PAIR CORRELATION AND EQUIDISTRIBUTION ON MANIFOLDS

JENS MARKLOF

ABSTRACT. This study is motivated by a series of recent papers that show that, if a given determin-
istic sequence in the unit interval has a Poisson pair correlation function, then the sequence is uni-
formly distributed. Analogous results have been proved for point sequences on higher-dimensional
tori. The purpose of this paper is to describe a simple statistical argument that explains this obser-
vation and furthermore permits a generalisation to bounded Euclidean domains as well as compact
Riemannian manifolds.

1. INTRODUCTION

A sequence of real numbers ¢1,E9,{s,... in the unit interval [0, 1] is called uniformly distributed
if, for any subinterval [a,b] < [0, 1], we have

) i #{j<N|éjela,bl}
N—oo N
That is, the proportion of elements that fall into a given subinterval is asymptotic to its length. A
classic example is the Kronecker sequence ¢; = (ja) (where (-) denotes the fractional part), which
is uniformly distributed if and only if « is irrational. Once uniform distribution of a sequence
is established, it is natural to investigate statistical properties on finer scales. One of the sim-
plest such statistics is pair correlation. We say the sequence (¢;)jen in [0,1] has a Poisson pair
correlation, if for any bounded interval [a,b] < R we have
#(1,72) E[ILNP &), &), €L, B, j1 # j2}

1.2 li =b-a.
(1.2) Nl—Igo N .

=b-a.

The average gap between the first N elements ¢q,...,¢n €[0,1] is %, and so, by rescaling the
interval to [%, %], we indeed measure correlations in units of the average gap size. The reference
to Poisson stems from the fact that the right hand side of corresponds to the pair correlation
of a Poisson point process in R of intensity one. What is more, the convergence holds almost
surely, if ({;)jen is a sequence of independent, uniformly distributed random variables in [0, 1].
Even for simple deterministic sequences, however, the convergence of pair correlation measures
remains a significant challenge. For instance is known to hold for ¢; = G*Ra) (k=2 a fixed
integer) for Lebesgue-almost every a [16], and a lower bound on the Haussdorff dimension of
permissible a has recently been established [3]. But so far there is not a single explicit example
of a, such as a = V2 or a = 7, for which holds; not even in the quadratic case & =2 [9},[13] [14]].
There has been significant recent progess in characterising the Poisson pair correlation for
general sequences ¢; = (aja), for Lebesgue-almost every a, in terms of the additive energy of the
integer coefficients a j; cf. [2, 5] and references therein. Explicit examples for which Poisson pair
correlation can be established include the fractional part of square-roots, i.e., {; = (j 112y 161,
and directions of points in a shifted Euclidean lattice [7]]. Note that fails for the Kronecker
sequence for any choice of a [11,[12]. Another interesting case of a uniformly distributed sequence
is {j = (pja), where p; denotes the jth prime and «a is irrational: also here fails to hold, for
almost every a [20]. This illustrates the perhaps unsurprising fact: uniform distribution does not
imply Poisson pair correlation.

In two independent papers, Aistleitner, Lachmann and Pausinger [1] and Grepstad and Larcher
[8] reversed the question and asked whether Poisson pair correlation of a given sequence
implies uniform distribution. The answer is yes, even under weaker hypotheses than (1.2), for
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sequences in the unit interval [1,, [8, [18]. The same has been established for point sequences on
higher-dimensional tori [10, [19]. In the present paper we develop a statistical argument that per-
mits a generalisation of these findings to bounded domains in R? (Section [2) as well as compact
Riemannian manifolds (Section [3} the special case of flat tori is discussed in the appendix). In-
stead of point sequences, we furthermore consider the more general setting of triangular arrays,
i.e., sequences of finite point sets with increasing cardinality.

2. BOUNDED DOMAINS

Let Q c R? be bounded with voldQ = 0, where vol denotes the Lebesgue measure in R?. (All
subsets of R? in this paper are assumed to be Borel sets.) Consider the triangular array ¢ = (¢; 7)ij
with coefficients ¢;; € 2 and indices i,j €N, j < N;, for some given N; € N such that N; <N, 1.

Example 1. Let Q =[0,1]. Take a real sequence ({;);en in [0,1] (as in the introduction) and set
{ij=¢&; for j <N; =i eN. Sequences may thus be realised as special cases of a triangular arrays.

