattice in R?~! with
A € Gy := SL(d — 1,R). The space of lattices (of unit covolume) is I'g\Go with
Iy := SL(d — 1,Z). We denote by po the unique Gg-right invariant probability
measure on ['p\Gp.

gf)
t <
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Theorem 2 ([7]). Let p(A) be the covering radius of the simplex A with respect
to the lattice Z7~'A. Then Wq(R) = po({A € To\Go : p(4) > R}).

The connection between Frobenius numbers and lattice free simplices is well
understood [6], [12]. In particular, Theorem 2 connects nicely to the sharp lower
bound of [1] (see also [11]): F(a) + e -a > p.(ai---aq)”/@ D, with p, :=
inf gero\co P(A). It is proved in [1] that p. > ((d — 1)1)/4=D > 0, and so in
particular ¥4(R) =1 for 0 < R < p..

Horospheres. Let G := SL(d,R) and I" := SL(d, Z), and define
(3)

lgo1 O g1 g ‘0
(i D). (i D) om0

The right action I'\G — I'\G, TM +— T'M®" defines a flow on the space of
lattices I'\G. The horospherical subgroups generated by n (x) and n_(x) param-
etrize the stable and unstable directions of the flow ®! as ¢ — oo. Let us now
identify a function Wy on I'\G that, when evaluated along a specific orbit of the
flow ®!, produces the Frobenius number. Brauer and Shockley [5] proved that
F(a) = max, mod o, VNr(@) — aq, where N, is the smallest positive integer that has
a representation in » mod a4. A short calculation shows that

aq (r =0mod ay)

(4) Ny(a) = {

min{m’ - a’ : m/ €Z>O ,m' -a’'=rmodag} (r#0moday)

with @’ = (a1, ...,aq—1). This formula is the starting point in [7] of the construc-
tion of the function Wi : R‘gl xG— R, (a,M)— Ws(a, M), given by

(5)  Ws(a,M) = sup miny {(m + &M - (,0): m € Z?, (m+ €)M € Rs}
£ET
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where Rs = R‘Sl X (—9,9). Note that for every v € I', we have Ws(a,yM) =

Wi (v, M), and thus W5 can be viewed as a function on RZ ' x T\G. The relation
with the Frobenius number is as follows: B

Theorem 3. Let a = (a1,...,aq) € 2;2 with aq,...,a4-1 < ag < eld=Dt
and 0 < 5 < L. Then F(a) = c'Ws(a',n_(@)0") — e - a, where a@ = 2 —

2 aq
a ad—1
(82, 2=t
By exploiting standard probabilistic arguments [7], Theorem 1 now follows from

Theorem 3 and the below equidistribution theorem for Farey fractions on a certain
embedded submanifold of the space of lattices I'\G.

Farey fractions. Denote by p = ug the Haar measure on G = SL(d,R),
normalized so that it represents the unique right G-invariant probability measure
on the homogeneous space I'\G, where I' = SL(d, Z). We will use the notation py
for the right Gp-invariant probability measure on I'g\Gq, with Gy = SL(d — 1, R)

t
and I'g = SL(d — 1,Z) Consider the subgroups H = { (61 1b> : A e Gy, be

Rd_l} and 'y = I' N H. We normalize the Haar measure pug of H so that it

becomes a probability measure on I'iy\ H; explicitly: dug (M) = dug(A) db.
Let us denote the Farey sequence of level Q) by

(6) fQ={§€[071)d11(1),Q)€Zd, 0<q§Q}-

Note that |Fg| ~ %&) as QQ — oo.

Theorem 4 ([7]). Let f : T? ! x T\G — R be bounded continuous. Then, for

@ lim —— 3 o (r)0?)

t—o00 |JT"Q| reFo

= d(d — 1)/ / Fla, MO*) da dpgr (M) e~ Nd= 13
0 Td—1xTy\H

with f(x, M) = f(x, 'M~1).

This statement can be established as a consequence of the mixing property of
the flow ®* on I'\@G, see [7] for details. It is interesting to note that, if one replaces
I' = SL(d, Z) with a lattice I not commensurable with SL(d, Z), the Farey sequence
becomes uniformly distributed in all of I'\G' with respect to Haar measure [8].

Open problems. In the case d = 2 the proof of Theorem 4 is very simple. In
fact one can prove a stronger statement on the equidistribution of rationals with
denominator = ¢. For every bounded continuous f : T x SL(2,Z)\H (H is the
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upper half plane, and SL(2,R) acts by fractional linear transformations)

8)  lim —— g f(]3 ]3+1—) //fg,x+1o Ly de dr,

= 7’ q
ged(p,q)=1
where ¢(q) is Euler’s totient function. To prove this notice that § +1i% is mapped

by a suitable element from SIL(2,Z) to the point —% + i%, where p denotes the

inverse of p mod ¢q. Eq. (8) then follows from Fourier expanding f and applying
standard bounds on Kloosterman sums. In analogy with the Corollary of Theorem
2 in [8], I conjecture that for every a ¢ Q and f as above,

1 - p P dx dy
(9) lim f(— a= +1—) / / fl& z+iy)d
g0 90( ) =1 qa q SL(2,Z)\H
1

1

ged(p,q)=

(Here /3 is the area of the modular surface SL(2,Z)\H.) It is not hard to see
that for bounded continuous f, eq. (9) implies

N
) 1 n o n dscdy
10 lim — f( +i ) / / fl& x+iy)dE
( ) N—ooo N ’n,z N N N2 SL(2,Z)\H )

If (10) could be shown also for unbounded continuous functions with | f(§, x+iy)| <
Cy'/? for all y > 1 (presumably under some additional diophantine condition on
a), then (10) would imply that the pair correlation function of the fractional parts
of n?a/N converges to that of independent random variables (see [9] for details
of the analogous argument for the fractional parts of n?a). This in turn would
prove a special instance of the Berry-Tabor conjecture in quantum chaos for the
eigenvalues of the “boxed oscillator” [3, 15]!
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FIGURE 1. An Apollonian circle packing labeled by curvatures.
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Distribution of circles in Apollonian circle packings and beyond
HEE On

Given a set of four mutually tangent circles in the plane C with distinct points
of tangency, one can construct four new circles, each of which is tangent to three
of the given ones. Continuing to repeatedly fill the interstices between mutually
tangent circles with further tangent circles, we obtain an infinite circle packing,
called an Apollonian circle packing, after the great geometer Apollonius of Perga
(262-190 BC).

Let P be an Apollonian circle packing. For P bounded and 7" > 0, denote by
N7 (P) the number of circles in P whose curvature (=the reciprocal of its radius)
is at most 7. Note that Np(P) = oo for a general unbounded packing. However
in the special case of unbounded packing P which lies between two parallel lines,
the altered definition of Np(P) to count circles in a fixed period is a well-defined
finite number for any 7" > 0.



