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Semi-dispersing billiards
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Statistical properties of hyperbolic billiards
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Part 1

Kinetic theory for the Lorentz gas
(general scatterer configurations)
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Maxwell and Boltzmann

James Clerk Maxwell (1831-1879) Ludwig Boltzmann (1844-1906)
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The Lorentz gas

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)
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The Lorentz gas

• P locally finite subset of Rd with
density one, i.e.,

lim
R→∞

#(P ∩RD)

Rd
= volD

for all bounded sets D ⊂ Rd with
vol ∂D = 0

• scatterers are fixed open balls of
radius ρ centered at the points in P
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The Lorentz gas

• the particles are assumed to be
non-interacting
• each test particle moves with con-

stant velocity v(t) between colli-
sions
• the scattering is specular reflec-

tion; we can also treat scattering
by compactly supported, spheri-
cally symmetric potentials
• we assume w.l.o.g. ‖v(t)‖ = 1
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Diffusion in the classical periodic Lorentz gas (dimension two)

In the case of fixed scattering radius ρ, proofs of CLT for the Lorentz gas are
currently restricted to the 2-dim periodic setting.

Finite horizon:

• Bunimovich & Sinai (Comm Math Phys 1980): Standard CLT for finite horizon
• Melbourne & Nicol (Annals Prob 2009): More general invariance principles

Infinite horizon:

• Bleher (J Stat Phys 1992): Heuristics for CLT with t log t mean square dis-
placement
• Szász & Varjú (J Stat Phys 2007): Proof of CLT for billiard map
• Dolgopyat & Chernov (Russ Math Surveys, 2009): Proof of CLT & invariance

principle in continuous time
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Diffusion in the classical periodic Lorentz gas (higher dimension)

The problem in higher dimensions is control of complexity of singularities

• Chernov (J Stat Phys 1994)
• Balint & Tóth (AHP 2008, Nonlinearity 2012)

and in the case of infinite horizon the subtle geometry of free flight channels

• Dettmann (J Stat Phys 2012)
• Nadori, Szasz & Varju (CMP 2014)

As we will see, the problem becomes tractable if we consider the small scatterer
(Boltzmann-Grad) limit ρ→ 0. In particular (taking first ρ→ 0 then t→∞)

• JM & Balint Tóth (CMP 2017): CLT with t log t mean square displacement
in any dimension (with time t measured in units of the mean collision time);
builds on JM & Strömbergsson (Annals Math 2010 & 2011, GAFA 2011)
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Diffusion in the classical aperiodic/random Lorentz gas

For fixed ρ, still a major open problem–no CLT established so far.

• Dolgopyat, Szasz & Varju (Duke 2009): finite local perturbations
• Lenci (ETDS 2003/06); Christadoro, degli Esposti, Lenci & Seri (Chaos 2010,

J Stat Phys 2011); Lenci & Troubetzkoy (Phys D 2011): recurrence properties
...

• Demers & Liverani (CMP 2023): construction of Birkhoff cones that contract
under transfer operator

What can be said in the Boltzmann-Grad limit ρ→ 0?
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The Boltzmann-Grad (=low-density) limit

• Consider the dynamics in the limit of small scatterer radius ρ
•
(
q(t), v(t)

)
= “microscopic” phase space coordinate at time t

• A volume argument shows that for ρ→ 0 the mean free path length (i.e., the
average time between consecutive collisions) is asymptotic to

1

total scattering cross section
=

1

ρd−1 volBd−1
1

• We thus measure position and time in the “macroscopic” coordinates(
Q(t),V (t)

)
=
(
ρd−1q(ρ1−dt),v(ρ1−dt)

)

• Time evolution of initial data (Q0,V 0):(
Q(t),V (t)

)
= Φtρ(Q0,V 0)
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The linear Boltzmann equation

• Time evolution of a particle cloud with initial density f ∈ L1:

f
(ρ)
t (Q,V ) := f

(
Φ−tρ (Q,V )

)

In his 1905 paper Lorentz suggested that f(ρ)
t is governed, as ρ → 0, by the

linear Boltzmann equation:

[
∂

∂t
+ V · ∇Q

]
ft(Q,V ) =

∫
Sd−1

1

[
ft(Q,V

′)− ft(Q,V )
]
σ(V ,V ′)dV ′

where σ(V ,V ′) is the differential cross section of the individual scatterer.
E.g.: σ(V ,V ′) = 1

4‖V − V
′‖3−d for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, . . .
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Main questions:

• What are the random flight processes that emerge in the Boltzmann-Grad
limit?

• What are the associated kinetic transport equations?
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Key microscopic quantities

q0

s1

s3

s2
s4

• q0, v0 initial particle position and
velocity (‖v0‖ = 1)
• τ1 = τ1(q0,v0) first hitting time

• vn = vn(q0,v0) velocity after nth
collision
• τn+1 = τn+1(q0,v0) free path

lengths after nth collision
• sn = τnvn−1 travel intinerary

• mean free path ∼ 1
ρd−1 volBd−1

1
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/4, mean free path= 1
2ρ = 2
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/6, mean free path= 1
2ρ = 3
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/8, mean free path= 1
2ρ = 4
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Key macroscopic quantities

q0

s1

s3

s2
s4

• Q0 = ρd−1q0,V 0 = v0

• T1 = ρd−1τ1(ρ1−dQ0,V 0)

• V n = vn(ρ1−dQ0,V 0)

• Tn+1 = ρd−1τn+1(ρ1−dQ0,V 0)

• Sn = TnV n−1 = ρd−1sn

• (macro) mean free path 1
volBd−1

1
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/4, mean free path= 1
2ρ = 2
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/4; 1/2-zoom: macroscopic mean free path=1
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/6; 1/3-zoom: macroscopic mean free path=1
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/8; 1/4-zoom: macroscopic mean free path=1
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The main result

• nt = nt(Q0,V 0) the number of collisions within time t, i.e.,

nt = max
{
n ∈ Z≥0 : Tn ≤ t

}
, Tn :=

n∑
j=1

Tj.

• For (Q0,V 0) random w.r.t. Λ ∈ Pac(T1(Rd)),

Θ(ρ) : t 7→ Θ(ρ)(t) =

(
Q0 +

nt∑
j=1

TjV j−1 + (t− Tnt)V nt,V nt

)

defines a random flight process.*

Theorem A (JM & Strömbersson, Memoirs AMS 2024)

Let P be admissible (see below). Then, for any Λ ∈ Pac(T1(Rd)), there is
a random flight process Θ such that Θ(ρ) converges to Θ in distribution, as
ρ→ 0.

*Instead of hard sphere scatterers, we can even allow smooth, compactly supported, radially
symmetric potentials so that the scattering is dispersing (e.g. Muffin-tin Coulomb potentials).
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Outline of proof

The key is to establish the following discrete time analogue of Theorem A.

