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We consider the random continued fraction

SðtÞd 1

s1 C
t

s2Cðt=ðs3C/ÞÞ
; t2CnRK;

where sn are independent random variables with the same gamma distribution. Every
realization of the sequence defines a Stieltjes function that can be expressed as

SðtÞZ
ðN
0

sðdxÞ
1Cxt

; t2CnRK;

for some measure s on the positive half-line. We study the convergence of the finite
truncations of the continued fraction or, equivalently, of the diagonal Padé approximants
of the function S. Using the Dyson–Schmidt method for an equivalent one-dimensional
disordered system and the results of Marklof et al., we obtain explicit formulae (in terms
of modified Bessel functions) for the almost sure rate of convergence of these
approximants, and for the almost sure distribution of their poles.
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1. Introduction

Let sZðs1; s2;.Þ be a sequence of positive real numbers and consider the
analytic continued fraction

SðtÞd 1

s1 C
t

s2Cðt=ðs3C/ÞÞ
; t2CnRK: ð1:1Þ

This continued fraction defines a Stieltjes function; it can be represented in
integral form as

SðtÞZ
ðN
0

sðdxÞ
1C tx

; ð1:2Þ
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J. Marklof et al.2814
for some measure s supported on the non-negative half-line such that the
moments

mnd

ðN
0
xnsðdxÞ; n2N ð1:3Þ

exist. By an obvious use of the geometric series, every Stieltjes function can be
expanded formally in powers of t,

SðtÞw
XN
jZ0

mjðKtÞj as t/0C : ð1:4Þ

Hence, S is the moment-generating function of the measure s. It is a well-known
fact of great practical importance that, given the first n of the moments, one may
construct the rational function

SnðtÞd
PnðtÞ
QnðtÞ

Z
1

s1C
t

s2C/Cðt=snÞ
; t2CnRK; ð1:5Þ

where

deg Pn Z
ðn=2ÞK1 if n is even

ðnK1Þ=2 if n is odd
and deg Qn Z

n=2 if n is even

ðnK1Þ=2 if n is odd:

((

This truncation of the continued fraction (1.1) has a MacLaurin expansion whose
nth partial sum agrees with that of the series (1.4). Hence, Sn is a diagonal (if n is
odd) or near-diagonal (if n is even) Padé approximant of S.

Now suppose that Sn are independent positive random variables with the same
distribution, say m. We shall consider the following questions.

(i) What are the almost sure analytic properties of these Stieltjes functions?
(ii) What is the almost sure leading asymptotic behaviour of the error

SðtÞKSnðtÞ as n/N?

These questions are of interest because Padé approximation is widely used in
applied mathematics as a practical means of accelerating the convergence of the
partial sums of series obtained by perturbation methods. As pointed out by
Bender & Orszag (1978), the consideration of many particular cases where the Sn
are deterministic reveals a wide range of large-n behaviours. Our motivation for
studying the random case is to gain some insight into the asymptotic behaviour
of Padé approximation in the ‘generic’ case.

Our study of diagonal Padé approximation reduces to aspects of the large-n
behaviour of the denominators Qn. For this reason, as in the deterministic case,
the cornerstone of the analysis is the three-term recurrence relation

QnC1 Z tQnK1 CsnC1Qn; QK1 Z 0; Q0 Z 1: ð1:6Þ
(The Pn satisfy the same recurrence relation, albeit with different initial
conditions.) This recurrence relation makes a link between Padé approximation
and a rich set of other mathematical entities, such as orthogonal polynomials,
products of random matrices and discrete Schrödinger-like operators. By
exploiting results that are well known in these related fields, one may obtain—
Proc. R. Soc. A (2007)



2815Padé approximants of random Stieltjes series
for a very large class of distributions m of the coefficients Sn—some partial
answers to the questions stated earlier. Our contribution in the present paper is
to elaborate the particular case where m is the gamma distribution. More
precisely, we obtain explicit formulae (in terms of Bessel functions) for the
leading term in the asymptotic behaviour of the error of Padé approximation and
for the asymptotic distribution of the poles, as well as the location of the essential
spectrum of the measure s.

In the remainder of this introductory section, we describe briefly the key ideas
underlying the analysis. Then we summarize our main results in the form of a
theorem.

(a ) The moment problem

The Stieltjes moment problem is, given a sequence fmngn2N, to determine
whether or not there exists a measure s such that equation (1.3) holds for every
n. Historically, mathematical objects such as the analytic continued fraction
(1.1), orthogonal polynomials and Padé approximants were introduced as tools in
the study of this moment problem (Akhiezer 1961; Nikishin & Sorokin 1988;
Simon 1998). Stieltjes (1894) showed that a necessary and sufficient condition for
the existence of a measure s with the prescribed moments is

cn2ZC; snO0: ð1:7Þ

He also showed that

XN
nZ1

sn ZN ð1:8Þ

is a necessary and sufficient condition for the uniqueness of the measure.
Let us assume that condition (1.7) holds and describe in very broad terms one

way of ‘reconstructing’ s from its moments (see Akhiezer (1961) and Nikishin &
Sorokin (1988) for a detailed treatment).

