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Padé approximants of random Stieltjes series

By JeENs MARKLOF, YVES TOURIGNY* AND LECH WOLOWSKI
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK

We consider the random continued fraction

1
S(t) =——————, tEC\R,
+ t
S OR)!

where s, are independent random variables with the same gamma distribution. Every
realization of the sequence defines a Stieltjes function that can be expressed as

* g(dz)
s =| 5o tecRr.
for some measure ¢ on the positive half-line. We study the convergence of the finite
truncations of the continued fraction or, equivalently, of the diagonal Padé approximants
of the function S. Using the Dyson—Schmidt method for an equivalent one-dimensional
disordered system and the results of Marklof et al., we obtain explicit formulae (in terms
of modified Bessel functions) for the almost sure rate of convergence of these
approximants, and for the almost sure distribution of their poles.
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1. Introduction

Let s=(s,5,...) be a sequence of positive real numbers and consider the
analytic continued fraction

1

S(t) == . teC\R. (1.1)

$U T ST @)

This continued fraction defines a Stieltjes function; it can be represented in
integral form as

(1.2)
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for some measure ¢ supported on the non-negative half-line such that the
moments

m, ==J t"o(dz), neN (1.3)
0

exist. By an obvious use of the geometric series, every Stieltjes function can be
expanded formally in powers of £,

S(t) ~ z‘”: m;(—t) ast—0+. (1.4)
=0

Hence, S is the moment-generating function of the measure ¢. It is a well-known
fact of great practical importance that, given the first n of the moments, one may
construct the rational function

P,(t) 1

S, (1) = = , teC\R_, (1.5)
Qu(t) s+ m
where
(n/2) —1 if niseven n/2 if n is even
deg P, = and deg @, =
(n—1)/2 if nisodd (n—1)/2 if nisodd.

This truncation of the continued fraction (1.1) has a MacLaurin expansion whose
nth partial sum agrees with that of the series (1.4). Hence, S, is a diagonal (if n is
odd) or near-diagonal (if n is even) Padé approzimant of S.

Now suppose that S,, are independent positive random variables with the same
distribution, say u. We shall consider the following questions.

(i) What are the almost sure analytic properties of these Stieltjes functions?
(ii) What is the almost sure leading asymptotic behaviour of the error
S(t)— S,(t) as n— ©?

These questions are of interest because Padé approximation is widely used in
applied mathematics as a practical means of accelerating the convergence of the
partial sums of series obtained by perturbation methods. As pointed out by
Bender & Orszag (1978), the consideration of many particular cases where the S,
are deterministic reveals a wide range of large-n behaviours. Our motivation for
studying the random case is to gain some insight into the asymptotic behaviour
of Padé approximation in the ‘generic’ case.

Our study of diagonal Padé approximation reduces to aspects of the large-n
behaviour of the denominators (),,. For this reason, as in the deterministic case,
the cornerstone of the analysis is the three-term recurrence relation

Qniy1 = 1Qn—1 +5,11Q,, Q-1 =0, Q=1 (1.6)

(The P, satisfy the same recurrence relation, albeit with different initial
conditions.) This recurrence relation makes a link between Padé approximation
and a rich set of other mathematical entities, such as orthogonal polynomials,
products of random matrices and discrete Schrodinger-like operators. By
exploiting results that are well known in these related fields, one may obtain—
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for a very large class of distributions u of the coefficients S,—some partial
answers to the questions stated earlier. Our contribution in the present paper is
to elaborate the particular case where u is the gamma distribution. More
precisely, we obtain explicit formulae (in terms of Bessel functions) for the
leading term in the asymptotic behaviour of the error of Padé approximation and
for the asymptotic distribution of the poles, as well as the location of the essential
spectrum of the measure o.

In the remainder of this introductory section, we describe briefly the key ideas
underlying the analysis. Then we summarize our main results in the form of a
theorem.

