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Introduction

Quantum maps play a central role in the theory of quantum chaos, as they provide

toy models that share many features with more realistic chaotic systems. The beauty

of quantum maps is that they are very simple mathematical objects: N ×N unitary

matrices that must satisfy certain conditions in the “semiclassical” limit N → ∞,

which ensure they relate to an underlying classical dynamical system. An example

of a quantum chaotic map that we will discuss in detail is

(1) U F−1 Ũ F

where F is the N-dimensional discrete Fourier transform with matrix elements

(2) Fjk =
e− 2πi

N
jk

√
N
,

and U, Ũ are diagonal N×N matrices with coefficients

(3) Ũjj = e− 2πi
N
j2, Ujj =





1 if 1 ≤ j ≤ N

2
− 1

e
2πi
N
j2 if N

2
≤ j ≤ N.

The first lecture will explain what we mean by quantum observables and quan-

tum maps, and illustrate the concept with the quantization of linked twist maps, an

important class of maps whose ergodic properties have been studied in great detail

[2, 11, 14]. This lecture follows closely the paper [9]; for more background on quan-

tum maps see [4].

The aim of the second lecture is to prove the celebrated quantum ergodicity the-

orem, which states that almost all eigenstates of a quantum map are semiclassically

equidistributed, if the underlying classical map is ergodic. (The original theorem

due to Shnirelman, Zelditch and Colin de Verdiere is stated for eigenfunctions of the

Laplacian on manifolds with ergodic geodesic flow.) We follow here the approach

taken, e.g., in [15, 3, 12, 9].

The third lecture is concerned with subsequences of eigenstates that do not be-

come equidistributed. As we shall see, these states play the analogous role of the
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famous bouncing ball modes in the stadium billiard, whose existence was recently

proved in a beautiful paper by Andrew Hassell [6]. We explain the essential part

of his argument in the case of quantized linked twist maps. Hassell’s approach re-

quires a quasimode construction for bouncing ball modes in the stadium billiard as

in [5], cf. also [16]. We will here adapt the argument to quantum linked twist maps

as in Stephen O’Keefe’s PhD thesis [10], and in fact exhibit a family of maps with

exceptionally accurate quasimodes, whose discrepancy is significantly smaller than

the mean level spacing; see [8] for a family of billiards with a similar characteristic.

We also recommend the papers [1] and [13] for some interesting heuristics on

bouncing ball modes.

Lecture I: Quantum maps

1.1. Let M be a d-dimensional compact smooth manifold, and µ a probability mea-

sure on M which is absolutely continuous with respect to Lebesgue measure. We

consider bijective piecewise smooth maps Φ : M → M which preserve µ. This

lecture explains what we mean by a quantization of Φ, and discusses an important

family of maps, the linked twist maps. By piecewise smooth we mean that Φ is C∞ on

M \ S where S is a closed subset of M of measure zero. We will refer to S = SΦ as

the singularity set ofΦ.

1.2. Example. Twist maps. Take M = T2, where T2 = R2/Z2 denotes the two-

dimensional torus. A twist map Ψf is a map T2 → T2 defined by

(4) Ψf :

(
p

q

)
7→
(
p+ f(q)

q

)
mod Z2

where f : [0, 1] → R is piecewise smooth and satisfies f(1) = f(0) mod 1. An example

is f(q) = mqwithm ∈ Z, or f(q) = mq+g(q) where g is a smooth periodic function.

Obviously Lebesgue measure dµ = dpdq is invariant under Ψf.

1.3. Example. Linked twist maps. A linked twist map Φ is now obtained by combining

two twist maps, Ψf and Ψg, by setting

(5) Φ = Ψf ◦ R−1 ◦ Ψg ◦ R

with the rotation

(6) R :

(
p

q

)
7→
(
q

−p

)
mod Z2.

Since Ψf, Ψg and R preserve µ, so doesΦ. More explicitly, we have

(7) R−1 ◦ Ψg ◦ R :

(
p

q

)
7→
(

p

q + g(−p)

)
mod Z2
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and thus

(8) Φ :

(
p

q

)
7→
(
p+ f(q+ g(−p))

q+ g(−p)

)
mod Z2.

1.4. The ergodic properties of linked twist maps are well understood [2, 11, 14]. Let

[ai, bi] (i = 1, 2) be subintervals of [0, 1], and choose functions f = f1, g = f2 : [0, 1] →
R with

(a) fi(q) = 0 for q /∈ [ai, bi],

(b) fi(ai) ∈ Z and fi(bi) − fi(ai) = ki for some integer ki ∈ Z,

(c) fi ∈ C2([ai, bi]) with derivative f ′i(q) 6= 0 for all q ∈ [ai, bi].

Let us define the constant

(9) γi = sign(ki) max
q∈[ai,bi]

|f ′i(q)|.

1.5. Theorem. Suppose either of the following conditions is satisfied,

(i) γ1γ2 < 0;

(ii) |k1|, |k2| ≥ 2 and γ1γ2 > C0 ≈ 17.24445.

Then the map (5) acts ergodically (with respect to Lebesgue measure µ) on the do-

main

(10) D0 =
{
(p, q) ∈ T2 : p ∈ [a1, b1]

}
∪
{
(p, q) ∈ T2 : q ∈ [a2, b2]

}
.

1.6. The proofs of the two parts (i) and (ii) of this statement are due to Burton and

Easton [2], and Przytycki [11], respectively. Both [2] and [11] in fact establish the

Bernoulli property for the action ofΦ on D0 under conditions (i), (ii). We expect that

these properties hold under weaker conditions, e.g., for smaller values of C0. The

continuity of the map at the lines p = a1, b1 and q = a2, b2, assumed in condition (b),

is probably also not necessary.

We refer the reader to [14] for a detailed survey of the ergodic properties of linked

twist maps.

1.7. Definition. Let MN(C) be the space ofN×Nmatrices with complex coefficients.

We say two sequences of matrices,

(11) {AN}N∈N, {BN}N∈N,

are semiclassically equivalent, if

(12) ‖AN − BN‖ → 0

asN ∈ N tends to infinity, where ‖ · ‖ denotes the usual operator norm

(13) ‖A‖ := sup
ψ∈CN−{0}

‖Aψ‖
‖ψ‖ .
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We denote this equivalence relation by

(14) AN ∼ BN.

1.8. Exercise. Show: If AN ∼ BN then TrAN = TrBN + o(N).

1.9. Axiom. The correspondence principle for quantum observables. Fix a measure µ as

above. There is a sequence Op
N

of linear maps,

Op
N
: C∞(M) → MN(C), a 7→ Op

N
(a),

so that

(a) for all a ∈ C∞(M),

Op
N
(a) ∼ Op

N
(a)†;

(b) for all a1, a2 ∈ C∞(M),

Op
N
(a1)Op

N
(a2) ∼ Op

N
(a1a2);

(c) for all a ∈ C∞(M),

lim
N→∞

1

N
Tr Op

N
(a) =

∫

M

adµ.