Example 2. Let Q = B‘f be the open unit ball centered at the origin. Take a sequence (a);jen in
R? such that [la;| — oo, and set &;; = T 'a;, with N; = #{j | la;l < T;} and T1 < T3 < ... — oo
increasing sufficiently fast so that N1 > N;.

We associate with the ith row of ¢ the Borel probability measure v; on Q, defined by
1 YN
(2.1 vif =— ) (&),

where f € Cp(Q2) (bounded and continuous). In other words, v; represents N; normalised point
masses at the points ¢;1,...,&n;.

Given a Borel probability measure o on 2, we say the triangular array ¢ is equidistributed in
(Q,0) if v; converges weakly to o; that is,
2.2) limv;f=0f forevery f e Cy(Q).

1—00

In the case of Example [1, equidistribution in ([0, 1),vol) corresponds to the classical notion of
uniform distribution discussed in the introduction.

Let A : clQ — GL(d,R) be a continuous map. This means in particular that A(x) = |det A(x)| is

bounded above and below by positive constants. Define the finite Borel measure o on Q2 by
(2.3) o(dx)=A(x)dx.

By multiplying A with a suitable scalar constant, we may assume without loss of generality that
og(QQ)=1.

The role of A in this paper is to set a local frame, at each point x € Q, relative to which we
measure correlations in the array ¢. This is particularly relevant in Section [3, where we extend
the present discussion to manifolds. The simplest example of A to keep in mind for now is the
constant function A(x) = vol(Q)~ Ve[ 4 (Ig is the identity matrix), so that o(dx) = vol(Q)~1 dx is the
uniform probability measure on Q.

Given an increasing sequence M = (M;); in R, the pair correlation measure p; of ¢ is defined
by

M; YN
(2.4) pif =5 Y FMIPAG;) &G~ i),
i J1,Jj271

J1#J2

where f € C'C*(IRd) (non-negative, continuous with compact support). The sequence M determines
the scale on which we measure correlations, and A(¢;;,) provides a local rescaling of length units
near each point ¢;;,, relative to the density of the measure o. We call the pair (A, M) a scaling.

If equidistribution (2.2) is known for some probability measure ¢ with continuous density A,
then the most canonical choice for A is A(x) = AV4(x)I; and M; = N;, so that captures corre-
lations in units of the average Euclidean distance between the ¢;; near x, which is proportional to
(N iA(x))_l/ 4. The point of the present discussion is, however, that we do not assume equidistribu-
tion of the array ¢, and hence there is no a priori preferred choice of A or o.
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Note that p; is a locally finite Borel measure on RZ. Tt is not a probability measure. We equip
the space of locally finite Borel measures on R? with the vague topology, and say ¢ has limiting
pair correlation measure p for the scaling (A, M), if p; converges vaguely to p. That is, if

(2.5) lim p;f = pf for every f € CH(R?).
1—00
We say p; has a Poisson limit for the scaling (A, M) if (2.5) holds with p = vol. (The constant

multiplier in this relation seems arbitrary, but is in fact determined by our scaling of A such that
0(Q) = 1.) In this case (2.5) is equivalent to the statement

(2.6) lim p;D =volD for every bounded D c R? with voldD = 0,
1—00
where
oM, 2 2 ~1/d -1
2.7 piD = m#{(h,Jz) €Z;N[L, N1 [$ij, —&ij, € M; " A(Eij,) "D},

2

and 72 = 722\ {(j,)) | j€ Z}.
We furthermore say p; has a sub-Poisson limit if

(2.8) limsupp;f <volf for every f € CH(R?),
1—00
which again is equivalent to the corresponding statement for bounded D < R? with volaD = 0.

In many applications one considers only the pair correlation with respect to the distance be-
tween points. We consider here dist(x,y) = |lx — y||, with | - || the Euclidean norm in R%. The
corresponding pair correlation is a locally finite Borel measure on R>( defined by

M. N
]7; Y RMYHNAGG)E g, —E)D,
i JuJ2=1
J17Jj2

(2.9) pih =

for A € C}(Rx). In the spatial statistics literature variants of this are often referred to as Ripley’s
K-function; cf. [15] Sect. 8.3].
Define the Borel measure w on R>¢ by

(2.10) wl[0,r]= re VolB‘f,

where B‘f is the open unit ball. We say p; has a Poisson limit if it converges vaguely to w. Note
that if & € CJ(Rxo) then f € C:(Rd) for f(x) = h(]x|]). Therefore the vague convergence p; — p
implies the vague convergence p; — p with p defined by the relation ph = pf with f(x) = A(||x|).
Thus if p; has a Poisson limit in the vague topology, then so does p;. We say p; has a sub-Poisson
limit if
(2.11) limsupp;h <wh for every h € C}(Rx).
1—00

The latter statement is equivalent to
(2.12) limsup p;[0,r] < re VolB‘f for every r > 0.

i—00

Theorem 1. Fix A and o as defined above, and let ¢ be a triangular array in Q. Then the following
holds.