(a) The moment problem

The Stieltjes moment problem is, given a sequence {m,},en, to determine
whether or not there exists a measure o such that equation (1.3) holds for every
n. Historically, mathematical objects such as the analytic continued fraction
(1.1), orthogonal polynomials and Padé approximants were introduced as tools in
the study of this moment problem (Akhiezer 1961; Nikishin & Sorokin 1988;
Simon 1998). Stieltjes (1894) showed that a necessary and sufficient condition for
the existence of a measure ¢ with the prescribed moments is

VnezZ,, s,>0. (1.7)
He also showed that

D s, = (1.8)

n=1

is a necessary and sufficient condition for the uniqueness of the measure.

Let us assume that condition (1.7) holds and describe in very broad terms one
way of ‘reconstructing’ ¢ from its moments (see Akhiezer (1961) and Nikishin &
Sorokin (1988) for a detailed treatment).

Recall that 2’ is a point of increase of the measure o if

7' +e
Ve> 0, J a(dz)> 0.

max{z'—¢,0}

The spectrum of o is the set of its points of increase and will be denoted spec(a).
For >0, we shall denote by §, the probability measure on R, whose only point
of increase is .

Given the m,, we may define an inner product, say (-, -),,, on the space of
polynomials as follows: if p and g are two polynomials with coefficients p; and ¢;,
respectively, then

(P, @)= Z Mi+;Pid;-
i

Knowing the moments, we may compute s, and S,. We remark that P, and (s,
are polynomials of degree n—1 and n, respectively. Set

l//n(A) = 52n+1AnQ2n(_1/A)' (19)
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Then the fact that S, matches the moment-generating series to O(tQ”) implies
that ¥, is orthogonal to every polynomial of degree less than n, in the sense of the
inner product (-, -),,. It follows (see Akhiezer 1961, ch. 1) that the roots of y,, are
simple and lie in Ry ; denote them by

Oﬁ)\n,l <An,2<< An7n< o,

Gaussian quadrature then defines a discrete measure

n n—1 -1
o, = J"yjé;{m’ where Onj = (Z %22 (An])> (110)
i=1 £=0

J

that converges weakly to a measure ¢ that solves the moment problem. In
particular, the inner product (-, -),, coincides with the inner product in L2(R,).

The moment problem can also be approached from the point of view of
operator theory. The recurrence relation (1.6) for @, implies the following
recurrence relation for y,,;

Yo + hoty =AYy itn =0,
hn—l‘//n—l + Un‘% + hn¢n+1 = /h[/n if ne Z+,

where

1 .

—_— if n=0,

8152 1

v, = h,, = , neN.
1 1 1 . Son+2 vV S2p+152n+3
- + lf n e Z+,
Son+1 \ S2n  S2n+2

These numbers may be used to define a certain Jacobi operator, say J, with a
domain contained in the Hilbert space 122(N), as follows: first, we consider
sequences & = (§y,£1,£,,...) with only finitely many terms and set

v0§0+h0§1 if I1=O,

(TE)n = , (1.11)
hyp—16p—1 + v,6, + h,€,11 otherwise.

Given condition (1.8), it is then possible to extend this definition uniquely to
obtain an essentially self-adjoint operator; we use the same symbol J to refer to
this extension. It may then be proved that the moments of the spectral measure
of the operator J are precisely the m,,, and so this spectral measure coincides
with ¢ (see Nikishin & Sorokin 1988).
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(b) The density of states

Consider the finite-dimensional truncation

Uy ho 0 0 te 0 0 0
ho (%1 hl 0 te 0 0 0
0 hl (%] hg te 0 0 0
T = . . . . . )
0 0 0 0 tee hnfg} Up—2 h’n*Q
0 0 0 0 te O h/n*Q Up—1

of the operator J. The spectrum of 7, is the set of zeros of the polynomial ¥,
defined by equation (1.9). By the Chebyshev—Markov—Stieltjes theorem (see
Nikishin & Sorokin 1988, §2.8), between any two zeros of y,,, there is a point of
increase of g; so we are led to studying the distribution of 4, ;.