Examples of quantum observables satisfying these conditions are given in Section

1.13. In standard quantization recipes of symplectic manifolds (such as the one dis-

cussed in Section 1.13) one in addition has the property that

(15) Op
N
(a1)Op

N
(a2) − Op

N
(a2)Op

N
(a1) ∼

1

2πiN
Op

N
({a1, a2})

where { , } is the Poisson bracket. This assumption is however not necessary for

many of the results proved in these lectures. The axioms (a)–(c) in fact apply to

examples without quantum mechanical significance.

1.10. Axiom. The correspondence principle for quantum maps. There is a sequence of

unitary matrices UN(Φ) such that for any a ∈ C∞(M) with compact support in M \

Φ(SΦ) (with the singularity set SΦ as defined in 1.1), we have

UN(Φ)−1 Op
N
(a)UN(Φ) ∼ Op

N
(a ◦Φ).

1.11. Note that the condition on the support of a ensures that a ◦Φ ∈ C∞(M).

1.12. Let us now discuss examples of semiclassical sequences of quantum maps

satisfying the above Axioms 1.9 and 1.10.

We first construct a well known example of quantum observables on the two-

dimensional torus M = T2 := R2/Z2 satisfying Axiom 1.9 (cf. [4]), and corresponding

examples of quantum linked twist maps satisfying Axiom 1.10.
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1.13. Example. Quantum tori. It is convenient to represent a vector ψ ∈ CN as a

function ψ : Z/NZ → C. Let us define the translation operators

(16) [t1ψ](Q) = ψ(Q+ 1)

and

(17) [t2ψ](Q) = eN(Q)ψ(Q),

where eN(x) := e(x/N) := exp(2πix/N).

1.14. Exercise. Show that

(18) tm1

1 t
m2

2 = tm2

2 t
m1

1 eN(m1m2) ∀m1,m2 ∈ Z.

1.15. These relations are known as the Weyl-Heisenberg commutation relations. For

m = (m1,m2) ∈ Z2 put

(19) TN(m) = eN

(m1m2

2

)
tm2

2 t
m1

1 .

Then

(20) TN(m)TN(n) = eN

(
ω(m,n)

2

)
TN(m+ n)

with the symplectic form

(21) ω(m,n) = m1n2 −m2n1.

For any a ∈ C∞(T2), we define the quantum observable

(22) Op
N
(a) =

∑

m∈Z2

â(m)TN(m)

where

(23) â(m) =

∫

T2

a(ξ)e(−ξ ·m)dξ

are the Fourier coefficients of a. The observable Op
N
(a) is also called the Weyl quan-

tization of a. Axiom 1.9 (a) is trivially satisfied. Axioms 1.9 (b) and (c) follow from

the following lemmas.

1.16. Lemma. For all a1, a2 ∈ C∞(T2)

(24) ‖Op
N
(a1)Op

N
(a2) − Op

N
(a1a2)‖ ≤ π

N

( ∑

m∈Z2

‖m‖|â1(m)|

)(∑

n∈Z2

‖n‖|â2(n)|
)
.



6 JENS MARKLOF

Proof. Using the commutation relations (18) we find

Op
N
(a1)Op

N
(a2) =

∑

m,n∈Z2

â1(m)â2(n)TN(m)TN(n)(25)

=
∑

m,n∈Z2

eN

(
ω(m,n)

2

)
â1(m)â2(n)TN(m+ n)(26)

=
∑

m,k∈Z2

eN

(
ω(m,k)

2

)
â1(m)â2(k−m)TN(k)(27)

with k = n+m. Furthermore

(28) Op
N
(a1a2) =

∑

m,k∈Z2

â1(m)â2(k−m)TN(k),

and hence

(29) ‖Op
N
(a1)Op

N
(a2)−Op

N
(a1a2)‖ ≤

∑

m,n∈Z2

∣∣∣∣eN
(
ω(m,n)

2

)
−1

∣∣∣∣
∣∣â1(m)

∣∣ ∣∣â2(n)
∣∣

The lemma now follows from

(30) |e(x) − 1| ≤ |2πx|, |ω(m,n)| ≤ ‖m‖ ‖n‖.

�

1.17. Exercise. Show that (15) holds for the above Op
N
(a).

1.18. Lemma. For any a ∈ C∞(T2) and R > 1

(31)
1

N
Tr Op

N
(a) =

∫

T2

adµ+Oa,R(N
−R).

Proof. Note that

(32) Tr TN(m) =





NeN

(
m1m2

2

)
if m = 0 mod NZ2,

0 otherwise.

The lemma now follows from the rapid decay of the Fourier coefficients â(m) for

‖m‖ → ∞. �

1.19. Note that we have the alternative representation for Op
N
(a),

(33) [Op
N
(a)ψ](Q) =

∑

m∈Z

ã

(
m,
Q

N
+
m

2N

)
ψ(Q+m)

where

(34) ã(m,q) =

∫

T

a(p, q) e(−pm)dp, T = R/Z,

which is sometimes useful. In fact (33) permits to quantise observables a which are

piecewise smooth in the q-variable. Note that if a is a smooth function of p and, for
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any ν ≥ 0, dν

dpν
a(p, q) is a bounded function on T2, then, for any R > 1, there is a

constant CR such that

(35) |ã(m,q)| ≤ CR(1+ |m|)−R

for all m,q. This fact is proved using integration by parts. Of course (35) holds in

particular for smooth observables a ∈ C∞(T2).

1.20. Example. Quantum twist maps

We define the quantization of the twist map Ψf by the unitary operator

(36) [UN(Ψf)ψ](Q) = e

[
−NV

(
Q

N

)]
ψ(Q)

where V is defined by f = −V ′ for some choice of integration constant.

1.21. Theorem. For any a ∈ C∞(T2) with support in T2 \ Ψf(SΨf
),

(37) ‖UN(Ψf)−1 Op
N
(a)UN(Ψf) − Op

N
(a ◦ Ψf)‖ = O(N−2)

where the implied constant depends on a.

Proof. We have

(38) [UN(Ψf)
−1 Op

N
(a)UN(Ψf)ψ](Q)

=
∑

m∈Z

ã

(
m,
Q

N
+
m

2N

)
e

{
−N

[
V

(
Q+m

N

)
− V

(
Q

N

)]}
ψ(Q+m),

and

(39) [Op
N
(a ◦ Ψf)ψ](Q) =

∑

m∈Z

ã

(
m,
Q

N
+
m

2N

)
e

[
mf

(
Q

N
+
m

2N

)]
ψ(Q+m),

since

(40) ˜(a ◦ Ψf)(m,q) = e[mf(q)] ã(m,q).

Therefore

(41) ‖UN(Ψf)−1 Op
N
(a)UN(Ψf) −Op

N
(a ◦Ψf)‖ ≤ max

q

∑

m∈Z

∣∣∣∣ã
(
m,q+

m

2N

)
cm(q,N)

∣∣∣∣

with

(42) cm(q,N) = e
{
−N

[
V
(
q +

m

N

)
− V (q)

]}
− e

[
mf
(
q +

m

2N

)]
.

Since |cm(q,N)| ≤ 2 and |ã(m,q)| ≤ (1+ |m|)−5, we have

(43) max
q

∑

|m|≥N1/2

∣∣∣∣ã
(
m,q+

m

2N

)
cm(q,N)

∣∣∣∣ ≤ N−2.