Theorem B (JM & Strömbersson, Memoirs AMS 2024)

Let P be admissible.
Then, for random initial data (Q0,V 0) with distribution Λ ∈ Pac(T1(Rd)),〈

Tj(Q0,V 0),V j(Q0,V 0)
〉∞
j=1

converges in distribution to the random sequence〈
ξj, vj

〉∞
j=1

(which in general does not form a Markov chain).

There are three steps:

1. Rescaling and spherical equidistribution for each individual inter-collision
flight

2. Markovianisation of the limit process through introduction of a marking of P
3. Induction on the number of inter-collision flights
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Step 1: Rescaling

Define R(v) : Sd−1
1 → SO(d) such that vR(v) = e1 = (1,0, . . . ,0) and

Dρ =

(
ρd−1 0

t0 ρ−11d−1

)
∈ SL(d,R).
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yn

vn

2ρ

2ρ

τn+1

forbidden scatterer

particle trajectory

exclusion zone

Applying R(vn)Dρ to this cylinder orients it along the e1-axis and makes it well
proportioned. First apply R(vn).
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ynR(vn)

vnR(vn) = (1,0, . . . ,0)

2ρ 2ρ
τn+1

forbidden scatterer

particle trajectory

exclusion zone

It is important to keep track of the exit parameters b−n and impact parameters bn.
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ρb−n

ynR(vn)

vnR(vn) = (1,0, . . . ,0)

2ρ 2ρ

ρbn+1

τn+1

forbidden scatterer

particle trajectory

exclusion zone

Now apply Dρ.

30



b−n

2ρd 2ρd

bn+1

Tn+1 = ρd−1τn+1

forbidden scatterer

particle trajectory

exclusion zone
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Step 2: Marking

• Under the above rescaling the cylinder converges to a (ρ,vn)-independent
cyclinder (with flat caps).

• The point setP has been replaced by the random point set (P−yn)R(vn)Dρ.

• For y fixed and v random, limit distribution of (P−y)R(v)Dρ can in general
depend on y ∈ P. In order to keep track of this, we assign a mark to each
y; we want the space of marks to be “nice”.
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Assumptions on the scatterer configuration P

We say P is admissible if there exists a compact metric space Σ with Borel
probability measure m, and map ς : P → Σ (the marking) such that for

X = Rd ×Σ, µX = vol×m
P̃ = {(y, ς(y)) : y ∈ P)} ⊂ X (the marked point set)

we have
• Assumption 1 (density)

lim
R→∞

#(P̃ ∩RD)

Rd
= µX (D)

for all bounded sets D ⊂ X with µX (∂D) = 0
• Assumption 2 (spherical equidistribution) For v random according to λ a.c.

w.r.t. vol measure on Sd−1
1

Ξ̃ρ,y = (P̃ − y)R(v)Dρ
d−→ Ξ̃ς(y) (ρ→ 0)*

uniformly for all y ∈ P in balls of radius � ρ1−d, where Ξ̃ς depends only
on ς ∈ Σ
• . . . and more

*for M ∈ SL(d,R) set (y, ς(y))M = (yM, ς(y))
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Examples for admissible P

Example 1: P = a fixed realization of the Poisson pro-
cess in Rd with intensity 1, and Σ = {1}; proof that
our assumptions are satisfied a.s. is non-trivial, follows
ideas of Boldrighini, Bunimovich and Sinai (J Stat Phys
1983)→ classical linear Boltzmann equation

Previous results:

• Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere scatterer config-
uration P

• Spohn (Comm Math Phys 1978): extension to more general random scatterer configurations
P and potentials

• Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for almost ev-
ery FIXED scatterer configuration P (w.r.t. the Poisson random measure), for hard sphere
scatterers

• Spohn (Comm Math Phys 1978): Implies CLT for limit process (standard CLT for Markovian
random flight process)

• Lutsko & Tóth (CMP 2020): Intermediate joint Boltzmann-Grad/diffusive scaling limits
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Examples for admissible P

Example 2: The periodic Lorentz gas, P = Zd (or any
other Euclidean lattice of co-volume 1) and Σ = {1};
proof uses spherical equidistribution on space of lattices
JM & Strömbergsson (Annals of Math 2010)

. . . more on this in the next lecture. . .

Previous results:

• Caglioti and Golse (Comptes Rendus 2008, J Stat Phys 2010)
• JM & Strömbergsson (Nonlinearity 2008, Annals of Math 2010/2011,

GAFA 2011)

• Polya (Arch Math Phys 1918): “Visibility in a forest” (d = 2)
• Dahlquist (Nonlinearity 1997); Boca, Cobeli, Zaharescu (CMP 2000); Caglioti, Golse (CMP

2003); Boca, Gologan, Zaharescu (CMP 2003); Boca, Zaharescu (CMP 2007): Limit distri-
butions for the free path lengths for various sets of initial data (d = 2)

• Dumas, Dumas, Golse (J Stat Phys 1997): Asymptotics of mean free path lengths (d ≥ 2)
• Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000): bounds on possi-

ble weak limits (d ≥ 2)

• Boca & Gologan (Annales I Fourier 2009), Boca (NY J Math 2010): honeycomb lattice
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Examples for admissible P

Example 3: P =
⋃m
i=1(L+ αi) locally finite periodic point set (e.g. the honey-

comb/hexagonal lattice), withL Euclidean lattice of covolumem; Σ = {1,2, . . . ,m}.
Admissible follows from spherical equidistribution, which here is a consequence
of Ratner’s measure classification theorem for SL(d,Z) n (Zd)m\SL(d,R) n
(Rd)m.

JM & Strömbergsson (CMP 2014, Memoirs AMS 2024)

Previous results on free path length:

Boca & Gologan (Annales I Fourier 2009), Boca (NY J Math 2010)

Example 4: P = Euclidean cut-and-project set (e.g. the
vertex set of a Penrose tiling) and Σ ⊂ Rk (the inter-
nal space in the c&p construction); proof of assumptions
uses uses equidistribution of lower dimensional spheres
in space of lattices, which is again a consequence of
Ratner’s measure classification theorem
JM & Strömbergsson (CMP 2014, Memoirs AMS 2024)

cf. also Ruhr, Smilansky & Weiss (JEMS 2023)
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Examples for admissible P

Example 5: P =
⋃m
i=1Li finite union of Euclidean lattices with Li of positive

covolume mi; Σ = {1,2, . . . ,m}. Admissible follows from spherical equidistri-
bution, which here is a consequence of Ratner’s measure classification theorem
for (SL(d,Z)\SL(d,R))m.