Define a measure «,, on Ry by

1 n
K= > 6 (1.12)

J=1

This measure is the normalized eigenvalue counting measure of the matrix 7 ,,.
Indeed, we have

N,(2) :

_ #{J : An.,j<)‘} _ Jx Kn(d/‘il).

n 0

The normalized counting measure «, has a weak limit, say k, as n— %, and so
there is a function N, called the integrated density of states of J, defined by

A
N ::J K(d2) = Tim N, (A).

0 n—o

If k is absolutely continuous, one can also speak of the density of states, say g,
defined by

k(dA) = o(A)dA. (1.13)

Although the measures k and ¢ may be very different, their essential spectra are
the same. In the context of Padé approximation, the integrated density of states
describes the distribution of the poles of the approximants.

(¢) Krein’s string

There is an interpretation, due to Krein, of the spectrum of the operator J in
terms of the characteristic frequencies of a vibrating string (Akhiezer 1961).
Consider a weightless, infinite, perfectly elastic string, tied at one endpoint =0,
along which some beads are distributed. Let s,,, be the mass of the nth bead, and
denote by (z,, y,) its position in the zy-plane. We assume that the z, are fixed
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and given by the recurrence relation

Tn+1 = Iy + S52n+1s Ty = 0.
For a string of uniform unit tension, the small vertical motion is then described
by the discrete wave equation

_ Ynt1— Yn Yn — Yn—1

Sonlp = — , NEZ,. (1.14)
Son+1 Son—1

To study the characteristic frequencies of the string, we set
Y = N, Sln(wt) and gn = M
Son+1
Then equation (1.14) reduces to
1 1
—&H———6& = _w250a
5152 5152

and

1 1 1 1 1
§n+1 - <— + )gn + 7577,71 = _wQ‘gm

Son+152n+2 Son+1 \S2n Son+2 S2nS2n+1

where n>1. Comparing this with the definitions of J and y,, given earlier, it is
readily seen that

(d) The complex Lyapunov exponent

Dyson (1953) developed a method for studying the characteristic frequencies
of the one-dimensional disordered chain

il/.n = CQn—l(yn-‘rl - yn) - cZn—Q(yn - yn—l)v n €Z+. (115)

Here ¢y, 1 and ¢, are the ratios of the elastic modulus of the nth spring and
of the mass of the two particles attached to it. Disorder may be modelled in many
ways; for instance, by assuming that the ¢, are independent and identically
distributed. The approach was later simplified by Schmidt (1957) and applied to
the tight-binding Anderson model for a one-dimensional crystal with impurities.
Luck (1992) gave a very readable, well-motivated account of the Dyson—
Schmidt approach; in brief, it builds on the intimate connection between second-
order difference equations, continued fractions and Markov chains. For our
purpose, it will be convenient to work with the random difference equation

Sn+1
Up+1 — Up—1 = :/—% u,, n=0,1,2,.., (116)
where ¢ is a parameter in C\R_, and /- is the branch of the square-root function
defined on C\R_ that returns a number with a non-negative real part. The
following lemma is obvious.
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Lemma 1.1. For every t€C\R_,

Qu(t) = (V1) w,

where u,, solves the difference equation (1.16) with u—_,=0 and uy=1.

The relevant continued fraction is

Z=\1S(t) = ! - (1.17)

Vi + (sz/ﬂ)+(1/((s;/\/¥)+))

and we write

Zn = \/ESH (1'18)

for its truncation. Let w_; and ug be complex random variables. Then equation
(1.16) defines a sequence of general terms u,, by recurrence. The distribution v, of
the random variable Z is a stationary distribution for the Markov chain

Z = (20, 217 22, ...), where Zn = Un—1 . (119)

Up,

(In the terminology of iterated random maps, the random variables Z, and Z , are,
respectively, the backward and forward iterates associated with the continued
fraction; when u_;=0 and wug=1, they have the same distribution, but their
asymptotic behaviours are very different; see Diaconis & Freedman 1999.)

