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The Lorentz gas

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)



The Lorentz gas

e P — locally finite subset of R? with
unit density”*
@ e scatterers are fixed open balls of
radius r centered at the points in P
e the particles are assumed to be
non-interacting
e each test particle moves with con-
stant velocity v(t) between colli-

sions
O e the scattering is elastic; we may as-
sume w.l.o.g. |[v(t)|| =1

. . . N RD .
*unit density means that |im #(P ) = 1 for all “nice” sets D C R

R—oo RAvol(D)




Examples

Example 1: P = a realization of the Poisson process in R with intensity 1

Example 2: P = 7% (periodic Lorentz gas)

Example 3: P = the vertex set of a Penrose tiling (quasicrystal)

In the case of fixed scattering radius r, allmost all results to-date on the diffusion
of a test-particle in the Lorentz gas are restricted to the 2-dim periodic setting:

e Bunimovich & Sinai (Comm Math Phys 1980)
e Bleher (J Stat Phys 1992)

e Szasz & Varju (J Stat Phys 2007)

e Dolgopyat & Chernov (Russ Math Surveys, 2009)



The scattering map

Vin, Vout — INCOming/outgoing velocity
b, s — impact/exit parameter

(=the orthogonal projection of the point of impact onto the plane orthogonal to
resp. vin, Yout, Measured in units of the scattering radius r)

6 = 0(w) — the scattering angle, w := ||b|| € [0, 1]



The scattering map
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Assume:

(A) 0 € C1([0,1[) is strictly decreasing with 6(0) = 7 and 6(w) > O
(as in figure) or

(B) @ € C1([0,1[) is strictly increasing with (0) = —= and 6(w) < O




Examples

Example 1: In the classical setting of elastic hard-sphere scatterers,

O(w) = 7 — 2 arcsin(w)

and thus condition (A) holds

Example 2: Scattering by “muffin-tin” Coulomb potential

a(pn—=1) gl <)
0 (llqll = r)
with o € {—2F,0} and FE the total particle energy

V(q) = {



The Boltzmann-Grad limit
Consider the dynamics in the limit of small scatterer radius r
(q(t), v(t)) = “microscopic”’ phase space coordinate at time ¢

A dimensional argument shows that, in the limit » — 0O, the mean free
path length (i.e., the average time between consecutive collisions) scales
like r—(d—1) (= 1/total scattering cross section)

We thus measure position and time the “macroscopic” coordinates

(Q), V(1)) = (ri g~ = Dp), w(r~ = Dy))

Time evolution of initial data (Q, V'):

(Q(), V(1)) =2L(Q, V)



The linear Boltzmann equation

e Time evolution of a particle cloud with initial density f € L!:

1(Q. V) = f(274Q.V))

In his 1905 paper Lorentz suggested that ft(r) IS governed, as r — 0O, by the
linear Boltzmann equation:

0
[a +V. VQ]ft(Qa‘/) =/

gd-1 1(Q, V") = f(Q,V)]a(V,V)aV'

where o(V, V') is the differential cross section of the individual scatterer.
E.g.: o(V,V’) = ||V — V|34 for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, ...




The linear Boltzmann equation—rigorous proofs

Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterer configuration P

Spohn (Comm Math Phys 1978): extension to more general random scatterer
configurations P and potentials

Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for
almost every scatterer configuration P (w.r.t. the Poisson random measure)

Quantum: Spohn (J Stat Phys 1977): Gaussian random potentials, weak
coupling limit & small times; Erdds and Yau (Contemp Math 1998, Comm
Pure Appl Math 2000): General random potentials, weak coupling limit; Eng
and Erdds (Rev Math Phys 2005): Low density limit
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... but what about non-random scatterer configurations?
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The periodic Lorentz gas
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The distribution of free path length

For random exit parameter and exit velocity, consider the probability F.(¢) of
hitting the next scatterer after time ¢t (measured in units of the mean collision
time).

e Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000):

72 < Fr(t) < 72

e Golse (ICM Madrid, 2006): The above lower bound implies that the linear
Boltzmann equation fails in the periodic setting

Note:
For random scatterer configurations the path length distribution is exponential,
which is consistent with the linear Boltzmann equation
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The distribution of free path length

e Boca, Zaharescu (CMP 2007): proof of
convergence as » — 0O and explicit formula
in dimension d = 2

e JM & Strombergsson (Annals of Math 2010,
GAFA 2011): proof of convergence
Fr(t) — D(t) = /too Wo(z)de

in arbitrary dimension, with continuous limit
density and tail (t — oo)
Ad 22—d
Wo(t) ~ —, Ag =
D A GRSV ()

= No second moment!

