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Set-up

• X — compact C∞ manifold with volume dx

• P =
√
−∆ + V , ∆ the Laplacian and V ∈ C∞(X) positive potential

(P is a pseudo-differential operator of order 1)

P has discrete spectrum

ρ1 ≤ ρ2 ≤ ρ3 ≤ . . .→∞,

denote by (ϕn)n∈N and orthonormal basis of eigenfunctions, s.t.

Pϕn = ρnϕn.
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Wave trace. The asymptotic expansion of the wave trace

Tr e−iPt =
∑
n

e−iρnt

in terms of singular distributions suppported at the lengths of the periodic bichar-
acteristics of P (i.e., the closed geodesics on X) is well understood

(Selberg, Gutzwiller, Balian-Bloch, Chazarain, Colin de Verdière,
Duistermaat-Guillemin,. . . )
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Spectral theta series. Objective: Replace P by P2 and study

ϑP (z) = Tr e(P2z) =
∑
n
e(ρ2nz), e(z) = e2πiz,

for z in the complex upper half plane H, when Im z → 0. Duistermaat and
Guillemin have pointed out that this behaviour is expected to be much more sin-
gular than for the wave trace.

The function Z(t) = ϑP (it) (t > 0) corresponds of course to the trace of the
heat kernel on X.

Note the formal relation

ϑP (z) =
1√
−2iz

∫ ∞
−∞

Tr e(−iPs) e(−s2/4z) ds. (1)
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The classical theta series. Let P =
√
−∆, ∆ the Laplacian on the unit circle.

Then (w.r.t. even test functions)

Tr e(−iPs) =
∑
n∈Z

e(ns)
Poisson summation

=
∑
k∈Z

δ(s− k) (2)

In this case ϑP (z) is of course the classical theta series

ϑ(z) =
∑
n∈Z

e(n2z),

and the trace formula (2) is encoded, via (1), as

ϑ(z) =
1√
−2iz

ϑ(−1/4z)

The second fundamental funct relation is

ϑ(z + 1) = ϑ(z)
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Motivation.

• quantum dynamics: the autocorrelation function of solutions u(x, t) to the
Schrödinger equation

−
1

2πi
∂tu = P2u

is def by

C(t) =
∫
X
u(x, t)u(x,0) dx

For the initial data u(x,0) =
∑

e−πρ
2
nyϕn(x) we have

C(t) = ϑP (−t+ iy)

• spectral statistics: forX a surface the correctly scaled pair correlation density∑
i,j

δ(s− (ρ2i − ρ2j ))e
−2π(ρ2i +ρ2j )y

is the Fourier transform of |ϑP (x+ iy)|2 (w.r.t. x)
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A Zoll surface

from http://www-sfb288.math.tu-berlin.de/Research/GEODESICS/Geodesic.html
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Periodic flows and spectral clusters.

• assume X is a Zoll manifold—i.e., the geodesic flow is periodic, and all
geodesics have length 2π

⇒ (Weinstein, Duistermaat-Guillemin, Colin de Verdiere)
There is a constant M > 0 such that

spec(P2) ⊂
⋃
k

[(
k+

α

4

)2
−M,

(
k+

α

4

)2
+M

]
, k = 0,1,2, . . .

where α ∈ Z is the common Maslov index of the geodesics.

8



Relabel the eigenvalues

ρ2n =
(
k+

α

4

)2
+ µkl

where 1 ≤ l ≤ δk and

−M ≤ µk1 ≤ . . . ≤ µkδk ≤M

Define spectral density

µk(λ) =
δk∑
l=1

δ(λ− µkl).

Theorem (Colin de Verdiere 1979) There is a distribution R(t) with support in
[−M,M ] such that for every f ∈ C∞(R)∫

f dµk =
∫
f dR

(
k+

α

4

)
and

R(x) ∼ ν1x
d−1 + ν3x

d−3 + ν4x
d−4 + . . .
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Approximate functional relations

Set

W (t) =
∫ M
−M

e(tλ)dν1(λ).

and denote by S̃L(2,R) ' H×R the universal cover of SL(2,R). A lattice Γ ⊂
S̃L(2,R) is a discrete subgroup such that the homogeneous space Γ\S̃L(2,R)

has finite measure (with respect to Haar).

Theorem There is a continuous function Θ : S̃L(2,R) → C with the properties
that

(i) there is a lattice Γ ⊂ S̃L(2,R) such that Θ(γM) = Θ(M) for all γ ∈ Γ,
(ii) there is a constant C ≥ 0 such that for all z = x+ iy ∈ H

|y(2d−1)/4ϑP (z)−W (x)Θ(z,0)| ≤ Cy1/4.

10



The following results are consequences of the almost modularity of ϕP (z) and
ergodic properties of the geodesic flow on Γ ⊂ S̃L(2,R).
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Lagarithm laws

Theorem Let ψ : (0,1] → R+ be a non-increasing function such that the integral∫ 1

0

dy

yψ(y)4

diverges (resp. converges). Then for almost every (resp. almost no) x ∈ R there
is an infinite sequence of y1 > y2 > . . .→ 0 such that

|ϑP (x+ iyj)| ≥ y
−(2d−1)/4
j ψ(yj).