It follows that the growth of u, may be quantified by means of the complex
Lyapunov exponent defined by

A,(1) := —J@ln 2v,(dz), (1.20)

where In denotes the principal branch of the logarithm. Indeed, standard results
from the theory of Markov chains imply that if Z has a unique stationary
distribution, then

Inu, Inu 1 .
—n —— > InZ.—A,(t 1.21
n n n ; b e u(t) (1.21)

for almost every realization of s, independently of the choice of Z, (Breiman
1960; Furstenberg 1963; Meyn & Tweedie 1993). In particular, we have the
formula

. Inju,|
}LI_IEQT = Re[4,(1)].

Equation (1.21) is also central to the study of the integrated density of states
of the operator J introduced earlier (Dyson 1953; Schmidt 1957; Luck 1992).
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We shall see that, under a very mild assumption on the distribution u of s,

Jvu)=-%qAﬂp4/A+wo+n.

(e) Furstenberg’s theorem

In order to carry out this programme, we shall also make use of the connection
between the Markov chain Z and the product of random matrices

u, =A,A,_1..A, n=0,1,2, ..., (1.22)
where
0 1
A, = e (1.23)

Vi

The distribution u from which the s, are drawn induces, via equation (1.23), a
distribution @ on the group of unimodular 2X2 matrices. The fundamental
results of Furstenberg & Kesten (1960) and Furstenberg (1963), which are
commonly referred to as ‘Furstenberg’s theorem’, imply in particular that, under
very mild assumptions on u, there is a unique measure 7; on the group of
unimodular matrices that is invariant under the action of the random matrix

(1.23). Furthermore, the number
1
V= (L)) (1:24)

which quantifies the growth of the product ¢/, and is independent of the choice of
matrix norm |-|, may be shown to be strictly positive. These results are of great
relevance to our problem for two reasons: firstly, any invariant measure 7; yields
a measure v, that is stationary for the Markov chain Z, and vice versa; secondly,

Ya = Re[/l#(t)].

Hence, we deduce at once the uniqueness of the measure v,, as well as the
exponential growth of u,,.

Proposition 1.2. Let the s, be the independent random variables in Ry with a
common distribution u that has at least two points of increase. Let {u,},en be the
sequence defined by the recurrence (1.16). Suppose that

J s u(ds) < oo,
R

for some e>0. Then, for almost every realization of the sequence s, the following
holds independently of the starting values uy#0 and u—_q: for Lebesgue almost
every t € C\R_,

1
lim —" = A,() and Re[d,(t)]>0

n—o n
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Padé approzimants of random Stieltjes series 2821

Furthermore, if we set t=—x+ 101, then for Lebesgue almost every x>0,

1
lim ——2n = A,(—x +10%) and Re[d,(—z +i0£)]> 0.

n—o n

The proof of this proposition is provided in the electronic supplementary
material, appendix A.

(f) The gamma distribution: statement of the main result

Using such machinery, we are able, for a very wide class of distributions u, to
deduce the almost sure exponential nature of the convergence of diagonal Padé
approximation and also to deduce the almost sure singularity of the measure o. A
more quantitative study requires the calculation of the complex Lyapunov
exponent, but there are very few known instances where it can be expressed in
terms of familiar functions.

In his seminal paper on the disordered chain (1.15), Dyson studied in some
detail the particular case where the ¢, are independent and gamma distributed.
Dyson found the invariant distribution of the continued fraction

Cot

cit
L+ oy

in the particular case where ¢>0; he then used analytic continuation to obtain an
expansion for the complex Lyapunov exponent at ¢<0, and hence for the
distribution of the characteristic frequencies. Dyson’s continued fraction is not
equivalent to ours (compare equations (1.15) and (1.14)), and so his analytical
results do not transfer to our problem. However, the continued fraction (1.17)
with independent gamma-distributed s, i.e. where

1 _

u(dz) := I)“T—(a)ma Yexp(—z/b)dz, a,b>0 (1.25)
was examined also by Letac & Seshadri (1983); they obtained the probability
distribution », and found an explicit formula for the corresponding Lyapunov
exponent for £>0. In a recent paper, we generalized this result by finding v, and
the real part of the complex Lyapunov exponent for every complex ¢ (see Marklof
et al. in press); a straightforward extension of these calculations leads to the
remarkably simple formula

A,(t) =9, 1n [K (2;/%)} (1.26)

In this expression, d, denotes differentiation with respect to a, and K, is the
modified Bessel function of the second kind (see electronic supplementary
material, appendix B). The following summarizes the key results of this paper.