Let us denote by CS the projection of the compact support of a onto the q axis. CS is

a compact set that does not contain any singularity of f.
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For |m| < N1/2, Taylor expansion around x = q+ m
2N

yields (the second order terms

cancel)

V
(
x+

m

2N

)
− V

(
x −

m

2N

)
= V ′ (x)

m

N
+O

(
m3

N3

)
(44)

= −f (x)
m

N
+O

(
m3

N3

)
.(45)

uniformly for all |m| < N1/2 and all q ∈ CS, provided N is sufficiently large so that

[q−N−1/2, q+N−1/2] is away from the singularities. Hence in this case

(46) cm(q,N) = O

(
m3

N2

)

and

max
q

∑

|m|<N1/2

∣∣∣∣ã
(
m,q+

m

2N

)
cm(q,N)

∣∣∣∣ ≤ O(N−2)max
q

∑

m∈Z

∣∣∣∣m
3ã

(
m,q+

m

2N

)∣∣∣∣(47)

= O(N−2).(48)

�

1.22. Example. The discrete Fourier transform FN is a unitary operator defined by

(49) [FNψ](P) =
1√
N

N−1∑

Q=0

ψ(Q)eN(−QP).

Its inverse is given by the formula

(50) [F−1
N ψ](Q) =

1√
N

N−1∑

P=0

ψ(P)eN(PQ).

1.23. Exercise. Sow that, for any a ∈ C∞(T2)

(51) F−1
N Op

N
(a)FN = Op

N
(a ◦ R)

with the rotation R as in (6).

Hint: Exploit the identities F−1
N t1FN = t−12 and F−1

N t2FN = t1.

1.24. The Fourier transform may therefore be viewed as a quantization of the rota-

tion R which satisfies an exact correspondence principle, cf. Axiom 1.10.

1.25. Example. Quantum linked twist maps

The quantization of the linked twist map is now defined by

(52) UN(Φ) = UN(Ψf)F−1
N UN(Ψg)FN.
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1.26. Theorem. For any a ∈ C∞(T2) with compact support in T2 \Φ(SΦ), we have

(53) ‖UN(Φ)−1 Op
N
(a)UN(Φ) − Op

N
(a ◦Φ)‖ = O(N−2)

where the implied constant depends on a.

Proof. Apply Theorem 1.21 and Exercise 1.23. �

The quantum map UN(Φ) thus satisfies Axiom 1.10.

Lecture II: Quantum ergodicity

2.27. Let us now return to the general framework of a mapΦ on a general manifold

M under the assumptions described in 1.1.

2.28. Definition. Mollified characteristic functions. Consider the characteristic func-

tion χD of a domain D ⊂ M with boundary of measure zero. An ǫ-mollified charac-

teristic function χ̃D ∈ C∞(M) has values in [0, 1] and χ̃D(x) = χD(x) on a set of x of

measure 1− ǫ.

2.29. Example. Examples of mollified characteristic functions can be constructed as

follows. We first construct a continuous χ̃0D(x). Let us denote by d(x, y) a metric on

M and by d(x,D) = inf{d(x, y) : y ∈ D} the usual distance of a point x from the set

D. Let g ∈ C(R) such that g(t) = 1 for t ≤ 0 and g(t) = 0 for t ≥ 1. Then, for any

R > 0, the function χ̃0D(x) = g(Rd(x,D)) is continuous and satisfies χD(x) ≤ χ̃0D(x).

Furthermore, given ǫ > 0, there is R > 0 (sufficiently large) such that

(54)

∫

M

[χ̃0D(x) − χD(x)]dµ <
ǫ

2
.

Using the density of C∞(M) in C(M), we can find a function χ̃D ∈ C∞(M) such that

χ̃0D(x) ≤ χ̃D(x) and

(55)

∫

M

[χ̃D(x) − χ̃
0
D(x)]dµ <

ǫ

2
,

which concludes the construction.

The support of χ̃D(x) contains D in this example. Examples of mollified charac-

teristic functions whose support is contained in D are obtained by taking χ̃D(x) =

1− χ̃Dc(x), where Dc is the complement of D.

2.30. Exercise. Show that if χ̃D is ǫ-mollified, so is χ̃nD for any n ∈ N with the same

ǫ.
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2.31. After mollification, we may associate with a characteristic function χD a quan-

tum observable Op
N
(χ̃D). Since Op

N
(χ̃D) is in general not hermitian, it is sometimes

more convenient to consider the symmetrised version, the positive semi-definite her-

mitian matrix

(56) Op
sym
N (χ̃D) := Op

N
(χ̃
1/2
D )Op

N
(χ̃
1/2
D )†.

Note that χ̃
1/2
D ∈ C∞(M) since χ̃D ≥ 0. Furthermore, we have

(57) Op
sym
N (χ̃D) ∼ Op

N
(χ̃D).

2.32. The following proposition describes the distribution of eigenvalues of Op
sym
N (χ̃D),

and suggests that the operator may be viewed as an approximate projection operator

onto a subspace of dimension ∼ N× µ(D).

Consider a sequence J := {JN}N∈N of sets JN ⊂ {1, . . . , N}. The quantity

(58) ∆(J) := lim
N→∞

|JN|

N
,

provided the limit exists, is called the density of J.

2.33. Theorem. Suppose χ̃D is an ǫ-mollified characteristic function, and suppose

µj ≥ 0 (j = 1, . . . , N) are the eigenvalues of Op
sym
N (χ̃D). Then there are set sequences

J := {JN}N∈N and J ′ := {J ′N}N∈N with densities

(59) ∆(J) = µ(D) +O(ǫ1/3), ∆(J ′) = 1− µ(D) +O(ǫ1/3),

such that

(i) µj = 1+O(ǫ
1/3) for all j ∈ JN;

(ii) µj = O(ǫ
1/3) for all j ∈ J ′N.

Proof. By Axiom 1.9, we have for every fixed integer n ≥ 1,

1

N
Tr
[
Op

sym
N (χ̃D)

n
]
=
1

N
Tr Op

sym
N (χ̃nD) + oǫ,n(1)(60)

=

∫

M

χ̃nDdµ+ oǫ,n(1)(61)

= µ(D) +O(ǫ) + oǫ,n(1),(62)

where O(ǫ) does not depend on N and n. This implies for every n ≥ 1,

(63) lim
N→∞

1

N
Tr
[
Op

sym
N (χ̃D)

n
]
= lim

N→∞

1

N

N∑

j=1

µnj = µ(D) +O(ǫ).

Therefore

(64) lim
N→∞

1

N

N∑

j=1

(µ2j − µj)
2 = O(ǫ)
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and thus

(65) lim
N→∞

1

N

∑

j∈HN

(µj − 1)
2 = O(ǫ).