Recall that x0 is a point of increase of the measure s if

c3O0;

ðx 0C3

maxfx 0K3;0g
sðdxÞO0:

The spectrum of s is the set of its points of increase and will be denoted spec(s).
For xO0, we shall denote by dx the probability measure on RC whose only point
of increase is x.

Given the mn, we may define an inner product, say ð$; $Þm, on the space of
polynomials as follows: if p and q are two polynomials with coefficients pi and qi ,
respectively, then

ðp; qÞmd
X
i;j

miCjpiqj :

Knowing the moments, we may compute sn and Sn. We remark that P2n and Q2n

are polynomials of degree nK1 and n, respectively. Set

jnðlÞd
ffiffiffiffiffiffiffiffiffiffiffi
s2nC1

p
lnQ2nðK1=lÞ: ð1:9Þ
Proc. R. Soc. A (2007)
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Then the fact that S2n matches the moment-generating series to O(t2n) implies
that jn is orthogonal to every polynomial of degree less than n, in the sense of the
inner product ð$; $Þm. It follows (see Akhiezer 1961, ch. 1) that the roots of jn are
simple and lie in RC; denote them by

0%ln;1!ln;2!/!ln;n!N:

Gaussian quadrature then defines a discrete measure

snd
Xn
jZ1

sn;jdln;j ; where sn;j Z
XnK1

[Z0

j2
[ ðln;jÞ

 !K1

ð1:10Þ

that converges weakly to a measure s that solves the moment problem. In
particular, the inner product ð$; $Þm coincides with the inner product in L2

sðRCÞ.
The moment problem can also be approached from the point of view of

operator theory. The recurrence relation (1.6) for Qn implies the following
recurrence relation for jn:

v0j0Ch0j1 Z lj0 if n Z 0;

hnK1jnK1Cvnjn ChnjnC1 Z ljn if n2ZC;

where

yn Z

1

s1s2
if n Z 0;

1

s2nC1

1

s2n
C

1

s2nC2

 !
if n 2ZC;

hn Z
1

s2nC2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2nC1s2nC3

p ; n2N:

8>>>><
>>>>:

These numbers may be used to define a certain Jacobi operator, say J , with a
domain contained in the Hilbert space [ 2ðNÞ, as follows: first, we consider
sequences xZðx0; x1; x2;.Þ with only finitely many terms and set

ðJ xÞn :Z
v0x0Ch0x1 if nZ 0;

hnK1xnK1Cvnxn ChnxnC1 otherwise:

(
ð1:11Þ

Given condition (1.8), it is then possible to extend this definition uniquely to
obtain an essentially self-adjoint operator; we use the same symbol J to refer to
this extension. It may then be proved that the moments of the spectral measure
of the operator J are precisely the mn, and so this spectral measure coincides
with s (see Nikishin & Sorokin 1988).
Proc. R. Soc. A (2007)



2817Padé approximants of random Stieltjes series
(b ) The density of states

Consider the finite-dimensional truncation

J nd

v0 h0 0 0 / 0 0 0

h0 v1 h1 0 / 0 0 0

0 h1 v2 h2 / 0 0 0

« 1 1 1 1 1 1 «

0 0 0 0 / hnK3 vnK2 hnK2

0 0 0 0 / 0 hnK2 vnK1

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

of the operator J . The spectrum of J n is the set of zeros of the polynomial jn

defined by equation (1.9). By the Chebyshev–Markov–Stieltjes theorem (see
Nikishin & Sorokin 1988, §2.8), between any two zeros of jn, there is a point of
increase of s; so we are led to studying the distribution of ln, j.

Define a measure kn on RC by

knd
1

n

Xn
jZ1

dln;j : ð1:12Þ

This measure is the normalized eigenvalue counting measure of the matrix J n.
Indeed, we have

NnðlÞ :Z
#fj : ln;j!lg

n
Z

ðl
0
knðdl0Þ:

The normalized counting measure kn has a weak limit, say k, as n/N, and so
there is a function N, called the integrated density of states of J , defined by

NðlÞd
ðl
0
kðdlÞZ lim

n/N
NnðlÞ:

If k is absolutely continuous, one can also speak of the density of states, say 9,
defined by

kðdlÞZ 9ðlÞdl: ð1:13Þ

Although the measures k and s may be very different, their essential spectra are
the same. In the context of Padé approximation, the integrated density of states
describes the distribution of the poles of the approximants.
(c ) Krein’s string