Theorem 1.3. Suppose that the s, are independent draws from the gamma
distribution with parameters a>0 and b>0. Then, for almost every realization of
the sequence s, the following holds:

Proc. R. Soc. A (2007)
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(i) The density of states is given explicitly by the formula

e(4) =—% !

d,
e R (G) + ()

(ii) spec(a)=[0,%) and its absolutely continuous part is empty.
(iii) For Lebesgue almost every t € C\R_,
24/t
w5l

(9) Relation to other work

Lo WIS() = 5,()

n—>00 n

=—20, In

As stated earlier, our focus in the present paper is on the performance of
diagonal Padé approximation, viewed as a method of summing some random
series. Related questions have been considered in the past, in different contexts.
Foster & Pitcher (1974) studied the convergence of random 7T-fractions; these
are continued fraction expansions which are in a one-to-one correspondence
with the space of formal power series, but whose convergents are not Padé
approximants. Foster & Pitcher (1974) showed that under very general
conditions on the distribution of the coefficients, the difference between two
successive convergents tends to zero exponentially fast, and that the exponent
is twice the Lyapunov exponent associated with an infinite product of random
matrices. Geronimo (1993) studied the random measure (on the unit circle)
generated by a three-term recurrence relation with random identically
distributed coefficients; he showed the positivity of the corresponding Lyapunov
exponent and deduced that the random measure is singular with respect to the
Lebesgue measure. This list is not exhaustive (see also Csordas et al. (1973) and
Mannion (1993)).

The question of the nature of the measure ¢ has a counterpart in the theory
of disordered systems which has been studied extensively in the context of
Anderson localization. For example, the tight-binding Anderson model uses a
discretized version of the Schrddinger equation with a potential that takes
random identically distributed values at every point in a doubly infinite lattice.
The resulting operator has a second-order finite-difference form like that of the
operator J—in which, more precisely, h,=1 and v, are independent and
identically distributed—but it acts on sequences in £%(Z). For a very wide
choice of the distribution of the potential values v,, the Lyapunov exponent of
the discretized Schrodinger operator is strictly positive, so that, by Ishii’s
formula, the absolutely continuous spectrum is empty. A more refined study
(see, for instance, Carmona & Lacroix (1990) and Pastur & Figotin (1992))
reveals that these operators have a pure point spectrum, i.e. the spectrum is the
closure of the discrete spectrum. Such operators are said to exhibit the
localization property because, for this type of spectrum, the generalized
eigenfunctions decay exponentially fast as |n|— . The rigorous extension of
such detailed results to the semi-infinite case would involve technicalities which
are beyond the scope of the present paper.
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Our analysis exploits a number of ideas and techniques found in these earlier
studies. We wview our main contribution as that of exhibiting an interesting
example of a class of random Stieltjes functions for which the leading behaviour of
the error of diagonal Padé approximation and the density of states of the
corresponding Jacobi operator are given explicitly in terms of special functions.

The remainder of the paper is devoted to a detailed proof of theorem 1.3: the
first statement follows immediately from Dyson’s formula for the density of
states, which is derived in §2. In §3, we deduce the singularity of the measure ¢
from the positivity of the real part of the Lyapunov exponent. In §4 we show that
the error of diagonal Padé approximation is inversely proportional to the square
of u,; this yields the third statement in the theorem. Finally, in §5, we provide a
numerical illustration of our results.

2. The formula for the density of states

So that we can use proposition 1.2, we shall henceforth suppose that the s, are
independent draws from a distribution u on R, such that

(i) u has at least two points of increase.
(ii) There exists >0 such that

J s u(ds) < co.
R,

To avoid needless repetitions, we shall not mention these particular
assumptions explicitly again in the statement of the intermediate results
leading to theorem 2.4. We begin by relating the growth of ¥, to the complex
Lyapunov exponent.