JM & Strömbergsson (J Stat Phys 2014): first collision only

Palmer & Strömbergsson (CMP 2024)

Example 6: P given by periodic Lorentz gas with random thinning or pertubation.

JM & Vinogradov (J Stat Phys 2014): first collision only

Extension to non-identical scatterers:
Avelin, preprint 2024
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Step 3: Induction −→ Main Theorem C

(Theorem C⇒ Theorem B⇒ Theorem A)

Theorem A
Let P be admissible. Then, for any Λ ∈ Pac(T1(Rd)), there is a random flight
process Θ such that Θ(ρ) converges to Θ in distribution, as ρ→ 0.

Theorem B
Let P be admissible.
Then, for random initial data (Q0,V 0) with law Λ ∈ Pac(T1(Rd)),〈

Tj(Q0,V 0),V j(Q0,V 0)
〉∞
j=1

converges in distribution to the random sequence〈
ξj,vj

〉∞
j=1

(which in general does not form a Markov chain).
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Theorem C (JM & Strömbersson, Memoirs AMS 2024) Let P be admissible.
Then, for random (q0,v0) ∼ Λ ∈ Pac(T1(Rd)), the random process

N→ (R>0 ∪ {∞})×Σ× Sd−1
1

j 7→
(
Tj(q0,v0), ςj(q0, v0),V j(q0,v0)

)
converges in distribution to the second-order Markov process

j 7→
(
ξj, ςj,vj

)
,

where for any Borel set A ⊂ R≥0 ×Σ× Sd−1
1 ,

P
(

(ξ1, ς1, v1) ∈ A
∣∣∣∣ (q0, v0)

)
=
∫
A
p(v0; ξ, ς, v) dξ dm(ς) dv,

and for j ≥ 2,

P
(

(ξj, ςj, vj) ∈ A
∣∣∣∣ (q0,v0),

〈
(ξi, ςi, vi)

〉j−1

i=1

)
=
∫
A
p0(vj−2, ςj−1, vj−1; ξ, ς, v) dξ dm(ς) dv.

The functions p, p0 depend on P but are independent of Λ, and for any fixed
v0, ς, v both p(v0 ; · ) and p0(v0, ς, v ; · ) are probability densities on R≥0×
Σ× Sd−1

1 . In particular P(ξj =∞) = 0 for all j.
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(Theorem A⇒) Evolution of densities

Recall: a cloud of particles with initial density f(Q,V ) evolves in time t to

[Ltρf ](Q,V ) = f
(
Φ−tρ (Q,V )

)
.

Theorem D (JM & Strömbersson, Memoirs AMS 2024)

Let P be admissible. Then for every t > 0 there exists a linear operator

Lt : L1(T1(Rd))→ L1(T1(Rd))

such that for every f ∈ L1(T1(Rd)) and any setA ⊂ T1(Rd) with boundary
of Liouville measure zero,

lim
ρ→0

∫
A

[Ltρf ](Q,V ) dQ dV =
∫
A

[Ltf ](Q,V ) dQ dV .

The operator Lt thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit ρ → 0. (We in fact prove convergence of the Lorentz
process to a random flight process.)

Note: The family {Lt}t≥0 does in general not form a semigroup.
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(Theorem C⇒) A generalized linear Boltzmann equation

Consider extended phase space coordinates (Q,V , ς, ξ,V +):

(Q,V ) ∈ T1(Rd) — usual position and momentum
ς ∈ Σ — the mark of current scatterer location
ξ ∈ R+ — flight time until the next scatterer
V + ∈ Sd−1

1 — velocity after the next hit

[
∂

∂t
+ V · ∇Q −

∂

∂ξ

]
ft(Q,V , ς, ξ,V +)

=
∫

Σ

∫
Sd−1

1

ft(Q,V
′, ς ′,0,V ) p0(V ′, ς ′,V , ς, ξ,V +)dV ′dm(ς ′).

with a collision kernel p0(V ′, ς ′,V , ς, ξ,V +), which can be expressed as a prod-
uct of the scattering cross section of an individual scatterer and a certain transi-
tion probability for hitting a given point on the next scatterer with mark ς after time
ξ, given the present scatterer has mark ς ′.
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Summary

• Under natural assumptions on the scatterer configuration P, we can prove
convergence to a limiting random flight process as ρ → 0 (Boltzmann-Grad
limit).

• The limiting process depends on the scatterer configuration, and requires to
keep track of some microscopic data (next velocity and flight time, marking).
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What’s next?

• Explicit limit distributions in the periodic setting, superdiffusion, entropy

• Connection with three gap theorem, higher-dimensional analogues

• Directional statistics, dynamics on point sets

• Open questions, future challenges
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Part 2

The periodic Lorentz gas: limit distributions, superdiffusion,
entropy, and higher dimensional three gap theorems
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The periodic Lorentz gas
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Recall the three steps, now for special case P = Zd (or general Euclidean lattice L):

1. Rescaling and spherical equidistribution for each individual inter-collision
flight

2. Markovianisation of the limit process through introduction of a marking of P
3. Induction on the number of inter-collision flights

Step 1: Rescaling

Define R(v) : Sd−1
1 → SO(d) such that vR(v) = e1 = (1,0, . . . ,0) and

Dρ =

(
ρd−1 0

t0 ρ−11d−1

)
∈ SL(d,R).
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yn = 0

vn

2ρ

2ρ

τn+1

forbidden scatterer

particle trajectory

exclusion zone

Applying R(vn)Dρ to this cylinder orients it along the e1-axis and makes it well
proportioned. First apply R(vn).
By translation-invariance, can assume w.l.o.g. scatterer is at origin, i.e. yn = 0.
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0

vnR(vn) = (1,0, . . . ,0)

2ρ 2ρ
τn+1

forbidden scatterer

particle trajectory

exclusion zone

It is important to keep track of the exit parameters b−n and impact parameters bn.

48



ρb−n

vnR(vn) = (1,0, . . . ,0)

0

2ρ 2ρ

ρbn+1

τn+1

forbidden scatterer

particle trajectory

exclusion zone

Now apply Dρ.
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b−n
0

2ρd 2ρd

bn+1

Tn+1 = ρd−1τn+1

forbidden scatterer

particle trajectory

exclusion zone
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Spherical equidistribution in the space of lattices

• L ⊂ Rd—euclidean lattice of covolume one
• recall L = ZdM for someM ∈ SL(d,R), therefore the homogeneous space
X1 = SL(d,Z)\SL(d,R) parametrizes the space of lattices of covolume
one
• µ1—right-SL(d,R) invariant prob measure on X1 (Haar)
• The following Theorem shows that in the limit ρ → 0 the lattice ZdK(v)Dρ

behaves like a random lattice with respect to Haar measure µ1

Theorem E. Let λ be an a.c. Borel probability measure on Sd−1
1 . Then, for

every bounded continuous function f : X1 → R,

lim
ρ→0

∫
Sd−1

1

f(K(v)Dρ)dλ(v) =
∫
X1

f(M)dµ1(M).