There is an interpretation, due to Krein, of the spectrum of the operator J in
terms of the characteristic frequencies of a vibrating string (Akhiezer 1961).
Consider a weightless, infinite, perfectly elastic string, tied at one endpoint xZ0,
along which some beads are distributed. Let s2n be the mass of the nth bead, and
denote by (xn, yn) its position in the xy-plane. We assume that the xn are fixed
Proc. R. Soc. A (2007)
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and given by the recurrence relation

xnC1 Z xn Cs2nC1; x0 Z 0:

For a string of uniform unit tension, the small vertical motion is then described
by the discrete wave equation

s2n€yn Z
ynC1K yn
s2nC1

K
ynK ynK1

s2nK1

; n2ZC: ð1:14Þ

To study the characteristic frequencies of the string, we set

yn Zhn sinðutÞ and xn Z
hnC1Khn

s2nC1

:

Then equation (1.14) reduces to

1

s1s2
x1K

1

s1s2
x0 ZKu2x0;

and

1

s2nC1s2nC2

xnC1K
1

s2nC1

1

s2n
C

1

s2nC2

� �
xn C

1

s2ns2nC1

xnK1 ZKu2xn;

where nR1. Comparing this with the definitions of J and jn given earlier, it is
readily seen that

xn Z
ðK1Þnx0ffiffiffiffiffiffiffiffiffiffiffi

s2nC1
p jnðu2Þ:

(d ) The complex Lyapunov exponent

Dyson (1953) developed a method for studying the characteristic frequencies
of the one-dimensional disordered chain

€yn Z c2nK1ðynC1K ynÞK c2nK2ðynK ynK1Þ; n2ZC: ð1:15Þ

Here c2nK1 and c2nK2 are the ratios of the elastic modulus of the nth spring and
of the mass of the two particles attached to it. Disorder may be modelled in many
ways; for instance, by assuming that the cn are independent and identically
distributed. The approach was later simplified by Schmidt (1957) and applied to
the tight-binding Anderson model for a one-dimensional crystal with impurities.

Luck (1992) gave a very readable, well-motivated account of the Dyson–
Schmidt approach; in brief, it builds on the intimate connection between second-
order difference equations, continued fractions and Markov chains. For our
purpose, it will be convenient to work with the random difference equation

unC1K unK1 Z
snC1ffiffi

t
p un; n Z 0; 1; 2;.; ð1:16Þ

where t is a parameter in CnRK, and
ffiffiffi
$

p
is the branch of the square-root function

defined on CnRK that returns a number with a non-negative real part. The
following lemma is obvious.
Proc. R. Soc. A (2007)
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Lemma 1.1. For every t2CnRK,

QnðtÞZ
ffiffi
t

p� �n
un;

where un solves the difference equation (1.16) with uK1Z0 and u0Z1.

The relevant continued fraction is

Zd
ffiffi
t

p
SðtÞZ 1

s1ffiffi
t

p C 1
s2=
ffiffi
t

pð ÞC 1= s3=
ffiffi
t

pð ÞC/ð Þð Þ
ð1:17Þ

and we write

Zn Z
ffiffi
t

p
Sn ð1:18Þ

for its truncation. Let uK1 and u0 be complex random variables. Then equation
(1.16) defines a sequence of general terms un by recurrence. The distribution nm of
the random variable Z is a stationary distribution for the Markov chain

Ẑ Z ðẐ0; Ẑ1; Ẑ2;.Þ; where Ẑnd
unK1

un
: ð1:19Þ

(In the terminology of iterated randommaps, the random variables Zn and Ẑn are,
respectively, the backward and forward iterates associated with the continued
fraction; when uK1Z0 and u0Z1, they have the same distribution, but their
asymptotic behaviours are very different; see Diaconis & Freedman 1999.)

It follows that the growth of un may be quantified by means of the complex
Lyapunov exponent defined by

LmðtÞ :ZK

ð
C

ln znmðdzÞ; ð1:20Þ

where ln denotes the principal branch of the logarithm. Indeed, standard results
from the theory of Markov chains imply that if Ẑ has a unique stationary
distribution, then

ln un
n

Z
ln u0

n
K

1

n

Xn
jZ1

ln Ẑ j $$%
n/N

LmðtÞ ð1:21Þ

for almost every realization of s, independently of the choice of Ẑ0 (Breiman
1960; Furstenberg 1963; Meyn & Tweedie 1993). In particular, we have the
formula

lim
n/N

lnjunj
n

ZRe½LmðtÞ�:

Equation (1.21) is also central to the study of the integrated density of states
of the operator J introduced earlier (Dyson 1953; Schmidt 1957; Luck 1992).
Proc. R. Soc. A (2007)
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We shall see that, under a very mild assumption on the distribution m of sn,

NðlÞZK
2

p
i½LmðK1=lC {0CÞ�:

(e ) Furstenberg’s theorem

In order to carry out this programme, we shall also make use of the connection

between the Markov chain Ẑ and the product of random matrices

Un :ZAnAnK1.A1; n Z 0; 1; 2;.; ð1:22Þ
where

And

0 1

1
snffiffi
t

p

0
BB@

1
CCA: ð1:23Þ

The distribution m from which the sn are drawn induces, via equation (1.23), a
distribution ~m on the group of unimodular 2!2 matrices. The fundamental
results of Furstenberg & Kesten (1960) and Furstenberg (1963), which are
commonly referred to as ‘Furstenberg’s theorem’, imply in particular that, under
very mild assumptions on m, there is a unique measure ~n~m on the group of
unimodular matrices that is invariant under the action of the random matrix
(1.23). Furthermore, the number

g~md
1

n
EðlnjUnjÞ; ð1:24Þ

which quantifies the growth of the product Un and is independent of the choice of
matrix norm j$j, may be shown to be strictly positive. These results are of great
relevance to our problem for two reasons: firstly, any invariant measure ~n~m yields
a measure nm that is stationary for the Markov chain Ẑ, and vice versa; secondly,

g~m ZRe½LmðtÞ�:

Hence, we deduce at once the uniqueness of the measure nm, as well as the
exponential growth of un.

Proposition 1.2. Let the sn be the independent random variables in RC with a
common distribution m that has at least two points of increase. Let fungn2N be the
sequence defined by the recurrence (1.16). Suppose thatð

RC

s3mðdsÞ!N;

for some 3O0. Then, for almost every realization of the sequence s, the following
holds independently of the starting values u0s0 and uK1: for Lebesgue almost
every t2CnRK,

lim
n/N

ln un
n

ZLmðtÞ and Re½LmðtÞ�O0
Proc. R. Soc. A (2007)
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Furthermore, if we set tZKxC i0G, then for Lebesgue almost every xO0,

lim
n/N

ln un
n

ZLmðKxC i0GÞ and Re½LmðKxC i0GÞ�O0:

The proof of this proposition is provided in the electronic supplementary
material, appendix A.
(f ) The gamma distribution: statement of the main result

Using such machinery, we are able, for a very wide class of distributions m, to
deduce the almost sure exponential nature of the convergence of diagonal Padé
approximation and also to deduce the almost sure singularity of the measure s. A
more quantitative study requires the calculation of the complex Lyapunov
exponent, but there are very few known instances where it can be expressed in
terms of familiar functions.

In his seminal paper on the disordered chain (1.15), Dyson studied in some
detail the particular case where the cn are independent and gamma distributed.
Dyson found the invariant distribution of the continued fraction

c0t

1C c1t
1Cðc2t=ð1C/ÞÞ

in the particular case where tO0; he then used analytic continuation to obtain an
expansion for the complex Lyapunov exponent at t!0, and hence for the
distribution of the characteristic frequencies. Dyson’s continued fraction is not
equivalent to ours (compare equations (1.15) and (1.14)), and so his analytical
results do not transfer to our problem. However, the continued fraction (1.17)
with independent gamma-distributed sn, i.e. where

mðdxÞ :Z 1

baGðaÞ x
aK1 expðKx=bÞdx; a; bO0 ð1:25Þ

was examined also by Letac & Seshadri (1983); they obtained the probability
distribution nm and found an explicit formula for the corresponding Lyapunov
exponent for tO0. In a recent paper, we generalized this result by finding nm and
the real part of the complex Lyapunov exponent for every complex t (see Marklof
et al. in press); a straightforward extension of these calculations leads to the
remarkably simple formula

LmðtÞZ va ln Ka

2
ffiffi
t

p

b

� �� �
: ð1:26Þ

In this expression, va denotes differentiation with respect to a, and Ka is the
modified Bessel function of the second kind (see electronic supplementary
material, appendix B). The following summarizes the key results of this paper.

Theorem 1.3. Suppose that the sn are independent draws from the gamma
distribution with parameters aO0 and bO0. Then, for almost every realization of
the sequence s, the following holds:
Proc. R. Soc. A (2007)
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(i) The density of states is given explicitly by the formula

9ðlÞZK
2

p2l
va

1

J 2
a

2
b
ffiffi
l

p
� �

CY 2
a

2
b
ffiffi
l

p
� �

2
4

3
5:

(ii) specðsÞZ ½0;NÞ and its absolutely continuous part is empty.
(iii) For Lebesgue almost every t2CnRK,

lim
n/N

lnjSðtÞK SnðtÞj
n

ZK2va ln

����Ka

2
ffiffi
t

p

b

� �����:
(g ) Relation to other work

As stated earlier, our focus in the present paper is on the performance of
diagonal Padé approximation, viewed as a method of summing some random
series. Related questions have been considered in the past, in different contexts.
Foster & Pitcher (1974) studied the convergence of random T-fractions; these
are continued fraction expansions which are in a one-to-one correspondence
with the space of formal power series, but whose convergents are not Padé
approximants. Foster & Pitcher (1974) showed that under very general
conditions on the distribution of the coefficients, the difference between two
successive convergents tends to zero exponentially fast, and that the exponent
is twice the Lyapunov exponent associated with an infinite product of random
matrices. Geronimo (1993) studied the random measure (on the unit circle)
generated by a three-term recurrence relation with random identically
distributed coefficients; he showed the positivity of the corresponding Lyapunov
exponent and deduced that the random measure is singular with respect to the
Lebesgue measure. This list is not exhaustive (see also Csordas et al. (1973) and
Mannion (1993)).

The question of the nature of the measure s has a counterpart in the theory
of disordered systems which has been studied extensively in the context of
Anderson localization. For example, the tight-binding Anderson model uses a
discretized version of the Schrödinger equation with a potential that takes
random identically distributed values at every point in a doubly infinite lattice.
The resulting operator has a second-order finite-difference form like that of the
operator J—in which, more precisely, hnZ1 and vn are independent and
identically distributed—but it acts on sequences in [ 2ðZÞ. For a very wide
choice of the distribution of the potential values vn, the Lyapunov exponent of
the discretized Schrödinger operator is strictly positive, so that, by Ishii’s
formula, the absolutely continuous spectrum is empty. A more refined study
(see, for instance, Carmona & Lacroix (1990) and Pastur & Figotin (1992))
reveals that these operators have a pure point spectrum, i.e. the spectrum is the
closure of the discrete spectrum. Such operators are said to exhibit the
localization property because, for this type of spectrum, the generalized
eigenfunctions decay exponentially fast as jnj/N. The rigorous extension of
such detailed results to the semi-infinite case would involve technicalities which
are beyond the scope of the present paper.
Proc. R. Soc. A (2007)
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Our analysis exploits a number of ideas and techniques found in these earlier
studies. We view our main contribution as that of exhibiting an interesting
example of a class of random Stieltjes functions for which the leading behaviour of
the error of diagonal Padé approximation and the density of states of the
corresponding Jacobi operator are given explicitly in terms of special functions.

The remainder of the paper is devoted to a detailed proof of theorem 1.3: the
first statement follows immediately from Dyson’s formula for the density of
states, which is derived in §2. In §3, we deduce the singularity of the measure s
from the positivity of the real part of the Lyapunov exponent. In §4 we show that
the error of diagonal Padé approximation is inversely proportional to the square
of un; this yields the third statement in the theorem. Finally, in §5, we provide a
numerical illustration of our results.
2. The formula for the density of states

So that we can use proposition 1.2, we shall henceforth suppose that the sn are
independent draws from a distribution m on RC such that

(i) m has at least two points of increase.
(ii) There exists 3>0 such thatð

RC

s3mðdsÞ!N:

To avoid needless repetitions, we shall not mention these particular
assumptions explicitly again in the statement of the intermediate results
leading to theorem 2.4. We begin by relating the growth of jn to the complex
Lyapunov exponent.

Lemma 2.1. For almost every realization of the sequence s, we have, for
Lebesgue almost every l2CnRC,

lim
n/N

ln jnðlÞ
n

Z ipC2LmðK1=lÞ;

and, for Lebesgue almost every l2RC,

lim
n/N

ln jnðlC i0GÞ
n

Z ipC2LmðK1=lC i0GÞ:

Proof. Let l2CnRC. By definition,

jnðlÞZ
ffiffiffiffiffiffiffiffiffiffiffi
s2nC1

p
lnQ2nðK1=lÞ:

Hence, by lemma 1.1,

jnðlÞZ
ffiffiffiffiffiffiffiffiffiffiffi
s2nC1

p
ln

ffiffiffiffiffiffiffiffiffiffiffiffi
K1=l

p� �2n
u2n Z ðK1Þn ffiffiffiffiffiffiffiffiffiffiffi

s2nC1
p

u2n;

where un solves the difference equation (1.16) with tZK1=l. This yields

ln jnðlÞ
n

Z
ln s2nC1

2n
C ipC2

ln u2n

2n
:

Proc. R. Soc. A (2007)
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The first statement in the proposition then follows from the electronic
supplementary material, appendix A, corollary 5.3. The proof of the second
statement is identical. &

Next, we examine the implications of the lemma for the distribution of ln;j . By
virtue of the recurrence relation satisfied by jn, we can write

jnðlÞZ
ffiffiffiffiffiffiffiffiffiffiffi
s2nC1

p Y2n
jZ1

sj

 !
ðlK ln;1Þ.ðlK ln;nÞ:

Let
End ln;j : 1% j%n

	 