Lemma 2.1. For almost every realization of the sequence s, we have, for
Lebesgue almost every A € C\R,,

1 A
lim n ¢7L( )
n

n—oo

= im + 24,(—1/2),

and, for Lebesgue almost every A € Ry,

0+
lim Iny,(A+10%)

n—oo n

Proof. Let A€ C\R,. By definition,
lpn(A) =V 52n+1AnQ2n(_1/A)'

= im + 24, (—1/2 +i0%).

Hence, by lemma 1.1,

2n
Yn() = v52n+1/\”(v _1//1) gy = (=1)"V/S2n41 U2y,
where u,, solves the difference equation (1.16) with t= —1/A. This yields
In uq,

|
n 1Pn(x) — In Son+1 +ir 42 )
n 2n 2n
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The first statement in the proposition then follows from the electronic
supplementary material, appendix A, corollary 5.3. The proof of the second
statement is identical. ™

Next, we examine the implications of the lemma for the distribution of 4, ;. By
virtue of the recurrence relation satisfied by y,,, we can write

2n

lpn(’.{) = VSn+1 <H 5j> (’.{ - Anl)(A - Ann)

J=1

Let
¢ E,={X,;:1<j<n},

and let A& E,,. Then

In "//n()\) In Son+1 1 - IS
= — Ins; +— In(A—4,,). 2.1
TR SLE R D DU R

n

Proposition 2.2. Suppose that

J IIn s|u(ds) < o«
R,

Then for almost every realization of the sequence s, for Lebesque almost every
AeC\Ry,

J In|A— 2’|k, (dA") —>2 Re[4,(—1/2)] —QJ In su(ds).
0 n— oo R+
Proof. Consider the real part in equation (2.1). Then

1 1
J In|2— X'|,, (dX) Zl A= 2] = n“”"( I “2”“ Zlns

By lemma 2.1, the first term on the right tends to
2 Re[4,(=1/2)],

the second term tends to zero and, by the ergodic theorem, the third term tends
to

ZJ In su(ds).
R,

Corollary 2.3. Under the same assumption, for almost every realization of the
sequence s, the sequence {k,},en has a weak limit, say k, which is a probability
measure on Ry. In particular,

A
lim N, (1) = N(2) :=J k(dA').
0
Proof. The proof is a specialization of that given by Goldsheid & Khoruzhenko
(2005) in the more general case of a non-Hermitian Jacobi matrix. See electronic
supplementary material, appendix C for details. ]
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Theorem 2.4. Let the s, be independent random variables in R, with a common
distribution p that has at least two points of increase. Suppose also that

J [In s|u(ds) <o and J su(ds) <
R, Ry

for some e>0. Then, for almost every realization of the sequence s, for Lebesgue
almost every A€ R,

N = — %Im[/l#(—l/x +i04)].

Proof. Let A€R,\E,. Then

]
In ¥, (A +i04) — — 82n+1 zln 5 = Zln (A= A, +i0)

= > In(A—A,; +i04) + Y In(A— 2,; +i04)

An, ]<A An,]>l

= > A=Ayl + ) (EHr +InjA— A,40) ZlnM Tagl £ > i,
Ay <A A A dn > A

Hence, we have the identity

Iny,(A+i04) 1 -
nyn(A+i04) “2““+ Zlns +J In|A — 2’|k, (dX) £ in[L — N, (2)].

n

(2.2)

Consider the imaginary part; the result then follows from lemma 2.1 and
corollary 2.3. n

Corollary 2.5. Suppose that the s, are independent and gamma distributed

with parameters a and b. Then, for A>0, we have the following formula for the
density of states:

Proof. Let >0 and set

For t=—1/A+ i0+, we have

2

K, T) = K,(iz) = —g ¢TIy (2) +1J,(2)].

a
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Hence,
9, K, (2—f> =—iZ K, (%f) — e 0, Y, () +i8,0,(2)),
and so
0Ku(Mf) _ T (avay 9K ()
A,(t) = =K, 5
K () ) K1(2f)
TN AC R AC I ACI R AC WA R ADES ACIR AL,
2 Jo(2)" + Y,(2)? Jo(2)" + Y,(2)?