(i) Suppose there is a sequence M with M; — oo and M; < N;, such that p; has a sub-Poisson
limit for the scaling (A,M). Then ¢ is equidistributed in (Q2,0).

(i1) Suppose ¢ is equidistributed in (QQ,0). Then there is a sequence M with M; — oo and M; < Nj,
such that p; has a Poisson limit for the scaling (A,M).

It is well known that equidistribution does not imply a Poisson pair correlation at the scale
M; = N;. (An elementary example is the triangular array in [0, 1] given by ¢;; = 1%') Furthermore,
a Poisson pair correlation at this scale does not imply that other fine-scale statistics, such as the
nearest-neighbour distribution, are Poisson [4], 6] [7].
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The proof of part (i) is split into four lemmas. For x € R?, define the counting measure ,[Lf on R4
by

N;
(2.13) (=Y FMPCAE )& - ),
j=1
where f € C:(Rd). Denote by yp the indicator function of a bounded subset D c R?. Then
N;
(2.14) 5D =Y xp(MYPAE )& —x) =#j <N; | & €x+M; Y AE;;) D).
j=1

For € >0, let Q. = Q +B§_."' be the e-neighbourhood of 2, where Bff is the open ball of radius
€ centered at the origin. The Tietze extension theorem allows us to extend A to a continuous
function R? — R.o. We also extend o to a locally finite measure outside Q via relation (2.3).

It is convenient to work with the following normalised variant of 47,

(2.15) pt= Lot

Lemma 1. Fix a triangular array &, a sequence M with M; — oo and M; < N;, and a bounded set
D cR%. Then, for € >0,

(2.16) lim | 7D o(dx)=volD.

i—ooJQ

Proof. Since A is uniformly continuous, we have

. N;

fQ E 1rD o(dx) = %; N XD (MY A )& — 1) Alx) da
M: Ni

(2.17) =— Y | xpMPTAE)E;—20)(AE)) +o(1) dax
N; 3o
1N

- ﬁijzl Mil/dA('fij)(fij—Qe)XD(x)(l+O(1)) ax.

For M; sufficiently large, we have

(2.18) D c MY AEHBE c MYL AR )& - Qo)
since &;; +B‘€i < Q. This implies (2.16). O

We denote by C.(Q2°) the class of continuous functions O — R with compact support in the
interior Q° of Q.

Lemma 2. Fix a triangular array &, a sequence M with M; — oo and M; < N;, and a bounded set
D cR? with volD > 0. If for every Borel probability measure A on Q with density in C.(Q°) we have

(2.19) lim | uiD Mdx)=volD,
Q

1—00

then ¢ is equidistributed.
Proof. Let f € C.(Q°) be the density of A with respect to . Then (2.19) states explicitly that

M; N
(2.20) lim =23 | xp(MAG)Ej —0)f (1) 0(dx) = vol D f f()o(dx),
1m0 LV j=1JQ Q

which by linearity in fact holds for any f € C.(Q2°), not necessarily probability densities. Since f
and A are uniformly continuous and D is bounded, we have uniformly for y € Q,

(2.21) fQ MY A(y)y —x)f (x)o(dx) = F(y)1+0(1)) fﬂ xp(MYeA(y)y —x) o(d),

and

(2.22) f xp (MY A(y)(y - x)) o (dx) = vol D + o(1),
Q
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uniformly for all y € supp f. (This follows from the same reasoning as in the proof of Lemma
since supp f avoids an e-neighbourhood of 0€2, for some ¢ > 0.) Therefore,

D N
Z f(&;j)+o(1).