The proof of this theorem exploits Sullivan’s logarithm law for geodesic flows.
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That is for y < 1 and almost all x,

ϑP (x+ iy) 6= Ox
(
y−(2d−1)/4ψ(y)

)
,

and

ϑP (x+ iy) = Ox
(
y−(2d−1)/4ψ(y)

)
respectively, if the above integral diverges or converges. Compare this behaviour
with the heat kernel asymptotics (x = 0) where

ϑP (iy) ∼ cy−d/2

for some constant c > 0.

By choosing ψ(y) = (log y)(1±ε)/4 in the theorem with ε > 0 arbitrarily small
we obtain the following.

Corollary For almost all x

lim sup
y→0

log(y(2d−1)/4|ϑP (x+ iy)|)
log log y−1

=
1

4
.
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Limit theorems

View x as a random variable uniformly distributed in [a, b].

It is not hard to show that the variance has the asymptotics∫ b
a
|ϑP (x+ iy)|2dx ∼ y−(d−1/2)

∫ ∞
0

s2(d−1)e−4πs2ds
∫ b
a
|W (t)|2dt.

We therefore normalize ϑP (z) by a factor y(2d−1)/4.
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Distribution of the real part of the spectral theta series of the circle and the sphere
vs. normal distribution
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Theorem Let [a, b] ⊂ R and g a bounded continuous function C → R. Then

lim
y→0

∫ b
a
g
(
y(2d−1)/4ϑP (x+ iy)

)
dx =

∫
C

∫ b
a
g(ZW (t)) dρd,α(Z) dt

where ρd,α is a probability measure on C with the tail distribution∫
|Z|>R

dρd,α(Z) ∼ cd,αR
−4 (R→∞).

This theorem is a consequence of mixing of the geodesic flow, or more specifically
the uniform distribution of horocycles.
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Correlations

Theorem Suppose ω1, . . . , ωn ∈ R are linearly independent over Q, and let
[a, b] ⊂ R and g a bounded continuous function Cn → R. Then

lim
y→0

∫ b
a
g
(
y(2d−1)/4ϑP (ω1x+ iy), . . . , y(2d−1)/4ϑP (ωnx+ iy)

)
dx

=
∫
Cn

∫ b
a
g(Z1W (t), . . . , ZnW (t))

n∏
j=1

dρd,α(Zj) dt.

This theorem follows from Shah’s theorem on the uniform distribution of translates
of unipotent orbits, which is based on Ratner’s theory.
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Let me now sketch how the approximate functional equations for ϑP (z) can be
established.
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For g ∈ SL(2,R) we have the Iwasawa decomposition

g = nx ay kφ = (z, φ),

where z = x+ iy ∈ H, φ ∈ [0,2π), and

nx =

(
1 x
0 1

)
, ay =

(
y1/2 0
0 y−1/2

)
, kφ =

(
cosφ − sinφ
sinφ cosφ

)
.

This can be extended to S̃L(2,R),

M = NxAyKφ

where Nx, Ay,Kφ are the corresponding lifts and x+ iy ∈ H, φ ∈ R.
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Shale-Weil representation. For any f ∈ L2(R) we set

[R(Nx)f ](t) = e(t2x)f(t),

[R(Ay)f ](t) = y1/4f(y1/2t),

and

[R(Kφ)f ](t) =



e(−σφ/8) f(t) (φ = 0 mod 2π)

e(−σφ/8) f(−t) (φ = π mod 2π)

e(−σφ/8)21/2

| sinφ|1/2

∫
R
e

(t2 + t′2) cosφ− 2tt′

sinφ

 f(t′) dt′

(φ 6= 0 mod π)

where

σφ =

2ν if φ = νπ,

2ν + 1 if νπ < φ < (ν + 1)π.
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For sufficently nice∗ f we define the theta series

Θf(z, φ) := Θf(M) :=
∑
n∈Z

[R(M)f ](n),

with M = NxAyKφ. More explicitly,

Θf(z, φ) = y1/4
∑
n∈Z

fφ(ny
1/2) e(n2x),

where fφ = R(Kφ)f .

Using Poisson summation and periodicity, one can show that Θf is continuous
and invariant under a lattice Γ in S̃L(2,R).

∗That is

sup
t,φ

(1 + |t|)η|[R(Kφ)f ](t)| <∞.
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Choice of f . We require for our application (in view of Colin de Verdiere’s Theo-
rem p.9)

f(t) =

0 (t ≤ 0)

td−1e−2πt2 (t > 0).

This leads to

fφ(t) = e−iπ/421/2(sinφ)−1/2e
(
t2 cotφ

) ∫ ∞
0

t′d−1
e

t′2eiφ − 2tt′

sinφ

 dt′
=

e−iφ/221/2Γ(d)e−πt
2(1−i cotφ)

(4π)d/2(1− i cotφ)(d−1)/2
D−d

(
it[4π(1 + i cotφ)]1/2

)
where Dp(z) is a parabolic cylinder function.

For d odd one can in fact use symmetry to show that fφ(t) can be expressed in
terms of Hermite functions rather that parabolic cyclinder functions.
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