We deduce the formulae

o) -y

and

()] - S

The proposition, together with the last equation, then yields

_ z Ya(Z)ana(Z) - Ja(z)aaya(z)
™ Jo(2)* + Yo(2)*

1—N() =— %aa [arctan Y“(z)} .

Ja(2)

Differentiating both sides with respect to 4, we find
2 dz d Y.(2) 2 1 d Y, (2)
—o(A) =————90 t ’ =— —0 t .
W==TTdw “[arc an Ja(z)] T A2 dz “[m .G

We obtain the desired result by changing the order of differentiation on the right-
hand side, and making use of the identity

T Vi) = Yo(2)Tu() = .
|

Corollary 2.6. Under the same assumption, for almost every realization of the
sequence 8,

spec(o) = [0, «).
Proof. By differentiating the identity (see Watson 1966, §13.73)
8 oo
J2(2) + Y2(2) = - J Ky(2z sinh t) cosh(2at)d¢
0

with respect to a, we deduce that g is strictly positive. ]
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3. Singularity of the spectrum

Corollary 2.6 implies in particular that the radius of convergence of the
generating series of the moments is zero almost surely; in other words,
the random Stieltjes functions that we have constructed are not analytic at
the origin.

The problem of determining the nature of the spectrum is more delicate. Every
measure may be decomposed into three disjoint parts: its absolutely continuous,
singular continuous and discrete parts, denoted by a,., 0, and g, respectively.
Ishii (1973) and Yoshioka (1973) showed that the spectrum of the absolutely
continuous part is given by the formula

spec(0,.) = {/\> 0: lim Red,(t) = 0}. (3.1)

t——1+i0+
This result may be established by examining the resolvent of the Jacobi operator
J. The following result is essentially equivalent:

Proposition 3.1. Let the s, be independent random wvariables in Ry with a
common distribution u that has at least two points of increase. Assume that

J IIn s|u(ds) <o and J s u(ds) < oo,

R, R,

for some ¢>0. Then, for almost every realization of the sequence s,
spec(a,.) = .

Proof. By lemma 2.1 and electronic supplementary material, appendix A,
corollary 5.5, for almost every realization of s, for Lebesgue almost every A€ R,
we have

lim YW o (3.2)

n— oo n
Now, let >0 and consider the set
S, = {21€R; :¢,(A) = o(V/n[ln n]'*") asn— x}.

By equation (3.2), this set has Lebesgue measure zero almost surely. On the
other hand, it follows from the Men’shov-Rademacher theorem (see Nikishin &
Sorokin 1988, proposition 8.3) that for ¢ almost every A €R,,

¥u(A) = o(v/n[ln n]'*")  as n— .

So, almost surely, for every o measurable set A,

JAG(dA) N JAmg,,a(dA) N JAm&,UaC(dA) " JAmgnUSC(dA) - ngnad(dl)

J O J P JAasc(dA) + J 0,4 (d2).

A |
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4. The rate of convergence

Let {u,},en be the sequence defined by the recurrence relation (1.16) with the
starting values u_; =0 and uy,= 1. Also, denote by 7 the shift operator on the
space of complex sequences, i.e.

T(Sl, S9, ) = (32, 83, )

In order to emphasize the dependence of the continued fraction (1.17) on the
sequence s, we shall sometimes write Z(s) and Z,(s) instead of Z and Z,. We
have the following convenient representation of the error

(‘ui)” <§2(7j3)>'

Proof. Using the recurrence relations (1.6) and the identity
1

Lemma 4.1.

Z(8) = Zy(s) =

Z(T"s) =

n+1 + Z(T"_Hs) ’

it is straightforward to show (by induction on n) that
1 @S—P
Z Tns —_ n n
( ) \/E Qn—lS — P,
Then

TJ — (— n+1 el 1 Wno T Iy
gz( s) = (—1/V1) ng_ls_Pj_l (—1/V1) 0P

= (-1/VB"QuVHS = S,).
Lemma 1.1 then yields the desired result. [ |

Theorem 4.2. Let the s, be positive independent random wvariables with a
common distribution u that has at least two points of increase. Suppose also that
there exists e>0 such that

J su(ds) < oo
R

Then, for almost every realization of the sequence s, for Lebesque almost every
teC\R_,

L IS() = S,(0)

n—oo n

Proof. Let t € C\R_ be fixed. We have
Z(s) = VtS(t) and Z,(s) = VtS,(t).