(2.23) f A MYAAE)E - f (0 oldx) = 2

l]l

Thus (2.20) implies for f € C.(Q°)

(2.24) lim — Z f&)= f f(x)o(dx).

i—oo N, Q
This relation can be extended to f € Cb(Q) by noting that (2.24) holds trivially for every constant
test function: Any f € Cy(Q2) can be approximated from below by a function in C.(Q°), and from
above by a function in C.(Q°) plus a constant. This proves that ¢ is equidistributed. U

Lemma 3. Fix a triangular array ¢ and a bounded set D c R%. If there is a sequence M with
M; — oo and M; < N; such that

(2.25) lim | (u*D-volD)*o(dx) =0,
i—ooJQ
then
(2.26) lim | uiD Mdx)=volD
i—ooJq

for every Borel probability measure A with square-integrable density (with respect to g).

Proof. Let f be the density of 1. By the Cauchy-Schwarz inequality,

5 1/2 9 1/2
(2.27) | f (43D —vol D) A(d)| < f o) f (43D - volD)*a(dx)
Q Q Q
This converges to zero as i — oo, which proves (2.26). [l

Lemma 4. Fix a triangular array ¢, a sequence M with M; — oo and M; < N;, and a bounded
subset D < R with voldD = 0. Set

(2.28) f(x) =vol (D +x)n D).
Then f € CH(R?) and we have, for € >0,

(2.29) fQ (45D —volD)*0(dx) = p; f — (volD)*(2 - 0(Qe)) + % volD + o(1).
Proof By Lemma

(2.30) f 1D o(dx) = vol D + o(1),

and so

2.31) fg (15D — volD)2o(dx) = f (1D)20(dx) — (vl DYA(2 — 7(Q)) + o(L).

Furthermore, by the same reasoning as in the proof of Lemma

M2 N
fQ (D) 'odx)= L Y | oM AGH;)E )y DM A )i, —x) o(d)
(2.32) € i Ji1.Jj2=1
_M N Vd
f 1D @xp e~ MYLAE ;)& — i) dox+o(D).
Nl Ji,Jje=1

The summation over distinct indices j; # jo yields p; f with f as defined in (2.28). The summation
over j1 = jg yields %VOID.

The function f is lcompactly supported, since D is bounded. To prove continuity, note that for
lx—yl <€, |f(x)— f(y)] is bounded above by the volume of the e-neighbourhood of 6D. Continuity
of f is therefore implied by the assumption voldD = 0. O
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Proof of Theorem [1|(i). Assume that p; has a sub-Poisson limit for some sequence M with M; < N;.
It follows from that, for any 6 > 0, p; also has a sub-Poisson limit for the scaling (A, M )
defined by M? = 6M;. To highlight the 5-dependence we write g; = p°.

Let D = B¢, and f as defined in 2:28). f(x) = vol (BY + x)nBY), and note that f(x) = h(l|x|)
where A(r) = vol ((B‘li +req) ﬂBf) with ey an arbitrary choice of unit vector. The function 4 is
continuous and compactly supported on Rsg, with A(0) = VolB‘f. By assumption ,5‘3 has a sub-
Poisson limit. Hence

(2.33) limsupﬁfh < wh,
i—00

and so
(2.34) lim sup pff sf f(x)dx = (vol D).

i—00 R4
With this, Lemma |4| shows that, for any €,6 > 0,
(2.35) lim sup/ (1D - volD)2a(dx) < (0(Q,) - 1)(vol D)? + 5 volD.

i—oo JQ

Since vol0Q =0 and thus g(0Q2) =0, we have 0(Q,) — d(Q2) =1 as € — 0. Thus there is a sequence
of 5; — 0, such that for the scaling (A, M) given by M;' = 6;M; we have

(2.36) limsupf (1iD - VOlD)ZO'(dx) =0.
i—oo JQ

This confirms the hypothesis of Lemma (3| for the sequence M'. Lemma 3|in turn establishes the
assumption for Lemma |2, which completes the proof of claim (i). U

Proof of Theorem (1| (ii). Since ¢ is equidistributed in (Q,0) we have, for 1 € C,(Q x Q),

1 N
2.37) lim = Y v = fQ  wm)o(dn)oldsy)

PN j1,je=1

Since ¥ is bounded, the above statement remains valid with the diagonal terms j; = jo re-
moved. For fixed My >0 and f € C:([Rd), apply this asymptotics with the choice w(x1,x2) =
Myf(M 3/ 4 A(x1)(x1 — x2)), which is bounded continuous. This yields,

M,
(2.38) lim— Y FMYTAG;) &5~ i) =My fQ Qf(Mg/dA(xl)(xl—x2>)a(dx1>a(dx2>.
POV ria=1 X
J1#]e