Theorem E is a direct consequence of the mixing property for the flow given by
right multiplication by Dexp(−t).
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⇒ Assumption 2 on spherical equidistribution of P is satisfied, and we hence we
have established that the Lorentz converges in the Boltzmann-Grad limit:

Theorem C (for P = L) (JM & Strömbersson, Annals Math 2011)

For any Λ ∈ Pac(T1(Rd)), the random process

N→ (R>0 ∪ {∞})× Sd−1
1

j 7→
(
Tj(q0,v0), vj(q0,v0)

)
converges in distribution to the second-order Markov process j 7→

(
ξj, vj

)
where for any Borel set A ⊂ R≥0 × Sd−1

1 ,

P
(

(ξ1,v1) ∈ A
∣∣∣∣ (q0,v0)

)
=
∫
A
p(v0; ξ, v) dξ dv,

and for j ≥ 2,

P
(

(ξj, vj) ∈ A
∣∣∣∣ (q0,v0),

〈
(ξi, vi)

〉j−1

i=1

)
=
∫
A
p0(vj−2,vj−1; ξ, v) dξ dv.

Note: If we condition on the velocities vj, the ξj form a sequence of independent
(but not identically distributed) random variables. This is a key observation in the
proof of. . .
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Superdiffusive central limit theorem

Theorem F (JM & B. Tóth, CMP 2016)
Let d ≥ 2 and fix a Euclidean lattice L ⊂ Rd of covolume one. Assume
(q0, v0) random with distribution Λ ∈ Pac(T1(Rd)). Then, for any bounded
continuous f : Rd → R,

lim
t→∞

lim
ρ→0

Ef
(
q(t)− q0

Σd
√
t log t

)
=

1

(2π)d/2

∫
Rd
f(x) e−

1
2‖x‖

2
dx,

with Σ2
d := 21−dσ

d2(d+1)ζ(d)
.

For fixed ρ the analogous result is currently known only in dimension d = 2, see Szász & Varjú
(J Stat Phys 2007), Chernov & Dolgopyat (Russ. Math Surveys 2009); Bálint, Bruin & Terhesiu
(PTRF): small scatterers in intermediate scaling

Proof uses the Lindeberg CLT on the sums of independent random variables∑n
j=1 ξjvj−11(ξ2

j ≤ j(log j)1.99), conditioned on the vj, plus tail estimates on
the collision times.

Note: lim
t→∞

lim
ρ→0

E
∥∥∥∥ q(t)− q0

Σd

√
t log t

∥∥∥∥2

= 2 6= 1 (cf. Balint, Chernov & Dolgopyat: Billiards with cusps)
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Heavy tails of the path length distribution

For random initial data (q,v) leaving a scatterer (with a.c. distribution w.r.t. in-
variant measure of scattering map), consider the probability Fρ(ξ) of hitting the
next scatterer at time τ1(q, v; ρ) > ρ1−dξ

• Boca, Zaharescu (CMP 2007): proof of
convergence as ρ → 0 and explicit formula
in dimension d = 2

• Special case of Thm C: convergence

Fρ(ξ)→ F (ξ) =
∫ ∞
ξ

Ψ0(x)dx

in arbitrary dimension, with continuous limit
density and tail (ξ →∞)

Ψ0(ξ) ∼
Ad
ξ3

Ad = 22−d
d(d+1)ζ(d) (*)

(JM & Strömbergsson, Annals 2010, GAFA 2011)

⇒ No second moment. . . superdiffusion!

F (ξ) in dim. d = 3
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Chernov’s entropy asymptotics

—
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Entropy and moments

Let νρ(q,v) the invariant measure for the scatterering map T of the Lorentz gas.

Corollary of (*): For ρ→ 0,∫
log τ1(q,v; ρ) dνρ(q, v) = −(d− 1) log ρ+

∫ ∞
0

log ξΨ0(ξ)dξ + o(1)

h(T ) = −d(d− 1) log ρ+
∫ ∞

0
log ξΨ0(ξ)dξ +H(d) + o(1)

Proof: Use that the average of τ1 is bounded above and below by const×ρ1−d (proved in Cher-
nov’s paper) and apply limit theorem for free path length.

Proposition
For −1 < Reα < 2,

lim
ρ→0

ρ(d−1)α
∫
τ1(q, v; ρ)α dνρ(q, v) =

∫ ∞
0

ξαΨ0(ξ)dξ

Proof: Use escape of mass estimates (cf. last lecture).
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[An interlude: The three gap theorem and higher dimensional versions]
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The three gap theorem (Steinhaus conjecture)

“There are at most three distinct gap lengths in the fractional parts of the se-
quence α,2α, . . . , Nα, for any integer N and real number α.”

α

α

Sós (1957), Surányi (1958), Świerczkowski (1959)
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The three gap theorem and the space of lattices
JM & Strömbergsson (American Math. Monthly 2017)

The gap between ξk = kα mod 1 and its next neighbour on R/Z is given by

sk,N = min{(`− k)α+ n > 0 | (`, n) ∈ Z2, 0 < ` ≤ N}
= min{mα+ n > 0 | (m,n) ∈ Z2, −k < m ≤ N − k}
= min{y > 0 | (x, y) ∈ Z2A1, −k < x ≤ N − k},

with the matrix A1 =

(
1 α
0 1

)
.

sk,N
α

−N −k N − k N

Z2A1
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An SL(2,Z)-invariant function

Set G = SL(2,R), Γ = SL(2,Z).

For M ∈ G, 0 < t ≤ 1, define

F (M, t) = min
{
y > 0

∣∣∣ (x, y) ∈ Z2M, −t < x ≤ 1− t
}
.

Key point:

sk,N =
1

N
min

{
y > 0

∣∣∣∣∣ (x, y) ∈ Z2AN , −
k

N
< x ≤ 1−

k

N

}

=
1

N
F

(
AN ,

k

N

)

with AN =

(
1 α
0 1

)(
N−1 0

0 N

)
∈ G
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An SL(2,Z)-invariant function

F (M, t) = min
{
y > 0

∣∣∣ (x, y) ∈ Z2M, −t < x ≤ 1− t
}
.

Proposition 1. F is well-defined as a function Γ\G× (0,1]→ R>0.

Proposition 2. For every given M ∈ G, the function t 7→ F (M, t) is piece-
wise constant and takes at most three distinct values. If there are three values,
then the third is the sum of the first and second.