= —2 Re[4,(1)].
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Hence, by lemma 4.1,

1Il|S(t) — Sn(t>| - _ lﬂ‘t’ _ 1n|un|

n 2n n

+% ilmzms)\. (4.1)

J

Consider the almost sure limit of each of the three terms on the right-hand side of
this equality as m— o. The first term tends to zero. By proposition 1.2, the
second term tends to

—Re[4,(t)].
Finally, it follows easily from the ergodic theorem that the third term tends to

the same limit. The result follows from a standard argument involving the use of
Fubini’s theorem. [ |

5. A numerical illustration

Following the example of Dyson (1953), it is instructive to begin with an
examination of the (deterministic) case where

po=pu" =0
Set,
o 1
§*(f)i=———— teC\R.
L ]
Then
- 1 © oo d
)= = J M,
1+ 1+ 4t o 1+ at
where

1
%\/4/1—1dx if0<z<d4,

0 if x> 4.

" (dz) =

Note that u® has only one point of increase, and so the hypothesis of proposition
3.1 is not satisfied. Indeed, for this choice of u, the spectrum of the measure o is
absolutely continuous.

In this case, the continued fraction (1.17) reduces to

0

2
1t A+ 1T

and so the complex Lyapunov exponent is

Ay (1) = —L:ln 2V (dz) = —Jcln 204=(dz) = In \/T'F;; + 1/\/2
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n n

Figure 1. Counting measure N, (solid line) for a particular realization of the sequence s when
w=u" with a=8: (@) n=128 and (b) n=256. For comparison, points corresponding to values of the
integrated density of states N are also shown.

In particular, an elementary calculation shows that

2 A
© 1——arccos£ ifo<a<4,
N7 (1) = ™ 2

1 if A>4.

Next, let a €Z, and denote by u® the gamma distribution with b=1/a. As
Dyson remarked, this distribution has mean 1 and variance 1/a and so we may,
for large a, view it as a perturbation of u*. Indeed, using our explicit formula for
A, together with the large-order expansions in Abramowitz & Stegun (1964),

§9.7, we find
l 1+ 8t 1
a

AW~ A=) 2 5y T O\ @

L ) asa—®, a€/Z,.

Likewise setting
Vi
I 1:a1“CCOST, 0<A<4.

And using the large-order expansions in Abramowitz & Stegun (1964), §9.3, we
obtain, for a€Z,,

w 1 cos (8
oW~ N~ F 35
This expansion breaks down at A=4; as a increases, g(1) diverges to infinity there
but tends to zero exponentially fast for A>4.

The following computations were performed in multiple-precision floating-
point arithmetic with the MAPLE software package; the eigenvalues and
eigenvectors of the matrix J, were calculated using the Eigenvals function,
which implements the QR algorithm. Figure 1 corresponds to the case where
u=u® with a=S8; it illustrates the convergence of the counting measure N, to the
integrated density of states N as n increases—thus confirming the validity of our
formula for N.

1
(13 + 38 cot® B + 25 cot” B) + O<—4> as a— .
a
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Figure 2. Plot (solid line) of fOA a,(d2"), with n=256, corresponding to particular realizations of s
when p = u” where (@) a=8 and (b) a=64. For comparison, points corresponding to values of the
function [} ¢ (d2’) are also shown.

While the Lyapunov exponent and the density of states are non-random, the
measure ¢ is random. We note that ¢® is absolutely continuous whereas, for
every a €Z,, almost every realization of ¢ is singular. Figure 2 shows the
approximation N

[} outa
0
of the integrated measure for particular realizations corresponding to a=8 and
64. Here 0, is the discrete measure defined by the quadrature formula (1.10), and
n=256.
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