2.59

1.54

0.54

D(t) indim.d = 3
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A limiting random process

A cloud of particles with initial density f(Q, V') evolves in time ¢ to

Q. V) = L@, V) = f(274Q, V).

Theorem A [UJM & Strombergsson, Annals of Math 2011].
For every t > O there exists a linear operator

Lt LY (THRY) - LY (THRY)

such that for every f € L1(T1(R%)) and any set A ¢ T1(R%) with boundary
of Liouville measure zero,

lim [ 1LLF1(Q, V) dQaV = [ [L'FI(Q,V)dQaV.

The operator L! thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit » — O.

Note: The family {L'},~q does not form a semigroup.
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A generalized linear Boltzmann equation
Consider extended phase space coordinates (Q,V,£, V4 ):

(Q,V) € TI(RY) — usual position and momentum
§ € Ry —flight time until the next scatterer
V€ S§1 — velocity after the next hit

0

0

— Scf_l ft(Qa Vla 0, V) pO(Vla V7 57 V—|—)dV,

with a new collision kernel po(V', V', £, V 1), which can be expressed as a prod-
uct of the scattering cross section of an individual scatterer and a ceratin transition
probability for hitting a given point the next scatterer after time €.
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A generalized linear Boltzmann equation

We obtain the original particle density via the projection

7.(Q,V) = /O /sg—l £(Q, V., €, V1) dV 4 de.

where f;(Q,V, £,V 1) is the solution of the generalized linear Boltzmann equa-
tion subject to the initial condition

and
oo
p(V,6 V)= [ [ oV V&V ) a(V, V) av' de.
£ /S5

The latter is a stationary solution of the generalized linear Boltzmann equation.
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Application: Superdiffusive central limit theorem

The divergent second moment of the path length distribution leads to ¢ log ¢ su-
perdiffusion:

Theorem B [JM & B. Toth, preprint 2014]

Let d > 2 and fix a Euclidean lattice £ C R9 of covolume one. Assume
(Qp, V) is distributed according to an absolutely continuous Borel probabil-
ity measure A on T1(R?). Then, for any bounded continuous f : R% — R,

o Q(t)—Qo\ _ 1 —3|jx||?
t'LnQoql%Ef<zd\/W> (27)d/2 /Rdf(w)e 2 da,

with
2l-dz
Zg — 5 .
d*(d+ 1)¢(d)

For fixed r the analogous result is currently known only in dimension d = 2, see
Szasz & Varju (J Stat Phys 2007), Chernov & Dolgopyat (Russ. Math Surveys
2009).
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Key ingredient for Theorem A: Joint distribution of path segments




Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes
the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem C [UM & Strombergsson, Annals of Math 2011]. Fix an a.c. Borel
probability measure A on T1(R%). Then, for each n € N there exists a prob-

ability density W,, o on R"? such that, for any set .A C R"¢ with boundary of
Lebesgue measure zero,

lim A{(Qo, Vo) € TH®Y) : (S1,...,80) € A})
:/Awn,/\(s’,...,sg) s’y .- ds"

and, for n > 3,

W, A(S1,...,80) = W a(S1,82) || w(S;-2,5;-1,5;),
=3

where W is a continuous probability density independent of A (and the lattice).

Theorem A follows from Theorem C by standard probabilistic arguments.
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First step: The distribution of free path lengths
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Lattices

e [ C Re—euyclidean lattice of covolume one

e recall £L = Z%M for some M € SL(d,R), therefore the homogeneous space
X1 = SL(d,Z)\ SL(d,R) parametrizes the space of lattices of covolume
one

o 111—right-SL(d, R) invariant prob measure on X (Haar)
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Affine lattices

e ASL(d,R) = SL(d,R) x R%—the semidirect product group with multiplica-
tion law

(M, z2)(M', ") = (MM, M + 2.
An action of ASL(d,R) on R? can be defined as
y—y(M,x) .= yM + x.

e the space of affine lattices is then represented by X = ASL(d,Z)\ ASL(d,R)
where ASL(d,Z) = SL(d,Z) x Z%, i.e.,

L= (Z%+ )M = 7% 1, a)(M,0)

e u—right-ASL (d,R) invariant prob measure on X
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Let us denote by 1 = 7(q,v) the free path length corresponding to the initial
condition (g, v).