Proof: s

r

r + s

−1 −t 0 1− t 1
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Connection with the Lorentz gas?

s

r

r + s

−2 w − 1 0 w + 1 2

The two linearly independent
lattice vectors with lowest and
second-lowest heights in the
vertical strip between −2 and 2

form a basis. One can show that
at any vertical strip of width one
(in green) contains at least one
of the three points, and hence
the minimal height vector is ei-
ther r, s or r + s

JM & Strömbergsson, The three gap theorem and the space of lattices, American Math. Monthly 2017
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• If Z2M is a Haar random lattice, then the minimal height vector y = (z, ξ) in
the green strip (w−1, w+ 1)×R>0 is distributed according the probability
density

Kw(z, ξ) =
6

π2
H

1 +
ξ−1 −max

(
|w|, |z − w|

)
− 1

|z|



H(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if 1 ≤ x.

• If we average the distribution over w ∈ [−1
2,

1
2] and z, we obtain the free path

length distribution

Ψ0(ξ) = 12
π2 ×



1 (ξ ≤ 1
2)

1
ξ + 2

(
1− 1

2ξ

)2
log

(
1− 1

2ξ

)
−1

2

(
1− 1

ξ

)2
log

∣∣∣∣1− 1
ξ

∣∣∣∣ (ξ > 1
2).

Greenman (J Phys A 1996), Dahlqvist (Nonlinearity 1997), Boca & Zaharescu (CMP 2007), JM &
Strömbersson (Nonlinearity 2008)
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Free paths langths vs. random three gaps*

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

The distribution of free path length in
the periodic Lorentz gas vs. P (s), e−s

P. Dahlqvist 1997
F. Boca & A. Zaharescu 2007
using lattices:
JM & A. Strömbergsson 2008

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

The gap distribution in the energy
spectrum of a two-dimensional
harmonic oscillator with random
frequencies = random three gaps

C. Greenman 1996
using lattices: JM 2000

*For more on this see JM, Random lattices in the wild: from Polya’s orchard to quantum oscilla-
tors, LMS Newsletter, Issue 493 (2021)
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Higher dimensional generalisations: Kronecker sequences

• Fix ~α ∈ Rd, multidimensional torus Td = Rd/Zd

• Consider distances between points ξn = n~α ∈ Td, n = 1, . . . , N

• δn,N = min{|ξm − ξn + `| > 0 | 1 ≤ m ≤ N, ` ∈ Zd}

(= distance of ξn to its nearest neighbour, | · | denotes Euclidean norm in Rd)

• Number of distinct distances gN = |{δn,N | 1 ≤ n ≤ N}|

• Previous studies by Chevallier (1996, 1997, 2000, 2014) and Vijay (2008, “11
distances are enough”; see also Biringer and Schmidt for actions by isome-
tries on general compact manifolds (2008)
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Examples with 5 distances in dimension 2

~α = (0.38,0.132), N = 9 ~α = (0.105,0.275), N = 12
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Example with 7 distances in dimension 3

~α = ( 46
125,

107
500,

43
500), N = 15
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A five distance theorem

Theorem G. (Haynes & JM, IMRN 2022)

For every ~α ∈ Rd and N ∈ N we have that

gN ≤


3 (d = 1)

5 (d = 2)

σd + 1 (d ≥ 3)

where σd is the kissing number for Rd. 3 5 13 25 46 79 135 241 365 555

• Holds also if Zd is replaced by any lattice of full rank in Rd

• Holds also if standard Euclidean metric on Td is replaced by any flat Rieman-
nian metric
• Biringer and Schmidt (2008) showed gN ≤ 3d + 1 (in fact for general iso-

metric anctions on Riemannian manifolds with sectional curvature ≥ 0)
4 10 28 82 244 730 2188 6562 19684 59050

• If metric is given by max-norm, then gN ≤ 2d + 1 (Chevallier 1996 d = 2,
Haynes & Ramirez 2020) 3 5 9 17 33 65 129 257 513 1025
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Lower bounds

We say N1 < N2 < N3 < . . . of integers is sub-exponential if

lim
i→∞

Ni+1

Ni
= 1.

Theorem H. (Haynes & JM, IMRN 2022)

There is a P ⊂ Rd of full Lebesgue measure, such that for every ~α ∈ P , ~α0 ∈ Rd,
and for every sub-exponential sequence (Ni)i, we have

lim sup
i→∞

gNi(~α) ≥ sup
N∈N

gN(~α0).

• Corollary: For ~α ∈ P we have lim sup
i→∞

gNi(~α)

= 5 if d = 2

≥ 9 if d = 3*

*Carl Dettmann (Exp Math 2024) found a numerical example with 9 distinct distances
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Summary

• We have a detailed understanding of the Boltzmann-Grad limit of the periodic
Lorentz gas, with a new type of linear Boltzmann equation

• Heavy tails, divergent moments, superdiffision, entropy asymptotics

• Explicit formulas for limit distribution only in dimension 2

• Connection with 3 gap theorem and higher dimensional variants
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What’s in the final session?

• Directional statistics, dynamics on point sets

• Space of affine lattices, escape of mass estimates

• Open questions, future challenges
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Part 3

Directional statistics, dynamics on point sets,
open questions and future challenges
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Directional statistics

• P – locally finite set in Rd

• Bd
T – ball of radius T

• Assume volume-like growth rate #(P ∩Bd
T ) ≤ C (1 + vol Bd

T )

(for some constant C)
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Directions

• Take all points of P ∩Bd
T and project radially onto unit sphere:

y

‖y‖
∈ Sd−1

1 , y ∈ P ∩BT

(counted with multiplicity)

• To investigate the pseudorandom properties of this sequences (as T → ∞)
we consider local statistics.

• One of the most fundamental such local statistics is the distribution of the
number of points in small discs.
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Directional statistics

• ρ – uniform probability measure on the unit sphere Sd−1

• DT (σ,v) ⊆ Sd−1 – the open disc with center v and volume chose so that

ρ(DT (σ,v)) =
σ

vol Bd
T

• Want to study distribution of

NT (σ,v) := #

{
y ∈ P ∩Bd

T :
y

‖y‖
∈ DT (σ,v)

}
for random v (distributed according to ρ or a more general a.c. measure λ on Sd−1

1 )

• The scaling of the disc is chosen so that we typically expect at most a con-
stant number of points in the disc recall #(P ∩Bd

T) ≤ C (1 + vol Bd
T)∫

Sd−1
1

NT (σ,v) dρ(v) = #(P ∩Bd
T )× ρ(DT (σ,v)) = σ

#(P ∩Bd
T )

vol Bd
T
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Rescaling and group actions

• Define the cone

C(σ) =
{
x ∈ Rd : 0 < x1 < 1, ‖(x2, . . . , xd)‖ < ( d σ

vol Bd−1
1

)
1
d−1x1

}

• Note that {
x ∈ Bd

T :
x

‖x‖
∈ DT (σ,v)