;

and let l;En. Then

ln jnðlÞ
n

Z
ln s2nC1

2n
C

1

n

X2n
jZ1

ln sj C
1

n

Xn
jZ1

lnðlK ln;jÞ: ð2:1Þ

Proposition 2.2. Suppose thatð
RC

jln sjmðdsÞ!N:

Then for almost every realization of the sequence s, for Lebesgue almost every
l2CnRC, ðN

0
lnjlKl0jknðdl0Þ $$%

n/N
2 Re Lm K1=lð Þ

� �
K2

ð
RC

ln smðdsÞ:

Proof. Consider the real part in equation (2.1). ThenðN
0
lnjlKl0jknðdl0ÞZ

1

n

Xn
jZ1

lnjlK ln;j jZ
lnjjnðlÞj

n
K

ln s2nC1

2n
K

1

n

X2n
jZ1

ln sj :

By lemma 2.1, the first term on the right tends to

2 Re Lm K1=lð Þ
� �

;

the second term tends to zero and, by the ergodic theorem, the third term tends
to

2

ð
RC

ln smðdsÞ:

&

Corollary 2.3. Under the same assumption, for almost every realization of the
sequence s, the sequence fkngn2N has a weak limit, say k, which is a probability
measure on RC. In particular,

lim
n/N

NnðlÞZNðlÞd
ðl
0
kðdl0Þ:

Proof. The proof is a specialization of that given by Goldsheid & Khoruzhenko
(2005) in the more general case of a non-Hermitian Jacobi matrix. See electronic
supplementary material, appendix C for details. &
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2825Padé approximants of random Stieltjes series
Theorem 2.4. Let the sn be independent random variables in RC with a common
distribution m that has at least two points of increase. Suppose also thatð

RC

jln sjmðdsÞ!N and

ð
RC

s3mðdsÞ!N;

for some 3O0. Then, for almost every realization of the sequence s, for Lebesgue
almost every l2RC,

NðlÞZK
2

p
Im½LmðK1=lC i0CÞ�:

Proof. Let l2RCnEn. Then

ln jnðlC i0GÞK ln s2nC1

2n
K

1

n

X2n
jZ1

ln sj Z
Xn
jZ1

lnðlK ln;j C i0GÞ

Z
X
ln; j!l

lnðlK ln;j C i0GÞC
X
ln; jOl

lnðlK ln;j C i0GÞ

Z
X
ln; j!l

lnjlK ln;j jC
X
ln; jOl

ðGipC lnjlK ln;j jÞZ
Xn
jZ1

lnjlK ln;j jG
X
ln;jOl

ip:

Hence, we have the identity

ln jnðlC i0GÞ
n

Z
ln s2nC1

2n
C

1

n

X2n
jZ1

ln sj C

ðN
0
lnjlKl0jknðdl0ÞGip½1KNnðlÞ�:

ð2:2Þ

Consider the imaginary part; the result then follows from lemma 2.1 and
corollary 2.3. &

Corollary 2.5. Suppose that the sn are independent and gamma distributed
with parameters a and b. Then, for lO0, we have the following formula for the
density of states:

9ðlÞ :ZN 0ðlÞZK
2

p2l
va

1

J 2
a

2
b
ffiffi
l

p
� �

CY 2
a

2
b
ffiffi
l

p
� �

2
4

3
5:

Proof. Let lO0 and set

z Z
2

b
ffiffiffi
l

p :

For tZK1=lC i0C, we have

Ka

2
ffiffi
t

p

b

� �
ZKaðizÞZK

p

2
eKiaðp=2Þ½YaðzÞC iJaðzÞ�:
Proc. R. Soc. A (2007)



J. Marklof et al.2826
Hence,

vaKa

2
ffiffi
t

p

b

� �
ZKi

p

2
Ka

2
ffiffi
t

p

b

� �
K

p

2
eKiaðp=2Þ vaYaðzÞC ivaJaðzÞ½ �;

and so

LmðtÞZ
vaKa

2
ffiffi
t

p

b

� �
Ka

2
ffiffi
t

p

b

� � ZKa

2
ffiffi
t

p

b

� � vaKa
2
ffiffi
t

p

b

� �
����Kat

2
ffiffi
t

p

b

� �����2

ZKi
p

2
C i

YaðzÞvaJaðzÞKJaðzÞvaYaðzÞ
JaðzÞ2CYaðzÞ2

C
JaðzÞvaJaðzÞCYaðzÞvaYaðzÞ

JaðzÞ2CYaðzÞ2
:

We deduce the formulae

Re Lm K
1

l
C i0C

� �� �
Z

JaðzÞvaJaðzÞCYaðzÞvaYaðzÞ
JaðzÞ2CYaðzÞ2

; ð2:3Þ

and

Im Lm K
1

l
C i0C

� �� �
ZK

p

2
C

YaðzÞvaJaðzÞK JaðzÞvaYaðzÞ
JaðzÞ2 CYaðzÞ2

: ð2:4Þ

The proposition, together with the last equation, then yields

1KNðlÞZ 2

p

YaðzÞvaJaðzÞK JaðzÞvaYaðzÞ
JaðzÞ2 CYaðzÞ2

ZK
2

p
va arctan

YaðzÞ
JaðzÞ

� �
:

Differentiating both sides with respect to l, we find

K9ðlÞZK
2

p

dz

dl

d

dz
va arctan

YaðzÞ
JaðzÞ

� �
Z

2

p

1

bl3=2
d

dz
va arctan

YaðzÞ
JaðzÞ

� �
:

We obtain the desired result by changing the order of differentiation on the right-
hand side, and making use of the identity

JaðzÞY 0
aðzÞKYaðzÞJ 0

aðzÞZ
2

pz
:

&

Corollary 2.6. Under the same assumption, for almost every realization of the
sequence s,

specðsÞZ ½0;NÞ:

Proof. By differentiating the identity (see Watson 1966, §13.73)

J 2
a ðzÞCY 2

a ðzÞZ
8

p2

ðN
0
K0ð2z sinh tÞ coshð2atÞdt

with respect to a, we deduce that 9 is strictly positive. &
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3. Singularity of the spectrum

Corollary 2.6 implies in particular that the radius of convergence of the
generating series of the moments is zero almost surely; in other words,
the random Stieltjes functions that we have constructed are not analytic at
the origin.

The problem of determining the nature of the spectrum is more delicate. Every
measure may be decomposed into three disjoint parts: its absolutely continuous,
singular continuous and discrete parts, denoted by sac, ssc and sd, respectively.
Ishii (1973) and Yoshioka (1973) showed that the spectrum of the absolutely
continuous part is given by the formula

specðsacÞZ lO0 : lim
t/K1

l
Ci0C

ReLmðtÞZ 0

( )
: ð3:1Þ

This result may be established by examining the resolvent of the Jacobi operator
J . The following result is essentially equivalent:

Proposition 3.1. Let the sn be independent random variables in RC with a
common distribution m that has at least two points of increase. Assume thatð

RC

jln sjmðdsÞ!N and

ð
RC

s3mðdsÞ!N;

for some 3O0. Then, for almost every realization of the sequence s,

specðsacÞZ 0/:

Proof. By lemma 2.1 and electronic supplementary material, appendix A,
corollary 5.5, for almost every realization of s, for Lebesgue almost every l2RC,
we have

lim
n/N

lnjjnðlÞj
n

O0: ð3:2Þ

Now, let hO0 and consider the set

Sh :Z l2RC : jnðlÞZ o
ffiffiffi
n

p
½ln n�1Ch


 �
as n/N

	 

:

By equation (3.2), this set has Lebesgue measure zero almost surely. On the
other hand, it follows from the Men’shov–Rademacher theorem (see Nikishin &
Sorokin 1988, proposition 8.3) that for s almost every l2RC,

jnðlÞZ o
ffiffiffi
n

p
½ln n�1Ch


 �
as n/N:

So, almost surely, for every s measurable set A,ð
A
sðdlÞZ

ð
AhSh

sðdlÞZ
ð
AhSh

sacðdlÞC
ð
AhSh

sscðdlÞC
ð
AhSh

sdðdlÞ

Z

ð
AhSh

sscðdlÞC
ð
AhSh

sdðdlÞZ
ð
A
sscðdlÞC

ð
A
sdðdlÞ:

&
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4. The rate of convergence

Let fungn2N be the sequence defined by the recurrence relation (1.16) with the
starting values uK1Z0 and u0Z1. Also, denote by T the shift operator on the
space of complex sequences, i.e.

T s1; s2;.ð ÞZ s2; s3;.ð Þ:

In order to emphasize the dependence of the continued fraction (1.17) on the
sequence s, we shall sometimes write Z(s) and Zn(s) instead of Z and Zn. We
have the following convenient representation of the error

Lemma 4.1.

ZðsÞKZnðsÞZ
ðK1Þn

un

Yn
jZ0

Z T js

 � !