(66) lim
N→∞

1

N

∑

j /∈HN

µ2j = O(ǫ),

where HN = {j : µj ≥ 1/2}. By Chebyshev’s inequality, (66) implies that

(67) lim
N→∞

1

N
|{j /∈ HN : µ2j > γ}| = O(ǫ/γ),

for any γ > 0. This yields the bound

(68) lim
N→∞

1

N

∑

j /∈HN

µj = O
(
γ1/2 + ǫ/γ

)
,

since 0 ≤ µj < 1/2. So

lim
N→∞

1

N

∑

j∈HN

1 = lim
N→∞

1

N

∑

j∈HN

[
(µj − 1)

2 − µ2j + 2µj
]

(69)

= lim
N→∞

1

N

∑

j∈HN

[
−µ2j + 2µj

]
+O(ǫ)(70)

= lim
N→∞

1

N

N∑

j=1

[
−µ2j + 2µj

]
+O(ǫ) +O

(
γ1/2 + ǫ/γ

)
(71)

= µ(D) +O(ǫ1/3),(72)

if we choose γ = ǫ2/3, and hence the corresponding set sequence H := {HN}N∈N has

density ∆(H) = µ(D) + O(ǫ1/3). Once more in view of Chebyshev’s inequality, (65)

implies

(73) lim
N→∞

1

N
|{j ∈ HN : (µj − 1)

2 > δ}| = O(ǫ/δ).

Choosing δ = ǫ2/3, this means that for a subsequence of j ∈ HN of density µ(D) +

O(ǫ1/3) we have µj = 1+O(ǫ
1/3). The corresponding result for j /∈ HN follows by the

same argument from (67). �

2.34. The following proposition is the key tool to understand the distribution of

eigenvalues of UN(Φ).

2.35. Theorem. Trace asymptotics. Suppose Φ : M → M is piecewise smooth, and

for every n 6= 0 the fixed points of Φn form a set of measure zero. Then for n 6= 0,

(74) lim
N→∞

1

N
TrUN(Φ)n = 0.
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Proof. Given any ǫ > 0, we can find an integer R and a partition of unity on M by

ǫ-mollified characteristic functions,

(75) 1 = χ̃bad(ξ) +

R∑

r=1

χ̃r(ξ) ∀ξ ∈ M

with the properties

(i) the interior of the support of χ̃bad contains all fixed points of Φn and the set

Φn(SΦ), and is chosen small enough so that
∫
χ̃baddµ < ǫ;

(ii) the support of χ̃r, with r = 1, . . . , R, is chosen small enough, so that supp χ̃r ∩
Φn(supp χ̃r) = ∅.

Property (i) is possible since the fixed points form a closed set of measure zero (since

Φn is piecewise smooth). To achieve (ii) note that the closure of K = M − supp χ̃bad

does not contain any fixed points. Hence there is a sufficiently small radius η = η(ǫ)

such that for all balls Bη ⊂ K we have Bη ∩Φn(Bη) = ∅.

By the linearity of Op
N

, we have

(76) TrUN(Φ)n = Tr[UN(Φ)n Op
N
(χ̃bad)] +

R∑

r=1

Tr[UN(Φ)n Op
N
(χ̃r)] + o(N).

We begin with the first term on the right hand side:

(77) Tr[UN(Φ)n Op
N
(χ̃bad)] = Tr[UN(Φ)n Op

sym
N (χ̃bad)] + oǫ(N),

with the symmetrised Op
sym
N (χ̃bad) as defined in (56). Suppose ψj and µj ≥ 0 are the

(normalised) eigenstates and eigenvalues of Op
sym
N (χ̃bad). Then

(78) |Tr[UN(Φ)n Op
sym
N (χ̃bad)]| =

∣∣∣∣
N∑

j=1

µj〈ψj, UN(Φ)nψj〉
∣∣∣∣ ≤

N∑

j=1

µj

= Tr Op
sym
N (χ̃bad) = Tr Op

N
(χ̃bad) + oǫ(N) = NO(ǫ) + oǫ(N).

For the last term in the sum (76) we have

(79)

UN(Φ)n Op
N
(χ̃r) ∼ UN(Φ)n Op

N
(χ̃1/2r )Op

N
(χ̃1/2r ) ∼ Op

N
(χ̃1/2r ◦Φ−n)UN(Φ)n Op

N
(χ̃1/2r )

so

Tr[UN(Φ)n Op
N
(χ̃r)] = Tr[Op

N
(χ̃1/2r ◦Φ−n)UN(Φ)n Op

N
(χ̃1/2r )] + oǫ(N)(80)

= Tr[Op
N
(χ̃1/2r )Op

N
(χ̃1/2r ◦Φ−n)UN(Φ)n] + oǫ(N)(81)

= Tr[Op
N
(χ̃1/2r · χ̃1/2r ◦Φ−n)UN(Φ)n] + oǫ(N)(82)

= oǫ(N)(83)

since χ̃
1/2
r · χ̃1/2r ◦Φ−n = 0 in view of (ii). Therefore

(84) TrUN(Φ)n = O(Nǫ) + oǫ(N),
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i.e.,

(85) lim
N→∞

1

N
TrUN(Φ)n = O(ǫ),

which holds for every arbitrarily small ǫ > 0. This concludes the proof. �

2.36. Theorem. Weyl’s law. SupposeΦ : M → M is piecewise smooth, and for every

n 6= 0 the fixed points of Φn form a set of measure zero. Then, for every continuous

function h : T → C,

(86) lim
N→∞

N∑

j=1

h(θj) =

∫

T

h(θ)dθ.

Proof. Since TrUN(Φ)n =
∑

j e
2πinθj , Theorem 2.36 follows from Theorem 2.35 by ap-

plying Weyl’s criterion from the theory of distribution modulo 1; for details see any

good number theory text book.

We give an explicit proof which will be useful below in generalizing this result.

Let us first assume that the test function h has only finitely many non-zero Fourier

coefficients, i.e.,

(87) h(θ) =
∑

n∈Z

ĥ(n)e(nθ)

is a finite sum. We then have

(88) lim
N→∞

1

N

N∑

j=1

h(θj) = lim
N→∞

1

N

∑

n∈Z

ĥ(n)TrUN(Φ)n = ĥ(0)

which proves the theorem for h with finite Fourier series. We now extend this result

to test functions h ∈ C1(T). Let

(89) hK(θ) =
∑

n∈Z
|n|≤K

ĥ(n)e(nθ)

be the truncated Fourier series. Since h ∈ C1(T), its Fourier series converges abso-

lutely and uniformly and hence, for any ǫ > 0, there is a K such that hK(θ) − ǫ ≤
h(θ) ≤ hK(θ) + ǫ for all θ ∈ T. By (86), the limits of the left and right hand side of

(90)
1

N

N∑

j=1

hK(θj) − ǫ ≤ 1

N

N∑

j=1

h(θj) ≤
1

N

N∑

j=1

hK(θj) + ǫ

exist and differ by less than 2ǫ, hence (86) holds also for the current h. The exten-

sion of (86) to h in C(T) is achieved by the same argument, i.e., by approximating h

pointwise by functions hǫ ∈ C1(T) so that hǫ(θ) − ǫ ≤ h(θ) ≤ hǫ(θ) + ǫ. �

2.37. Note that the last argument also allows the extension to test functions h that

are characteristic functions of an interval ⊂ T.
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2.38. Theorem. Generalised trace asymptotics. Choose Φ and UN(Φ) as in Theorem

2.35. Then for every a ∈ C∞(M) and n 6= 0,

(91) lim
N→∞

1

N
Tr[Op

N
(a)UN(Φ)n] = 0.