}
R(v)D(T ) ≈ C(σ)

whereR(v) ∈ SO(d) so that vR(v) = e1, andD(T ) =

T−1 0

0 T
1
d−11d−1



• Therefore P(NT (σ,v) = k) ≈ P(#[PR(v)D(T ) ∩ C(σ)] = k)

• Note: R(v), D(T ) ∈ SL(d,R) - we have a group action!
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Point processes and spherical averages

• Instead of C(σ) consider general test set A ⊂ Rd (bdd & meas-0 boundary)

• Would like to show that there is a random point set (point process) Ξ such
that for every k,A, λ

lim
T→∞

P(#[PR(v)D(T ) ∩ A] = k) = P(#(Ξ ∩ A) = k)

• . . . or more generally PR(v)D(T )
d−→ Ξ as point processes in vague topology

• These are spherical averages on the space of locally finite Borel measures
on Rd

• Once we understand spherical averages, we obtain all fine-scale limit distri-
butions for the directions in P as a corollary! Including nearest-neighbour distributions.
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Example 1: Poisson point process

Theorem I. (see e.g. JM & Strömbergsson, Memoirs AMS 2024, §5.1)

Let P be a realization of a Poisson point process Ξ of unit intensity. Let v be
a random vector distributed according to the Borel probability measure λ on
Sd−1

1 . Then, for every absolutely continuous λ,

PR(v)D(T )
d−→ Ξ (T →∞)

In particular (for the directions)

lim
T→∞

P(NT (σ,v) = k) =
σk

k!
e−σ.

Proof inspired by Boldrighini, Bunimovich & Sinai (J Stat Phys 1983)
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Example 1: Poisson point process in 3d

Nearest-neighbour distributions for directions on S2
1 vs. 2πse−πs

2
:

Fixed realisation of a Poisson point
process in R3, T = 15

Affice lattice Z3 +α with
α = (21/4,31/4,51/4), T = 15

Numerics by Jory Griffin
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Example 2: Affine lattices

Theorem J. (JM & Strömbergsson, Annals Math 2010)

Let P = Zd+α, withα ∈ Rd. Let v be a random vector distributed according
to the Borel probability measure λ on Sd−1

1 . Then, for every a.c. λ,

PR(v)D(T )
d−→ Ξα (T →∞)

where

Ξα =

Z
dg with g Haar-random in ASL(d,Z)\ASL(d,R) (α /∈ Qd)

(Zd + p
q)M with M Haar-random in Γq\SL(d,R) (α = p

q ∈ Qd)

ASL(d,R) = SL(d,R) n Rd, Γq = {γ ∈ SL(d,Z) : γ ≡ 1 mod q}

The proof exploits equidistribution of large spheres on ASL(d,Z)\ASL(d,R). Required Ratner’s
measure classification theorem when α /∈ Qd; now have effective versions (Strömbergsson, Duke
Math J 2015 d = 2; Wooyeon Kim, preprint 2021 d ≥ 2)

For α = 0, can also consider lattice point on the sphere (Bourgain, Rudnick & Sarnak, Contemp.
Math. 2016, Bull. Iranian Math. Soc. 2017; Kurlberg & Lester, arXiv:2112.08522)
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Example 2: Affine lattices

Theorem J (cont’d). (JM & Strömbergsson, Annals Math 2010)

In particular (for the directions)

lim
T→∞

P(NT (σ,v) = k) = Eα(k, σ)

where the limit distribution has the properties
(a) Eα(k, σ) is independent of λ

(b)
∞∑
k=1

kEα(k, σ) = σ

(c) For α ∈ Qd,
∞∑
k=1

kηEα(k, σ)

<∞ (0 ≤ η < d)

=∞ (η ≥ d)

(d) For α /∈ Qd, Eα(k, σ) =: E(k, σ) is independent of α

(e) For α /∈ Qd,
∞∑
k=1

kηE(k, σ)

<∞ (0 ≤ η < d+ 1)

=∞ (η ≥ d+ 1)
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Example 2: Affine lattices in 3d

Nearest-neighbour distributions for directions on S2
1 vs. 2πse−πs

2
:

Fixed realisation of a Poisson point
process in R3, T = 15

Affice lattice Z3 +α with
α = (21/4,31/4,51/4), T = 15

Numerics by Jory Griffin
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Example 2: Affine lattices in 2d

Gap distribution of directions in 2d affine lattice vs. Elkies-McMullen distribution:

0.2

s

0.8

6

0.6

0.4

42

0.0

0

Affice lattice Z2 +α with α = (
√

2,0)
T = 4900 (JM & AS, Annals 2010)

0.2

s

0.8

6

0.6

0.4

42

0.0

0

√
n mod 1 n = 1, . . . ,7765

Elkies & McMullen Duke 2005

Both proofs use Ratner’s measure classification theorem on the same space for same test func-
tion – but for different unipotent flows! Tail is ∼ 3

π2s
−3. Note that for α = 0 we would (taking only the

visible lattice points) recover the classical Hall distribution (Hall, J LMS 1970) for the gaps between
Farey points. Hall density has tail ∼ 36

π4 s
−3.
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Moments

• The above convergence in distribution/vague topology does not necessarily
imply the convergence of moments

lim
T→∞

∫
Sd−1

1

NT (σ,v)η dλ(v) = E(#[Ξ ∩ C(σ)])η

• For η = 1, if Ξ independent of λ and E[#(Ξ ∩ A)] = c volA, then the
above convergence (for sufficiently large class of λ) implies the counting asymptotics

lim
T→∞

#(P ∩ TD)

T d
= c volD

for every bdd D ⊂ Rd with meas-0 boundary.*

*This strategy was for example employed in context of counting periodic trajectories on flat
surfaces (Veech, Eskin-Masur, Eskin-Mirzhakani-Mohammadi), quantitative Oppenheim (Eskin-
Margulis-Mozes), for visible points in quasicrystals (JM-Strömbergsson); but cf. also counting in
negative curvature (Margulis)
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Pair correlation (Ripley’s K-function)

• Particular popular fine-scale statistics

R2
T (s) =

#
{

(y1,y2) ∈ (P ∩Bd
T )2
6= : cdN

1
d−1 distSd−1

(
y1
‖y1‖

,
y2
‖y2‖

)
≤ s

}
N

,

N = #(P ∩Bd
T ), cd = volSd−1(Sd−1)−

1
d−1, distSd−1 = arc length

• Equivalent to studying second mixed moment
∫

Sd−1
1

NT (σ,v)NT (ε, v) dλ(v)

• If second moment converges to second moment of Ξ then the limit pair cor-
relation function converges and can be expressed via the intensity measure
of the Palm distribution of Ξ
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Example 1: Pair correlation for Poisson process