The right hand side can be written as
(2.39) MOfQ Qf(Mé/dA(xl)(xl —x2)) Alx1) Alxg) dx1 dxg
- L (fMl/d(Q )f(A(Mal/dxl + x2)x1)A(Mal/dx1 + xz)A(xz)dxl)dx2.
0 —X2

Since f,A are continuous and Q has boundary of Lebesgue measure zero, this expression con-
verges, as My — oo, to

(2.40) f f f(A(xg)xl)A(x2)2 dxi1dxs =f f f(x1)dx10(dxg) =volf.
QJre QJrd
This proves that there is a slowly growing sequence M; — oo such that
.M vd _
(2.41) lim — Y F(MCAE &g, —Eij,)) = Vol f,
PN Jge=1
J1#]2

which proves part (ii) of the theorem. O
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3. RIEMANNIAN MANIFOLDS

Let (.4, g) be a compact Riemannian manifold with metric g. We denote by vol, the correspond-
ing Riemannian volume, and normalise g such that voly.# = 1. The geodesic distance between
x,y € M is denoted distg(x,y). Now consider a triangular array ¢ with coefficients in ./, and
define the corresponding pair correlation measure by

M; N
(3.1) p©h = — Y A disty(Eij, 60,
i J1,J2=1
J1#]e
In other words, for r > 0,

M.
(3.2) 010,71 = N—;#{(jl,jz) € 7% n[1,N; PP | disty (&5, ¢450) < M; 7).

12

We say pég ) has a Poisson limit for the scaling M if it converges vaguely to w, with w as defined in

(2.10) (with vol still the Lebesgue measure in R?), and similarly say it has a sub-Poisson limit if
for every h € C}(Rxo)

(3.3) limsup p©’h < wh.

1—00
which is equivalent to the statement
(3.4) limsup p(ig)[O,r] <rd volBil for every r > 0.
i—00

The following is a corollary of Theorem

Theorem 2. Let (/,g) be a compact Riemannian manifold, and ¢ a triangular array with coeffi-
cients in M.
(&)

(i) Suppose there is a sequence M with M; — oo and M; < N;, such that p;>" has a sub-Poisson
limit for the scaling M. Then ¢ is equidistributed in (L ,volg).
(ii) Suppose ¢ is equidistributed in (M ,volg). Then there is a sequence M with M; — oo and

M; < N;, such that pgg) has a Poisson limit for the scaling M.

Part (i) is closely related to, but not implied by, the results in [17] for the choice p(ig)h with
h(r) = exp(-r?).
Proof of (i). Consider an atlas {(Ug,@q) | @ € o/} with of finite. We take ¢,(U,) < R? to lie in the

same copy of R?, arranged in such a way that the ¢ (U,) are pairwise disjoint. Now consider a
partition of .4 by the bounded sets V3 with € 2 and 28 finite, so that
(3.5) U V=, VenVy =if #f, volg dVp =0.

BeB
We assume the partition is sufficiently refined so that for § € 28 there is a choice of a(f) € of such
that clVg c Uyp). We set Qp = o5 Vp. The disjoint union

(3.6) Q= 9
peB
is a bounded subset of R? with voldQ = 0. Given a triangular array ¢ in .4 we define a corre-
sponding array ¢, whose ith row (¢ ’ij) i<N; is given by the elements in the set
3.7) U @ap(&ij 17 =NiinV(p).
BeB

By Gram-Schmidt orthonormalisation, there is a continuous function A : c1Q2 — GL(d,R) such
that the metric g is given at x € U, by the positive definite bilinear form

3.8) gx(X, Y)= <A((Pax)X,A((Pax)Y>,

where (-, -) is the standard Euclidean inner product. With this choice, and the probability mea-
sure o defined as in (2.3), we see that the triangular array ¢ is equidistributed in (.#,vol,) if and
only if ¢’ is equidistributed in (Q, o).
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Let us now compare the pair correlation measure g; for ¢’ in Q as defined in (2.9) with p(ig ). For
h € C/(Rxp), we have

1/d

(3.9 h(M; ||A(fij1)(f/ijl—f§j2)||)=0
. /
&
contributing to p; form a subset of those contributing to pﬁg ), Furthermore, we have

€ Qg, £;j2 € Qg with g # p' and M; is sufficiently large. This means that the pairs (j1,/2)