Proof. By linearity of the relation (91) we may assume without loss of generality that

a is real and minξ a(ξ) ≥ 0. This implies that a1/2 ∈ C∞(M). Analogously to the

proof of Theorem 2.35, we have

(92) Tr[Op
N
(a)UN(Φ)n] = Tr[UN(Φ)n Op

N
(χ̃bad · a)]

+

R∑

r=1

Tr[UN(Φ)n Op
N
(χ̃r · a)] + oǫ(N).

The proof is concluded in the same way as the proof of Theorem 2.35, with all molli-

fied characteristic functions χ̃ replaced by χ̃ · a. �

2.39. Exercise. Write out the full proof of Theorem 2.38.

2.40. Theorem. Generalised Weyl’s law. Choose Φ and UN(Φ) as in Theorem 2.36.

Let ϕj ∈ CN (j = 1, . . . , N) be an orthonormal basis of eigenstates of UN(Φ), with

corresponding eigenphases θj. Then, for every a ∈ C∞(M) and for every continuous

function h : T → C,

(93) lim
N→∞

1

N

N∑

j=1

h(θj)〈Op
N
(a)ϕj, ϕj〉 =

∫

T

h(θ)dθ

∫

M

adµ.

Proof. We may assume again without loss of generality that a is real and minξ a(ξ) ≥
0. In view of Theorem 2.38 and the proof of Theorem 2.36 we have for every hK with

finite Fourier expansion (as in (87))

(94) lim
N→∞

1

N

N∑

j=1

hK(θj)〈Op
N
(a)ϕj, ϕj〉 =

∫

M

adµ

∫

T

hK(θ)dθ.

For any h ≥ 0we have

(95)

∣∣∣∣∣

N∑

j=1

h(θj)〈Op
N
(a)ϕj, ϕj〉−

N∑

j=1

h(θj)‖Op
N
(a1/2)ϕj‖2

∣∣∣∣∣

≤ suph
∣∣Tr[Op

N
(a) − Op

N
(a1/2)Op

N
(a1/2)†]

∣∣ = o(N) suph.

Hence (94) is equivalent to

(96) lim
N→∞

1

N

N∑

j=1

hK(θj)‖Op
N
(a1/2)ϕj‖2 =

∫

M

adµ

∫

T

hK(θ)dθ.
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We now use the same approximation argument as in the proof of Theorem 2.36, for

h ∈ C1(T). Given any ǫ, there is a K such that hK(θ) − ǫ ≤ h(θ) ≤ hK(θ) + ǫ for all

θ ∈ T. The limits of the left and right hand side of

1

N

N∑

j=1

[hK(θj) − ǫ]‖Op
N
(a1/2)ϕj‖2 ≤

1

N

N∑

j=1

h(θj)‖Op
N
(a1/2)ϕj‖2(97)

≤ 1

N

N∑

j=1

[hK(θj) + ǫ]‖Op
N
(a1/2)ϕj‖2(98)

differ by less than

2ǫ suphK lim
N→∞

1

N

N∑

j=1

‖Op
N
(a1/2)ϕj‖2 ≤ 2ǫ suphK lim

N→∞

1

N
Tr[Op

N
(a1/2)Op

N
(a1/2)†]

(99)

= 2ǫ suphK

∫

M

adµ(100)

which can be arbitrarily small for ǫ→ 0. Thus

(101) lim
N→∞

1

N

N∑

j=1

h(θj)‖Op
N
(a1/2)ϕj‖2 =

∫

M

adµ

∫

T

h(θ)dθ.

A similar approximation argument shows that (101) holds also for all continuous h.

In view of (95), the relation (101) is equivalent to (93). The assumption h ≥ 0 can be

removed by using the linearity of (93) in h. �

Let us now turn to the question of quantum ergodicity for ergodic maps. Examples

of linked twist maps which are ergodic are discussed in 1.5.

2.41. Theorem. Let Φ and UN(Φ) as in Theorem 2.36, and suppose in addition Φ is

ergodic. Let ϕ1, . . . , ϕN ∈ CN be an orthonormal basis of eigenstates of UN(φ). Then,

for any a ∈ C∞(M),

(102) lim
N→∞

1

N

N∑

j=1

∣∣∣∣〈Op
N
(a)ϕj, ϕj〉−

∫

M

adµ

∣∣∣∣
2

= 0.

Proof. We may assume without loss of generality that
∫
M
adµ = 0 and |a| ≤ 1. It is

then sufficient to show

(103) S2(a,N) :=
1

N

N∑

j=1

∣∣〈Op
N
(a)ϕj, ϕj〉

∣∣2 → 0

asN→ ∞. The argument presented here is inspired by the proof of quantum ergod-

icity for cat maps [3, 12], cf. also [15].

For any given T ≥ 1, we may write

(104) a = aT + a
bad
T
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where

(i) aT ∈ C∞ has compact support not containing the setsΦ(SΦ), Φ2(SΦ), . . . , ΦT(SΦ),
and furthermore

∫
aT dµ = 0, |aT | ≤ 1;

(ii)
∫
M

|abad
T |2 dµ < T−1.

By the triangle inequality,

(105) S2(a,N)1/2 ≤ S2(aT , N)1/2 + S2(a
bad
T , N)1/2

Furthermore, by the Cauchy-Schwartz inequality,

S2(a
bad
T , N) ≤ 1

N

N∑

j=1

∥∥Op
N
(abad
T )ϕj

∥∥2(106)

=
1

N
Tr Op

N
(|abad

T |2) + oT(1)(107)

and hence

(108) lim sup
N→∞

S2(a
bad
T , N) < T−1.

As to the remaining term,

(109) S2(aT , N) =
1

N

N∑

j=1

|〈Op
N
(aT)ϕj, ϕj〉|2,

it remains to be proved that the limsup of (109) can be made arbitrarily small for

sufficiently large T . To this end define the ergodic average of aT by

(110) aTT :=
1

T

T∑

n=1

aT ◦Φn.

Since ϕj are the eigenfunctions of UN(Φ) we have

S2(aT , N) =
1

N

N∑

j=1

∣∣∣∣
1

T

T∑

n=1

〈
Op

N
(aT)ϕj, ϕj

〉∣∣∣∣
2

(111)

=
1

N

N∑

j=1

∣∣∣∣
1

T

T∑

n=1

〈
Op

N
(aT)e(nθj)ϕj, e(nθj)ϕj

〉∣∣∣∣
2

(112)

=
1

N

N∑

j=1

∣∣∣∣
1

T

T∑

n=1

〈
Op

N
(aT)UN(Φ)nϕj, UN(Φ)nϕj

〉∣∣∣∣
2

(113)

=
1

N

N∑

j=1

∣∣∣∣
1

T

T∑

n=1

〈
UN(Φ)−n Op

N
(aT)UN(Φ)nϕj, ϕj

〉∣∣∣∣
2

.(114)
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So by Cauchy-Schwartz,

S2(aT , N) ≤ 1

N

N∑

j=1

∥∥∥∥
1

T

T∑

n=1

UN(Φ)−n Op
N
(aT)UN(Φ)nϕj

∥∥∥∥
2

(115)

=
1

N

N∑

j=1

∥∥Op
N
(aTT)ϕj

∥∥2 + oT(1),(116)

by Axiom 1.10. Now

1

N

N∑

j=1

∥∥Op
N
(aTT)ϕj

∥∥2 = 1

N

N∑

j=1

〈Op
N
(aTT)

† Op
N
(aTT)ϕj, ϕj〉(117)

=
1

N

N∑

j=1

〈Op
N
(|aTT |

2)ϕj, ϕj〉+ oT(1)(118)

=

∫

M

|aTT |
2dµ+ oT (1).(119)

We have

(120)

(∫

M

|aTT |
2dµ

)1/2
≤
(∫

M

|aT |2dµ

)1/2
+

(∫

M

|abadT
T |2dµ

)1/2

where

(121) aT :=
1

T

T∑

n=1

a ◦Φn, abadT
T :=

1

T

T∑

n=1

abad
T ◦Φn.