Theorem K.
Let P be a realization of a Poisson point process Ξ of unit intensity. Then
almost surely we have that, for all s > 0,

lim
T→∞

R2
T (s) =

π
d−1

2 sd−1

Γ(d+1
2 )
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Example 2: Pair correlation for affine lattices

Theorem L. (Wooyeon Kim & JM, ETDS 2024)

Let P = Zd + α, with α /∈ Qd (plus being (0,0,2)-vaguely Diophantine* if d = 2). Then, for
all s > 0,

lim
T→∞

R2
T (s) =

π
d−1

2 sd−1

Γ(d+1
2 )

• Previously known for d = 2 (El Baz, Vinogradov & JM, IMRN 2015)
• The key points in the proof are: (1) escape of mass estimates for embedded

SL(d,R)-horospheres in ASL(d,Z)\ASL(d,R), and (2) a Rogers type vol-
ume formula that shows that the limit variance is Poissonian.
• We can establish convergence of the ηth moment if η < d, and for d ≤ η <

d+ 1 if α is (0, η − 2,2)-vaguely Diophantine (d = 2) or (d− 1, η − d,1)-
vaguely Diophantine (d ≥ 3). All moments – except η = 2 – are not
Poisson and diverge for η ≥ d+ 1.
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Fact sheet on Diophantine condition

For κ ≥ d, we say that α ∈ Rd is Diophantine of type κ if there exists Cκ > 0 such that

|α ·m|Z > Cκ|m|−κ

for any m ∈ Zd \ {0}, where | · | denotes the supremum norm of Rd, and | · |Z denotes the
supremum distance from 0 ∈ Td. We will in fact only require a milder Diophantine condition.
Define the function ζ : Rd × R>0 → N by

ζ(α, T ) := min

{
N ∈ N : min

m∈Zd\{0}
0<|m|≤N

|α ·m|Z ≤
1

T

}
.

In view of Dirichlet’s pigeon hole principle, we have that ζ(α, T ) ≤ T 1/d and, ifα is of Diophantine
type κ ≥ d, then ζ(α, T ) > (CκT )

1

κ .

We say α ∈ Rd is (ρ, µ, ν)-vaguely Diophantine, if
∞∑
l=1

lρ 2µζ(α,2l−1)−ν <∞.

Thus, if α is Diophantine type κ, then it is also (ρ, µ, ν)-vaguely Diophantine for κµ < ν.

If α satisfies the generalised s-Brjuno Diophantine conditiona
∞∑
n=0

2−
n

s max
m∈Zd\{0}
0<|m|≤2n

log
1

|α ·m|Z
<∞

then it is (ρ,0, ν)-vaguely Diophantine for s > ρ+1
ν

.

aBounemoura & Féjoz, Ann Sc Norm Super Pisa Cl Sci (2019)
Lopes Dias & Gaivão, J Diff Equ 267 (2019)
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Example 1 vs. 2: Pair correlation in 3d

Pair correlation numerics vs. π
d−1

2 sd−1

Γ(d+1
2 )

:

Fixed realisation of a Poisson point
process in R3, T = 15

Affice lattice Z3 +α with
α = (21/4,31/4,51/4), T = 15

Numerics by Jory Griffin
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The space of affine lattices

• G = SL(d,R), Γ = SL(d,Z), X = Γ\G “the space of lattices”

• G′ = ASL(d,R) = G n Rd, Γ′ = ASL(d,Z) = Γ n Zd with multiplication
law

(M,b)(M ′,b′) = (MM ′,bM ′+ b′)

X ′ = Γ′\G′ “the space of affine lattices” (also “space of grids”)

• Embed G in G′ via the homomorphism M 7→ (M,0);
this yields embedding of X in X ′ as submanifold

• Right action of g = (M,b) ∈ G′ on Rd is defined by xg := xM + b
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Counting and dynamics

• Recall

P(NT (σ,v) = k) ≈ P(#[PR(v)D(T ) ∩ C(σ)] = k)

with P = Zd +α and the cone

C(σ) := {(x1, x
′) ∈ R× Rd−1 : 0 < x < 1, ‖x′‖ < σ}

• Theorem B follows from equidistribution of translates of spheres on X ′: For
any bounded continuous F : X ′ → R and λ a probability measure (a.c.w.r.t.
Lebesgue)*

lim
T→∞

∫
F ((1,α)R(v)D(T ))dλ(v) =

∫
F (g)dµα(g)

• Here µα is the Haar probability measure on X ′ if α /∈ Qd and the Haar
probability measure of an embedded Γq\G otherwise.

*Ratner 1991, Shah 1996, JM & Strömbergsson 2010; effective versions Strömbergsson 2015,
Wooyeon Kim 2021

91



Convergence of moments

• We can extend the equidistribution of speherical averages to unbounded test
functions that grow in the cusp, under certain Diophantine conditions on α.
• This then gives the following convergence of moments . . .

Theorem M. (Wooyeon Kim & JM, ETDS 2024)

Let λ be a Borel probability measure on the sphere with piecewise continuous
density. Assume
(B1) η < d or
(B2) η < d + 1 and α is (0, η − 2,2)-vaguely Diophantine if d = 2, and
(d− 1, η − d,1)-vaguely Diophantine if d ≥ 3. Then

lim
T→∞

∫
Sd−1

1

NT (σ,v)η dλ(v) =
∞∑
k=1

kηE(k, σ)

. . . as well as the convergence of more general mixed moments and that of the
pair correlation density stated in Theorem B.
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Sketch of proof

• Problem: The quantity #[Zdg ∩ C(σ)] is unbounded as a function on X ′

• Write ENT (σ,v)η =
∫
Sd−1

1
NT (σ,v)η dλ(v) as

E[NT (σ,v)η1(NT (σ,v) ≤ K)] + E[NT (σ,v)η1(NT (σ,v) > K)]

• From equidistribution (w.r.t. bounded test functions we get that)

lim
K→∞

lim
T→∞

E[NT (σ,v)η1(NT (σ,v) ≤ K)] =
∞∑
k=1

kηEα(k, σ)

provided the r.h.s. converges (this means η < d+ 1 for α /∈ Qd, and η < d

for α ∈ Qd)
• Therefore, to complete the proof of convergence of moments, it remains to

be shown that

lim
K→∞

lim sup
T→∞

E[NT (σ,v)η1(NT (σ,v) > K)] = 0
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Geometry of the space of lattices

• Define the following matices in G = SL(d,R):

n(u) :=


1 u12 · · · u1d

. . . ...
1 u(d−1)d

1

 , a(v) :=


v1

v2
. . .

vd

 .