Theorem D [JM & Strombergsson, Annals of Math 2010]. Fix a lattice Lg
and the initial position gq. Let A be any a.c. Borel probability measure on
S‘f‘l. Then, for every £ > 0, the limit

Froq(€) = lim AM({v € ST 1 v > €})

exists, is continuous in £ and independent of A. Furthermore

Fo(§) = pmi({LeX1:LNnZ(E) =0}) ifge Ly

Froq(8) = {F(g) =p({(LeX: LNZE) =0}) ifqg¢ QL.

with the cylinder

Z(g):{(azl,...,xd)eRd:O<m1<§,x§—|—...+x§<1}.
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Idea of proof (g = 0, Lo = Z%)

+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + +
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Idea of proof (g = 0, Lo = Z%)

(Rotate by K(v) € SO(d) such that v — 61)
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Idea of proof (g = 0, Lo = Z%)
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Idea of proof (g = 0, Lo = Z%)

(Apply D, =diag(»% 1 r=1 ... r1) e SL(d, R))
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Idea of proof (g = 0, Lo = Z%)

— A({v € Scli_l ; ZdK(v)Dr NZ(e1,€,1) = @})
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The following Theorem shows that in the limit » — O the lattice
72K (v) D,
behaves like a random lattice with respect to Haar measure 1.

Theorem E. Let X be an a.c. Borel probability measure on Sjl_l. Then, for
every bounded continuous function f : X1 — R,

i, Jyg 2 FK@)DdAw) = Jy, FODdur (1),

Theorem E is a direct consequence of the mixing property for the flow

t . __
@ .« — Dexp(—t)

This concludes the proof of Theorem D when g € L.

The generalization of Theorem E required for the full proof of Theorem D uses
Ratner’s classification of ergodic measures invariant under a unipotent flow. We
exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad. Sci. 1996) on
the uniform distribution of translates of unipotent orbits.
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How about aperiodic scatterer configurations?

e P — general locally finite subset of R? with unit density

e The above approach still formally works: instead of Z¢K (v) D, we are now
faced with a random point set

PK(v)Dy,

with v distributed according to A

e Question: Does PK (v)D, converge (in finite-dimensional distribution)
to a random point process in R? ?

(In the case P = Z< that random process would be given by the space of
random lattices)
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Two case studies
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Case study 1: Union of lattices

e Consider scatterer locations at the point set

N —1/d
1=1
with w; € R? M; € SL(d,R) and=; > Osuchthatn; +...+ny =1

e The analogue of the equidistribution Theorem E is:

Theorem F. [JM & Strombergsson, J Stat Phys 2014]. If Mq,..., My €
SL(d,RR) are incommensurable, then for every bdd cont f : X{V — R,

M Ja s SORK@)Dr, ., MyK () Dr)dAw)

= Jon FOML, - Mi)dpg (M1) -+ p (M)
1

e Interesting consequence—the path length distribution decays faster:

C

Wolt) ~ N
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(from: de Bruijn, Kon Nederl Akad Wetensch Proc Ser A, 1981)
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Cut and project

e R =R? x R™, & and 7, orthogonal projections onto R%, R™

o L C R" a lattice of full rank

o A := (L) is an abelian subgroup of R, with Haar measure u 4

e VW C A a “regular window set”
(i.e. bounded with non-empty interior, u 4(0W) = 0)

e POW,L) = {r(y) 1y € L, mint(y) € W} C R4
is called a “regular cut-and-project set”

e P(W, L) defines the locations of scatterers in our quasicrystal
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Recall 1 = 7(q,v) denotes the free path length corresponding to the initial
condition (g, v).