We have by Cauchy-Schwartz

∫

M

|abadT
T |2dµ =

1

T 2

T∑

j,k=1

∫

M

(abad
T ◦Φj)(abad

T ◦Φk)dµ(122)

≤ 1

T 2

T∑

j,k=1

(∫

M

|abad
T ◦Φj|2 dµ

)1/2(∫

M

|abad
T ◦Φk|2 dµ

)1/2
(123)

=

∫

M

|abad
T |2 dµ <

1

T
,(124)

using the Φ-invariance of µ and assumption (ii). Therefore

(125) lim sup
N→∞

S2(aT , N) ≤
∫

M

|aT |2dµ+O(T−1).

Since Φ is ergodic, we have a mean ergodic theorem for test functions a ∈ L2(M),

i.e.,

(126) lim
T→∞

∫

M

|aT |2dµ = 0,

and hence lim sup
N→∞

S2(aT , N) becomes arbitrarily small for T sufficiently large.

�
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2.42. Exercise. Show that there is a sequence of sets IN ⊂ {1, . . . , N} such that |IN|/N→
1 asN→ ∞, and

(127) 〈Op
N
(a)ϕj, ϕj〉 →

∫

M

adµ

for all j ∈ IN, asN→ ∞.

Hint: Apply Chebyshev’s inequality with the variance given in (102).

Lecture III: Bouncing ball modes

3.43. Definition. A vector ψ ∈ CN \ {0} is called a quasimode of the unitary matrix UN

with quasi-eigenphase η and discrepancy ǫ, if

(128) ‖(UN − e2πiη)ψ‖ ≤ ǫ‖ψ‖.

3.44. By expandingψ in an orthonormal basis of eigenfunctions,ψ =
∑N

j=1〈ψ,ϕj〉ϕj,
it is easy to see that (128) implies

(129)
N∑

j=1

|〈ψ,ϕj〉|2|e2πiθj − e2πiη|2 = ‖(UN − e2πiη)ψ‖2 ≤ ǫ2‖ψ‖2 = ǫ2
N∑

j=1

|〈ψ,ϕj〉|2,

where θj is the eigenphase of UN corresponding to ϕj. Hence |e2πiθj − e2πiη| ≤ ǫ for at

least one j.

3.45. For δ > ǫ, consider the set J = {θ : |e2πiθ − e2πiη| < δ}. We have

(130)
∑

θj /∈J

|〈ψ,ϕj〉|2 ≤ δ−2
∑

θj /∈J

|〈ψ,ϕj〉|2|e2πiθj − e2πiη|2 ≤ (ǫ/δ)2‖ψ‖2,

and so

(131)
∑

θj∈J

|〈ψ,ϕj〉|2 ≥ [1− (ǫ/δ)2]‖ψ‖2.

Hence there is at least one eigenphase θj ∈ J such that

(132) |〈ψ,ϕj〉|2 ≥
1− (ǫ/δ)2

|J|
‖ψ‖2.

That is, the closer 1−(ǫ/δ)2

|J|
is to one, the closer ψ is to ϕj.

3.46. Example. Fix ℓ ∈ (0, 1). We consider quantum linked twist maps

(133) UN(Φ) = UN(Ψf)F−1
N UN(Ψg)FN,

with

(134)

[UN(Ψf)ψ](Q) = e

[
−NV

(
Q

N

)]
ψ(Q), [UN(Ψg)ψ](P) = e

[
−NT

(
P

N

)]
ψ(P),
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where V(q) = 0when 0 ≤ q < ℓ and otherwise arbitrary, and T ∈ C2(R) such that

(135) NT

(
P

N
+ 1

)
= NT

(
P

N

)
mod 1.

Examples are T(p) = p2 + τ(p) or T(p) = (p − 1
2
)2 + τ(p), with a periodic function

τ ∈ C2(T).

3.47. The corresponding classical map (8) has f = −V ′ and g = −T ′.

3.48. Let

(136) hk(q) = χℓ(q)e
2πikq, χℓ(q) = ℓ

−1/2χ(ℓ−1q),

with k ∈ R and χ ∈ C∞(R) a mollified characteristic function with compact support

in (0, 1). Define

ψk(Q) =
1√
N

∑

m∈Z

hk

(
Q

N
+m

)

=
1√
N

∑

m∈Z

χℓ

(
Q

N
+m

)
eN(k(Q+Nm)).

(137)

By construction,

(138) UN(Ψf)ψk = ψk.

We will show that the ψk are good quasimodes of UN(Φ), for suitable choices of k.

3.49. Theorem. Let σ = σ(N) ≥ 0. Assume T ∈ Cν+1(R) and T (ν+1) is uniformly

bounded, for some ν ≥ 1. Then, for every k ∈ R that satisfies

(139)

∣∣∣∣T
(µ)

(
k

N

)∣∣∣∣ ≤
(
σ

N

)ν−µ+1
for all µ = 1, . . . , ν,

we have

(140) ‖(UN(Φ) − e2πiηk)ψk‖ ≤ Cν
(
1+ ℓσ

ℓN

)ν
‖ψk‖, ηk = −NT(k),

for some Cν > 0 independent of k, ℓ, σ,N.

3.50. Example. Let T(p) = p2. Then T ′(p) = 2p and T ′′(p) = 2. Hence we apply the

above theorem for ν = 1 to obtain

(141) ‖(UN(Φ) − e2πiηk)ψk‖ ≤ C
(
1+ ℓ|k|

ℓN

)
‖ψk‖, ηk = −

k2

N
,

Hence we obtain good quasimodes for k close to zero.

Furthermore, note that

(142) NT

(
P

N

)
= N

(
P

N
−
1

2

)2
−
N

4
mod 1.
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Thus we apply Theorem 3.49 with T̃(p) = (p− 1
2
)2 instead of T(p). Here T̃ ′(p) = 2p−1,

T̃ ′′(p) = 2, so

(143) ‖(UN(Φ) − e2πiηk)ψk‖ ≤ C
(
1+ ℓ|k− N

2
|

ℓN

)
‖ψk‖,

with quasi-eigenphase

(144) ηk = −N

(
k

N
−
1

2

)2
+
N

4
= −

k2

N
+ k.

So (143) says that good quasimodes will have k close to N
2

.