:

Proof. Using the recurrence relations (1.6) and the identity

ZðT nsÞZ 1
snC1ffiffi

t
p CZðT nC1sÞ

;

it is straightforward to show (by induction on n) that

ZðT nsÞZK
1ffiffi
t

p QnSKPn

QnK1SKPnK1

:

Then

Yn
jZ0

ZðT jsÞZ ðK1=
ffiffi
t

p
ÞnC1

Yn
jZ0

QjSKPj

QjK1SKPjK1

Z ðK1=
ffiffi
t

p
ÞnC1 QnSKPn

QK1SKPK1

Z ðK1=
ffiffi
t

p
ÞnQn

ffiffi
t

p
ðSKSnÞ:

Lemma 1.1 then yields the desired result. &

Theorem 4.2. Let the sn be positive independent random variables with a
common distribution m that has at least two points of increase. Suppose also that
there exists 3O0 such that ð

RC

s3mðdsÞ!N:

Then, for almost every realization of the sequence s, for Lebesgue almost every
t2CnRK,

lim
n/N

lnjSðtÞK SnðtÞj
n

ZK2 Re½LmðtÞ�:

Proof. Let t2CnRK be fixed. We have

ZðsÞZ
ffiffi
t

p
SðtÞ and ZnðsÞZ

ffiffi
t

p
SnðtÞ:
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Hence, by lemma 4.1,

lnjSðtÞKSnðtÞj
n

ZK
lnjtj
2n

K
lnjunj
n

C
1

n

Xn
jZ1

lnjZðT jsÞj: ð4:1Þ

Consider the almost sure limit of each of the three terms on the right-hand side of
this equality as n/N. The first term tends to zero. By proposition 1.2, the
second term tends to

KRe LmðtÞ
� �

:

Finally, it follows easily from the ergodic theorem that the third term tends to
the same limit. The result follows from a standard argument involving the use of
Fubini’s theorem. &
5. A numerical illustration

Following the example of Dyson (1953), it is instructive to begin with an
examination of the (deterministic) case where

mZmNdd1:

Set

SNðtÞd 1

1C t
1Cðt=ð1C/ÞÞ

; t2CnRK:

Then

SNðtÞZ 1

1C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4t

p Z

ðN
0

sNðdxÞ
1Cxt

;

where

sNðdxÞZ
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=xK1

p
dx if 0!x!4;

0 if xO4:

8><
>:

Note that mN has only one point of increase, and so the hypothesis of proposition
3.1 is not satisfied. Indeed, for this choice of m, the spectrum of the measure s is
absolutely continuous.

In this case, the continued fraction (1.17) reduces to

ZNZ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=tC4
p

C1=
ffiffi
t

p ;

and so the complex Lyapunov exponent is

LmNðtÞZK

ð
C

ln znmNðdzÞZK

ð
C

ln zdZNðdzÞZ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=tC4

p
C1=

ffiffi
t

p

2
:
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Figure 1. Counting measure Nn (solid line) for a particular realization of the sequence s when
mZma with aZ8: (a) nZ128 and (b) nZ256. For comparison, points corresponding to values of the
integrated density of states N are also shown.
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In particular, an elementary calculation shows that

NNðlÞZ
1K

2

p
arccos

ffiffiffi
l

p

2
if 0!l!4;

1 if lO4:

8><
>:

Next, let a2ZC and denote by ma the gamma distribution with bZ1=a. As
Dyson remarked, this distribution has mean 1 and variance 1/a and so we may,
for large a, view it as a perturbation of mN. Indeed, using our explicit formula for
Lma together with the large-order expansions in Abramowitz & Stegun (1964),
§9.7, we find

LmaðtÞwLmNðtÞC
1

a

1C8t

2ð1C4tÞCO
1

a2

� �
as a/N; a2ZC:

Likewise setting

bdarccos

ffiffiffi
l

p

2
; 0!l!4:

And using the large-order expansions in Abramowitz & Stegun (1964), §9.3, we
obtain, for a2ZC;

9ðlÞw9NðlÞK 1

a2
cos b

32p sin3 b
ð13C38 cot2 bC25 cot4 bÞCO

1

a4

� �
as a/N:

This expansion breaks down at lZ4; as a increases, 9ðlÞ diverges to infinity there
but tends to zero exponentially fast for lO4.

The following computations were performed in multiple-precision floating-
point arithmetic with the MAPLE software package; the eigenvalues and
eigenvectors of the matrix J n were calculated using the Eigenvals function,
which implements the QR algorithm. Figure 1 corresponds to the case where
mZma with aZ8; it illustrates the convergence of the counting measure Nn to the
integrated density of states N as n increases—thus confirming the validity of our
formula for N.
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Figure 2. Plot (solid line) of
Ð l
0 snðdl0Þ, with nZ256, corresponding to particular realizations of s

when mZma where (a) aZ8 and (b) aZ64. For comparison, points corresponding to values of the
function

Ð l
0 s

Nðdl0Þ are also shown.
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While the Lyapunov exponent and the density of states are non-random, the
measure s is random. We note that sN is absolutely continuous whereas, for
every a2ZC, almost every realization of s is singular. Figure 2 shows the
approximation ðl

0
snðdl0Þ;

of the integrated measure for particular realizations corresponding to aZ8 and
64. Here sn is the discrete measure defined by the quadrature formula (1.10), and
nZ256.
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