Theorem G [UM & Strombergsson, Comm Math Phys 2014]. Fix a regular cut-
and-project set P and the initial position g. Let X be any a.c. Borel probability
measure on S‘li_l. Then, for every £ > 0, the limit

Fpq(&) == lim A({v € {1 1 r7 1y > €})

exists, is continuous in £ and independent of \.

In analogy with Theorem D and the space of lattices, we express Fp, 4(£) in
terms of a random variable in a suitable space of quasicrystals.
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Equidistribution

e SetG = ASL(n,R), = ASL(n,7Z).
e Pick g € GG so that £ = Z"¢ (up to a multiplicative constant)
e Define an embedding of SL(d,R) in G by the map

¢g: SL(d,R) =G, Awrg ((é 1(7)71) ,0) g L.

e [t follows from Ratner’s theorems that there exists a closed connected sub-
group H, of GG such that
— "N Hy s alattice in Hy
— ¢4(SL(d,R)) C Hy
— the closure of M'\I"py(SL(d,R)) in M\G is given by M\l Hy,.
e Denote the unique right-H, invariant probability measure on M\ H4 by 1.

Theorem H. Let )\ be an a.c. Borel probability measure on Scll_l. Then, for
every bounded continuous function f : N'\G — R,

M, Juia FeoE@DDIN@) = [ f()dug(h).

li
r—0
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Examples

o If P ="P(L, W), then for almost every L in the space of lattices and almost
every g, we have H; = ASL(n,R), I N Hy = ASL(n,Z).

Fp 4(&) < ¢ (€ — oo) where the implied constants depend on n, W, 6.
Again Fp (&) is independent of P and q. (= The tail is of the same order
as in the lattice case P = L.)

e If P isthe vertex set of a Penrose tiling and ¢ € P, we have H, = SL(2,R)?,
"N Hy = a congruence subgroup of the Hilbert modular group SL(2, Ok ),
with O the ring of integers of K = Q(1/5).

Fp (&) < work in progress ...
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Conclusions

e The linear Boltzmann equation governs the Boltzmann-Grad limit of the Lorentz
gas for “typical” scatterer configurations. ..

e ...but may fail when long-range correlations are present. New transport
equations emerge, whose transition kernel is governed by non-trivial SL (d, R)-
iInvariant point processes

e Proof of convergence reduces to equidistribution of expanding spheres in the
relevant moduli spaces
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Future challenges

Classify SL(d, R)-invariant point processes

Lorentz gas in force fields

Other scaling limits

Quantum Lorentz gas
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Further reading

e The low-density limit of the Lorentz gas:
periodic, aperiodic and random
Proceedings of the ICM 2014
arXiv:1404.3293

¢ Kinetic limits of dynamical systems
summer school lecture notes
arXiv:1408.1307
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Appendix: A refined Stosszahlansatz
(for general scatterer configurations P)
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tn, — nth collision time, v,, — velocity after nth collision
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The nth collision

N\
<

bn, {/x
\\ — Yn

/k -
T /\

Consider a beam of parallel particles with velocity v,,_1 hitting a scatterer at
y,, € P with random impact parameter by, .
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Intercollision flights

forbidden scatterer

R exclusion zone

\ particle trajectory

T_(d_l)tn_|_1 | >y |

Intercollision flight in the Lorentz gas between the nth and (n + 1)st collision.
The exclusion zone is a long and thin cylinder of radius r with spherical caps.
Scatterers are centered at P.
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Collision coordinates

vn = (1,0)R, 1 (velocity after nth collision)
sn = (0,wp)R;1  (exit parameter at nth collision)
b,+1 = (0, wn_|_1)R7;1 (impact parameter at (n 4+ 1)st collision)

Rp = Rp,_1S(wn) = R(vg)S(wy) -+ S(wn).
R(’Uo) c SO(CZ) so that ’UoR(’UQ) = (1, O)
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Intercollision flights

forbidden scatterer

particle trajectory

| 74_(d_1)tn-l-1 | 2r |

d—1
Now apply the linear map R, D(r) to this picture, with D(r) = (T 0 r_l(i )
d—1
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Intercollision flights

(1,0) / forbidden scatterer

—_

particle trajectory

The exclusion zone is now approximately a r-independent cylinder with radius 1
and flat caps. Scatterers are centered at PR, D(r) = PR,,_1S(wy)D(r).
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