Proof of Theorem 3.49. We first calculate the L2 norm:

‖ψk‖2 =
1

N

N−1∑

Q=0

∑

m,m ′∈Z

χℓ

(
Q

N
+m

)
χℓ

(
Q

N
+m ′

)

=
1

N

N−1∑

Q=0

χℓ

(
Q

N

)2

=

∫

R

χℓ(q)
2dq +O(N−R)

=

∫

R

χ(q)2dq +O(N−R)

(145)

for any R > 0, since χ is C∞ and of compact support in (0, 1).

By (138), it suffices to show that ψ̂k := Fψk is a good quasimode of UN(Ψg). Let us

first derive an explicit formula for ψ̂k. By the Poisson summation formula

ψk(Q) =
1√
N

∑

n∈Z

∫

R

hk

(
Q

N
+ q

)
e−2πinqdq

=
1√
N

∑

n∈Z

ĥk(n)eN(nQ)

=
1√
N

N−1∑

P=0

∑

n∈Z

ĥk(P +Nn)eN(PQ),

(146)

with the Fourier transform

(147) ĥk(p) =

∫

R

hk(q)e
−2πiqpdq.

The above allows us to read off the Fourier transform of ψk(Q):

(148) ψ̂k(P) := [FNψk](P) =
1√
N

∑

n∈Z

ĥk(P +Nn).

With the above choice of hk,

(149) ĥk(p) =
√
ℓχ̂(ℓ(p− k)).
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Since χ is C∞ and has compact support, for any R > 0 there is a constant CR > 0

(independent of p, k, ℓ) such that

(150) ĥk(p) ≤ CR
√
ℓ

(1+ ℓ|p− k|)R
.

Thus

(151) ψ̂k(P) =

√
ℓ

N

∑

n∈Z

χ̂
(
ℓ(P − k+Nn

))
,

which converges rapidly.

Now,

(152) [UN(Ψg)ψ̂k](P) = e

[
−NT

(
P

N

)]
ψ̂k(P)

Suppose T ∈ Cν+1(R); then

(153) T

(
P

N
+ n

)

= T

(
k

N

)
+

ν∑

µ=1

1

µ!
T (µ)
(
k

N

)(
P − k

N
+ n

)µ
+

1

(ν+ 1)!
T (ν+1)(ξ)

(
P − k

N
+ n

)ν+1

for some ξ between P
N
+ n and k

N
.

If
∣∣T (µ)

(
k
N

)∣∣ ≤
(
σ
N

)ν−µ+1
for 1 ≤ µ ≤ ν, and |T (µ)| uniformly bounded, then

(154) T

(
P

N
+ n

)
= T

(
k

N

)
+O

((
P − k

N
+ n

)
max

{( σ
N

)ν
,

∣∣∣∣
P − k

N
+ n

∣∣∣∣
ν})

.

So

(155) [UN(Ψg)ψ̂k](P) = e

[
−NT

(
k

N

)]
ψ̂k(P)

+

√
ℓ

N

∑

n∈Z

O

(
N

(
P − k

N
+ n

)
max

{( σ
N

)ν
,

∣∣∣∣
P − k

N
+ n

∣∣∣∣
ν})

χ̂
(
ℓ(P − k+Nn

))

and so

(156)
∣∣[ (UN(Ψg) − e [−NT(k)]) ψ̂k

]
(P)
∣∣ ≤ 1

(ℓN)ν+
1
2

∑

n∈Z

M
(
ℓ
(
P − k +Nn

))

where

(157) M(ξ) = O
(
ξmax

{
ℓνσν, |ξ|ν

})
χ̂(ξ)

is a rapidly decaying function on R. The calculation of the L2 is similar to that of ψk

above, and we conclude

(158)
∥∥ (UN(Ψg) − e [−NT(k)]) ψ̂k

∥∥ ≤ Cν
(
1+ ℓσ

ℓN

)ν ∥∥ψ̂k
∥∥

for some constant Cν > 0. This completes the proof of Theorem 3.49. �
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3.51. Note that the inner product of two quasimodes is

〈ψk, ψk ′〉 =
N−1∑

Q=0

ψk(Q)ψk ′(Q)

=
1

N

N−1∑

Q=0

χℓ

(
Q

N

)2
eN((k− k

′)Q)

=

∫

R

χℓ(q)
2e((k− k ′)q)dq +O(N−R)

= O
(
(1+ |k − k ′|)−R

)
+O

(
N−R

)

(159)

for any R > 0, since χ is C∞ and of compact support.

3.52. Let UN = UN(Φ) be the quantum linked twist maps considered above. For

κ ∈ (−1, 1) and a ∈ C∞(T2) let us consider the perturbation

(160) U
(κ)
N = e

(
κOp

N
(a)
)
UN.

We denote the corresponding eigenfunctions byϕ
(κ)
j , and eigenphases by θ

(κ)
j , so that

(161) U
(κ)
N ϕ

(κ)
j = e

(
θ
(κ)
j

)
ϕ

(κ)
j .

Clearly U
(κ)
N defines a holomorphic family of matrices, and one can apply standard

perturbation theory to show that the eigenprojections and eigenvalues depend ana-

lytically on κ; see e.g. Chapter II of [7]. By expanding the eigenfunctions and eigen-

values in power series in κ, one finds (except for at most finitely many κ),

(162)
dθ

(κ)
j

dκ
= 〈ϕ(κ)

j ,Op
N
(a) ϕ

(κ)
j 〉.

3.53. Exercise. Prove (162).

3.54. Example. A natural choice is a(p, q) = a(q). In this case U
(κ)
N is of the same

form as in the previous section, with V(q) replaced by

(163) Vκ(q) = V(q) +
κ

N
a(q).

This is a second order perturbation, and thus has not affect on the underlying classi-

cal dynamics. Here (162) becomes

dθ
(κ)
j

dκ
= 〈ϕ(κ)

j , a ϕ
(κ)
j 〉

=

N−1∑

Q=0

a

(
Q

N

) ∣∣ϕ(κ)
j (Q)

∣∣2.
(164)

If a is supported in [ℓ, 1] mod 1 (as is V) then the quasimodes ψk, their discrepancy

and quasi-eigenphase remain the same, for all κ.
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3.55. In order to show that our quasimodes have non-vanishing (as N → ∞) over-

lap with some sequence of eigenfunctions ϕ(κ), we need to show that (recall 3.45)

(165) N (κ)
N (λ) = #{j = 1, . . . , N : θ

(κ)
j ∈ [−λ, λ] + Z}

is bounded, when λ is of the order of the quasimode discrepancy ( σ
N
)ν. This is diffi-

cult to show for fixed κ, but (following [6]) better estimates are possible on average

over κ.

3.56. Let us fix a ∈ C∞(T2) as in 3.54 with a ≥ 0 and
∫
T2 adµ = 1. Given b ∈ (0, 1],

take

(166) ZN(b) =

{
κ ∈ (−1, 1) : 〈ϕ(κ)

j ,Op
N
(a) ϕ

(κ)
j 〉 ≥ b for all j

}
.