(3.10) distg(x,y) ~ 1A(@ay)@ax — Pay)l

for [@ax — @yl — 0. Both facts taken together imply, by the uniform continuity of # € C}(Rxo),
that

(g)h

i

(3.11) limsupp;h <limsupp

i—00 1—00

This shows that if p(ig ) has a sub-Poisson limit then so does 0i- Theorem (1] tells us that therefore
¢’ is equidistributed in (Q,0), and hence (as noted earlier) ¢ is equidistributed in (.#,volg). This

yields claim (i). [l
Proof of (it). Since ¢ is equidistributed in (.#,volg) we have, for ¢ € C(/ x ),
1 N
(3.12) lim — Z w(&ij,¢ij,) Zf w(x1,x2) volg(dx1) volg(dxg).
l—>OONl j1,j2:1 MM

Since ¥ is bounded, the above statement remains valid with the diagonal terms j; = jo re-
moved. For fixed My > 0 and & € C}(Rx), apply this asymptotics with the choice y(x1,x2) =
Moh(M é/ d distg(x1,x2)), which is bounded continuous. This yields,

My Y . :
(3.13) lim —5 Y A(M{4disty(Eis,,¢15,)) = Mo f h(M{Y'? dist(x1, x2)) volg(day) volg(das).
1m0 VY j1ja=1 A A
J1#]e
The limit My — 0 can be calculated in local charts, which leads to the same calculation as in the
proof of Theorem [T (ii). 0

APPENDIX A. FLAT TORI

It is instructive to adapt the discussion in Section [2]to the case of a multidimensional torus T.
This provides an alternative approach to the results in [19]. We represent the torus as T = R%/%,
with # c R? a Euclidean lattice of unit covolume (for example the integer lattice & = Z%). The
required modifications are as follows.

A. Replace Q by T throughout Section [2| and note that C(T) = Cy(T) = C.(T).

B. The coefficients of the triangular array are written as {;; + £ € T with {;; € R,

C. Set for simplicity A(x) =14, so that o = vol is the uniform probability measure on T. (It is of
course possible to adapt the argument also for general continuous A : T — GL(d,R).)

D. The definition of the pair correlation measure p; in (2.4) is replaced by

M. Ni
(A.1) pif=— > 2 MY, &g, +m)),
N7 jifa=1mee
J1#]2
and (2.9) by
~ M; X 1d
(A.2) pih=—5 > Y M N&, —&j, +ml).
i Ji,J2=1me¥&
J1#Je

(Note that the pair correlation measure (3.1) for the Riemannian distance on T,
(A.3) distg(x,y) = min{llx — y + m|l},
me¥

satisfies the relation p;h = p(ig )h, for h € C}(R>0) and M; sufficiently large.)
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E. The discussion around (2.16) is replaced by the following. For x € T, define the measure ,uf on
R? by

M;

(A.4) pif = N,

N;
Z > FMPNE - x+m)),

j=1lmeZ&

where f € C:(Rd). That is, for a bounded subset D c IRd, we have

on Mi vd
puiD=— E E ADM;“($ij—x+m))
(A.5) Ni j=lmeZ

M,
= V‘#USNL- |&ijex+M; VD + 2},
i

the second equality holds of M; is sufficiently large so that M i_l/dD does not intersect any
translate M i_l/ aD +m with m € £\ {0}. Then

(A.6) fufp dx——z Y D(Mil/d(fij—x+m))dx:V01D.
T l j=1lmeZ&

F. In the statement of Lemma [4]no € is needed, and (2.29) is replaced by the identity
M;
(A7) f (4D —volD)?dx = p; f — (vol D) + Fvow

which follows from the following calculation, replacing (2.32),

M?
fT(MfDde = N—; ' Z ) > p TXD(ML‘Ud(fijl —x+mOp (MY ), —x + mo))da
(A8) i Ji1,J2=1lmi,mgoe

N2 21 Zz 1@ =M (Eij, = &ijy +m)dx.
i J1.J2=1me

G. For the proof of the second part of the theorem, we use instead

Wlx1,x2)=Mo Y. F(MY¥(x1 —x+m)),
me%&

which is continuous on T x T, with f € C+(Rd) as before. The assumed equidistribution implies

(A.9) th— Z N FMEAE, — &, +m)) = My Z . MY (x1 —x9 +m))dxy dxs

i Ji,j2=1lmeZ me&L
J1#]2

which evaluates to vol f.
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