u = (u12, . . . , u1d, u23, . . . , u(d−1)d) ∈ R
d(d−1)

2

v = (v1, v2, . . . , vd) ∈ T := {(v1, . . . , vd) ∈ Rd>0, v1 · · · vd = 1}

• Iwasawa decomposition of M ∈ G is given by M = n(u)a(v)k, where

u ∈ R
d(d−1)

2 , v ∈ T and k ∈ SO(d).
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Geometry of the space of lattices

• Siegel set = set that contains a fundamental domain of Γ action on G and
can be covered with a finite number of fundamental domains.
• Here is our choice of a Siegel set:*

S :=
{
n(u)a(v)k : k ∈ SO(d),0 < vj+1 ≤ 2√

3
vj, u ∈ [−1

2,
1
2]

d(d−1)
2

}

• F = fundamental domain of Γ action on G contained in S
• Fundamental domain and of the Γ′ action on G′:

F ′ = {(1,b)(M,0) : b ∈ [−1
2,

1
2)d, M ∈ F},

S ′ = {(1,b)(M,0) : b ∈ [−1
2,

1
2]d, M ∈ S}.

• For x ∈ Γ′\G′, there exists unique g ∈ F ′ such that x = Γg.
Define ι : X ′ → F so that ι(Γg) = g.

*Its not compact, vd → 0 produces a short lattice vector (Mahler’s criterion)
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Two key inequalities

• The First: For any fixed ε > 0 and all T sufficiently large,
NT (σ,v) ≤#[(Zd +α)R(v)D(T ) ∩ C(σ + ε)]

• Set

r = r(C) := max{δd, sup{‖x‖ : x ∈ C}, δd = d4d

sr(g) := max{1 ≤ i ≤ d− 1 : vi(g) > 2cdr}, cd = d

(
2√
3

)d

• The Second:(
#[Zdg ∩ C]

)η
≤ (Cdr

d)η
∏s
i=1

(
v
η
i #

(
[−cdrv−1

i , cdrv
−1
i ] ∩ (Z + bi)

))
where v = v(g), b = b(g), r = r(C), s = sr(g), Cd = 4cd
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Model test function

• χI – characteristic function of a subset I ⊆ R
• For R ≥ 1, η, r > 0, define the Γ′-invariant function

FR,η,r(g) := χ[R,∞)

( sr(g)∏
i=1

vi(g)

) sr(g)∏
i=1

vi(g)ηχ[−cdr,cdr]
(
vi(g)bi(g)

)
.

• From the “second inequality”: for all g ∈ G such that
∏sr(g)
i=1 vi(g) ≥ R with

R sufficiently large, we have that(
#[Zdg ∩ C]

)η
≤ (Cdr

d)ηFR,η,r(g)

• FR,η,r(g) is thus our model test function that grows in the cusp at the re-
quired rate
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Controlling escape of mass

ñ(y) :=


1 y2 · · · yd

1
. . .

1

 , Φt :=


e−

d−1
d t

e
t
d

. . .

e
t
d


Note: For compact K ⊂ Rd−1

{Γ′(1, ξ)M0ñ(y)Φt : y ∈ K} is a SL(d,R)-horosphere embedded in X ′.

Theorem N. (Wooyeon Kim & JM, ETDS 2024)
Let ξ ∈ Rd, M0 ∈ G, η, r > 0, and ψ ∈ C0(Rd−1).
Assume
(B1) η < d or
(B2) η < d + 1 and ξ is (0, η − 2,2)-vaguely Diophantine if d = 2, and
(d− 1, η − d,1)-vaguely Diophantine if d ≥ 3. Then

lim
R→∞

lim sup
t→∞

∣∣∣∣∣
∫
y∈Rd−1

FR,η,r
(
Γ′(1, ξ)M0ñ(y)Φt

)
ψ(y)dy

∣∣∣∣∣ = 0.

98



Open questions, future challenges

• Derive more properties of the limit distributions in the above: analyticity, tail
estimates, behaviour near zero, explicit formulas for moments etc.

• We have seen all of the above limit processes are SL(d,R) or ASL(d,R)

invariant. Can we classify all such point processes in Rd, or at least produce
some new interesting examples that are not based on lattices & Poisson?

• Prove the convergence of spherical averages (or parabolic shears) on such
spaces (cf. Eskin, Mirzakhani & Mohammadi 2015)

• Are there examples of spherical averages of the above form that converge
but the limit process is not SL(d,R) invariant?

99



Open questions, future challenges

• Derive more properties of the limit distributions in the above: analyticity, tail
estimates, behaviour near zero, explicit formulas for moments etc.

• We have seen all of the above limit processes are SL(d,R) or ASL(d,R)

invariant. Can we classify all such point processes in Rd, or at least produce
some new interesting examples that are not based on lattices & Poisson?

• Prove the convergence of spherical averages (or parabolic shears) on such
spaces (cf. Eskin, Mirzakhani & Mohammadi 2015)

• Are there examples of spherical averages of the above form that converge
but the limit process is not SL(d,R) invariant? Yes!
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P =

{(√
n

π
cos

(
2π
√
n
)
,

√
n

π
sin
(
2π
√
n
)) ∣∣∣∣n ∈ N

}
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The point sets P and PR(θ)D(T ) with T = 4 and θ = 0.7.
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The approximation of PR(θ)D(T ) by an affine lattice in right halfplane.
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The approximation of samePR(θ)D(T ) by different affine lattice in left halfplane.
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Proof of convergence to limiting point process (two coupled but different random affine lattices

in left and right half plane) follows closely Elkies & McMullen (Duke 2005), see “Square
roots and lattices” (preprint arXiv:2406.09107)
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Open questions, future challenges (cont’d)

• (Super-) diffusive limits in various scaling limits
(Boltzmann-Grad vs. long time)

• Boltzmann-Grad limit of Lorentz gas in force fields; trajectories will be curved
⇒ subtle lattice point counting problems, expect little difference between ran-
dom and periodic scatterer configurations

• Extend to long-range potentials, e.g. Coulomb

• Boltzmann-Grad limit of quantum Lorentz gas (cf. work by Erdös, Yau and
others on random Lorentz gas; extension to periodic and quasiperiodic seems
out of reach); “quantum chaos”
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Further reading

• J. Marklof and A. Strömbergsson
Kinetic theory for the low-density Lorentz gas
Memoirs of the American Mathematical Society Volume 294, Number 1464
(2024), https://doi.org/10.1090/memo/1464

• J. Marklof
Random lattices in the wild: from Polya’s orchard to quantum oscillators
Feature, London Mathematical Society Newsletter, Issue 493 (2021) 42-49

• J. Marklof
The low-density limit of the Lorentz gas: periodic, aperiodic and random
Proceedings of the ICM 2014, Seoul
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