Then, in view of (162),

1

|ZN(b)|

∫

ZN(b)

N (κ)
N (λ)dκ =

1

|ZN(b)|

N−1∑

j=0

∫

ZN(b)

χ(θ
(κ)
j ∈ [−λ, λ] + Z)dκ

≤ 1

b|ZN(b)|

N−1∑

j=N0

∫

ZN(b)

χ(θ
(κ)
j ∈ [−λ, λ] + Z)

dθ
(κ)
j

dκ
dκ

≤ 1

b|ZN(b)|

N−1∑

j=0

∫ 1

−1

χ(θ
(κ)
j ∈ [−λ, λ] + Z)

dθ
(κ)
j

dκ
dκ

=
2Nλ

b|ZN(b)|
.

(167)

Thus, if 0 < ǫ < 1, then there is a setWǫ ⊂ ZN(b) of measure

(168) |Wǫ| > |ZN(b)|(1− ǫ),

such that

(169) N (κ)
N (λ) ≤ 2Nλ

ǫb|ZN(b)|

for all κ ∈Wǫ. Hence for quasimodes with discrepancy of order 1/N, we can choose

λ ≍ 1/N and the above bound is finite, provided |ZN(b)| ≥ c for some constant c > 0.

Hence in this case our bouncing ball quasimodes have indeed finite overlap with at

most finitely many eigenstates for each N.

3.57. Let us now discuss the case when |ZN(b)| is small. Then the the complement

of ZN(b) is

(170) (−1, 1) \ ZN(b) =

{
κ ∈ (−1, 1) : 〈ϕ(κ)

j ,Op
N
(a) ϕ

(κ)
j 〉 < b for some j

}
.

This set has measure 2− |ZN(b)|, i.e., close to full measure. In this case there is at least

one eigenstate which does not become equidistributed with respect to µ, since its

mass in the support of a is less than b < 1. That is, quantum unique ergodicity fails
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for all κ /∈ ZN(b). Note that the corresponding eigenstates might not necessarily cor-

respond to bouncing ball modes, since they could in principle be localized on other

invariant measures which are singular with respect to µ, and have their support out-

side the support of a. (In the case of the stadium [6] the analogue of a is supported in

a sufficiently big set so that indeed the bouncing ball modes are the only possibility.)

Gallery of bouncing ball eigenstates

The following pictures and tables are taken from Stephen O’Keefe’s PhD Thesis

[10]. They show eigenstates of the quantum linked twist map

(171) F−1
N UN(Ψg)FNUN(Ψf)

which is clearly conjugate to (133), with the particular choice T(p) = p2 and

(172) V(q) =





0 (0 ≤ q < 1

2
)

−q2 ( 1
2
≤ q < 1).

Note that g(p) = −T ′(p) = −2p and

(173) f(q) = −V ′(q) =





0 (0 ≤ q < 1

2
)

2q ( 1
2
≤ q < 1),

hence the corresponding classical map is ergodic; recall Theorem 1.5 (this corre-

sponds to case (i)).

The quantum states ψ ∈ CN are represented as density plots of the Husimi func-

tions

(174) Hψ(p, q) =

∣∣∣∣(2N)1/4
N−1∑

Q=0

∑

m∈Z

e−πN[(Q
N
+m−q)2+2ip(Q

N
+m−q)]ψ(Q)

∣∣∣∣
2

.

In the following tables we list data corresponding to 17 bouncing ball quantum

eigenstates. We list the eigenphases of the bouncing ball mode, θj, together with the

eigenphases of the previous and following state, θj−1 and θj+1. Our above analysis

shows that a large gap between eigenphases increases the accuracy of the approxi-

mation by quasimodes. We also list the parameter k corresponding to the quasimode

ψk (assuming θj equals the quasi-eigenphase, which need not be the optimal choice).

In the first set of examples (1-8) we have θj = −k2

N
, in the second (9-17) we have

θj = −k2

N
+ k. We also list the quantities

(175) L =
∑

0≤Q<1/2

|ϕj(Q)|2, R =
∑

1/2≤Q<N

|ϕj(Q)|2,

to compare the mass distribution of each eigenstate.

The calculations were performed in dimension N = 201.
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Ref. Nθj Nθj−1 Nθj+1 |k| L R

1 -0.77644 -1.11428 0.28588 0.8812 0.782 0.218

2 -1.11428 -2.48920 -0.77644 1.056 0.714 0.286

3 -3.30602 -3.73872 -2.48920 1.818 0.667 0.333

4 -3.73872 -4.57805 -3.30602 1.934 0.744 0.266

5 -7.36481 -7.79200 -6.42704 2.714 0.669 0.331

6 -11.70866 -11.99325 -10.80775 3.422 0.544 0.456

7 -15.91510 -17.53742 -13.97987 3.989 0.584 0.416

8 -30.03456 -30.35960 -28.09362 5.480 0.494 0.506

Ref. Nθj Nθj−1 Nθj+1 |k − N
2
| L R

9 49.44264 48.57090 50.36306 0.899 0.963 0.037

10 47.26942 46.44128 48.32636 1.726 0.777 0.223

11 46.44128 46.25964 47.26942 1.952 0.617 0.383

12 43.66588 43.40560 45.24036 2.566 0.657 0.343

13 41.98385 41.06977 43.40560 2.875 0.640 0.360

14 41.06977 39.80613 41.98385 3.030 0.524 0.476

15 37.91422 37.33891 39.80613 3.512 0.555 0.445

16 35.22250 33.37426 36.38226 3.877 0.612 0.388

17 30.19735 29.63694 32.46626 4.478 0.473 0.527
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↑
q

p→1

↑
q

p→2

↑
q

p→3

↑
q

p→4

↑
q

p→5

↑
q

p→6
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↑
q

p→7

↑
q

p→8

↑
q

p→9

↑
q

p→10

↑
q

p→11

↑
q

p→12
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↑
q

p→13

↑
q

p→14

↑
q

p→15

↑
q

p→16

↑
q

p→17
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The numerical computation suggests that eigenstate 9 is approximated exception-

ally well by the quasimode

(176) ψ(Q) =
1

i
√
2
{ψN/2+1(Q) − ψN/2−1(Q)}

where ψk as in (137), with ℓ = 1/2 and χ the (unsmoothed) characteristic function of

[0, 1]. Explicitly:

(177) ψ(Q) =





N−1/2(−1)Q sin(2πQ/N) (0 ≤ Q ≤ N/2)
0 (N/2 ≤ Q ≤ N).

The following shows the comparison of eigenstate ϕ and quasimode ψ: both as a

Husimi plot and as a function of Q.

↑
q

p→

↑
q

p→

-0.2
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-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DATA

ϕ

Q/N

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ϕ− ψ

Q/N

3.58. Project.

(1) Define your own favourite ergodic linked twist map Φ on the torus.



30 JENS MARKLOF

(2) Plot the iterates under the map of initial data which is (a) generic and (b) close

to a fixed point.

(3) Find the quantization UN(Φ).

(4) Diagonalize UN(Φ) (using Maple, Mathematica, Matlab, etc.).

(5) Plot its eigenstates as Husimi functions.

(6) Identify bouncing ball modes or other localized eigenstates (“scars”), and

compare them with the corresponding quasimodes.

(7) Plot the distribution of spacings between consecutive eigenphases.
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