The low-density limit of the Lorentz gas: periodic, aperiodic and random

ICM 2014, Seoul

Jens Marklof

School of Mathematics, University of Bristol http://www.maths.bristol.ac.uk
based on joint work with
Andreas Strömbergsson (Uppsala) and Bálint Tóth (Bristol \& Budapest)
supported by ERC Advanced Grant n. 291147

The Lorentz gas

The Lorentz gas

- \mathcal{P} — locally finite subset of \mathbb{R}^{d} with unit density*
- scatterers are fixed open balls of radius r centered at the points in \mathcal{P}
- the particles are assumed to be non-interacting
- each test particle moves with constant velocity $\boldsymbol{v}(t)$ between collisions
- the scattering is elastic; we may assume w.l.o.g. $\|\boldsymbol{v}(t)\|=1$
*unit density means that $\lim _{R \rightarrow \infty} \frac{\#(\mathcal{P} \cap R \mathcal{D})}{R^{d} \operatorname{vol}(\mathcal{D})}=1$ for all "nice" sets $\mathcal{D} \subset \mathbb{R}^{d}$

Examples

Example 1: $\mathcal{P}=$ a realization of the Poisson process in \mathbb{R}^{d} with intensity 1

Example 2: $\mathcal{P}=\mathbb{Z}^{d}$ (periodic Lorentz gas)

Example 3: $\mathcal{P}=$ the vertex set of a Penrose tiling (quasicrystal)

In the case of fixed scattering radius r, allmost all results to-date on the diffusion of a test-particle in the Lorentz gas are restricted to the 2 -dim periodic setting:

- Bunimovich \& Sinai (Comm Math Phys 1980)
- Bleher (J Stat Phys 1992)
- Szász \& Varjú (J Stat Phys 2007)
- Dolgopyat \& Chernov (Russ Math Surveys, 2009)

The scattering map

$v_{\text {in }}, v_{\text {out }}$ —incoming/outgoing velocity
b, s-impact/exit parameter
(=the orthogonal projection of the point of impact onto the plane orthogonal to resp. $\boldsymbol{v}_{\text {in }}, \boldsymbol{v}_{\text {out }}$, measured in units of the scattering radius r)
$\theta=\theta(w)$ - the scattering angle, $w:=\|\boldsymbol{b}\| \in[0,1[$

The scattering map

Assume:
(A) $\theta \in \mathrm{C}^{1}([0,1[)$ is strictly decreasing with $\theta(0)=\pi$ and $\theta(w)>0$ (as in figure) or
(B) $\theta \in \mathrm{C}^{1}([0,1[)$ is strictly increasing with $\theta(0)=-\pi$ and $\theta(w)<0$

Examples

Example 1: In the classical setting of elastic hard-sphere scatterers,

$$
\theta(w)=\pi-2 \arcsin (w)
$$

and thus condition (A) holds

Example 2: Scattering by "muffin-tin" Coulomb potential

$$
V(\boldsymbol{q})= \begin{cases}\alpha\left(\frac{r}{\|\boldsymbol{q}\|}-1\right) & (\|\boldsymbol{q}\|<r) \\ 0 & (\|\boldsymbol{q}\| \geq r)\end{cases}
$$

with $\alpha \notin\{-2 E, 0\}$ and E the total particle energy

The Boltzmann-Grad limit

- Consider the dynamics in the limit of small scatterer radius r
- $(\boldsymbol{q}(t), \boldsymbol{v}(t))=$ "microscopic" phase space coordinate at time t
- A dimensional argument shows that, in the limit $r \rightarrow 0$, the mean free path length (i.e., the average time between consecutive collisions) scales like $r^{-(d-1)}$ (= 1/total scattering cross section)
- We thus measure position and time the "macroscopic" coordinates

$$
(\boldsymbol{Q}(t), \boldsymbol{V}(t))=\left(r^{d-1} \boldsymbol{q}\left(r^{-(d-1)} t\right), \boldsymbol{v}\left(r^{-(d-1)} t\right)\right)
$$

- Time evolution of initial data $(\boldsymbol{Q}, \boldsymbol{V})$:

$$
(\boldsymbol{Q}(t), \boldsymbol{V}(t))=\Phi_{r}^{t}(\boldsymbol{Q}, \boldsymbol{V})
$$

The linear Boltzmann equation

- Time evolution of a particle cloud with initial density $f \in \mathrm{~L}^{1}$:

$$
f_{t}^{(r)}(\boldsymbol{Q}, \boldsymbol{V}):=f\left(\Phi_{r}^{-t}(\boldsymbol{Q}, \boldsymbol{V})\right)
$$

In his 1905 paper Lorentz suggested that $f_{t}^{(r)}$ is governed, as $r \rightarrow 0$, by the linear Boltzmann equation:

$$
\left[\frac{\partial}{\partial t}+\boldsymbol{V} \cdot \nabla_{\boldsymbol{Q}}\right] f_{t}(\boldsymbol{Q}, \boldsymbol{V})=\int_{\mathrm{S}_{1}^{d-1}}\left[f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}^{\prime}\right)-f_{t}(\boldsymbol{Q}, \boldsymbol{V})\right] \sigma\left(\boldsymbol{V}, \boldsymbol{V}^{\prime}\right) d \boldsymbol{V}^{\prime}
$$

where $\sigma\left(\boldsymbol{V}, \boldsymbol{V}^{\prime}\right)$ is the differential cross section of the individual scatterer. E.g.: $\sigma\left(\boldsymbol{V}, \boldsymbol{V}^{\prime}\right)=\frac{1}{4}\left\|\boldsymbol{V}-\boldsymbol{V}^{\prime}\right\|^{3-d}$ for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, ...

The linear Boltzmann equation-rigorous proofs

- Galavotti (Phys Rev 1969 \& report 1972): Poisson distributed hard-sphere scatterer configuration \mathcal{P}
- Spohn (Comm Math Phys 1978): extension to more general random scatterer configurations \mathcal{P} and potentials
- Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for almost every scatterer configuration \mathcal{P} (w.r.t. the Poisson random measure)
- Quantum: Spohn (J Stat Phys 1977): Gaussian random potentials, weak coupling limit \& small times; Erdös and Yau (Contemp Math 1998, Comm Pure Appl Math 2000): General random potentials, weak coupling limit; Eng and Erdös (Rev Math Phys 2005): Low density limit
...but what about non-random scatterer configurations?

The periodic Lorentz gas

The distribution of free path length

For random exit parameter and exit velocity, consider the probability $F_{r}(t)$ of hitting the next scatterer after time t (measured in units of the mean collision time).

- Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000):

$$
t^{-2} \ll F_{r}(t) \ll t^{-2}
$$

- Golse (ICM Madrid, 2006): The above lower bound implies that the linear Boltzmann equation fails in the periodic setting

Note:
For random scatterer configurations the path length distribution is exponential, which is consistent with the linear Boltzmann equation

The distribution of free path length

- Boca, Zaharescu (CMP 2007): proof of convergence as $r \rightarrow 0$ and explicit formula in dimension $d=2$
- JM \& Strömbergsson (Annals of Math 2010, GAFA 2011): proof of convergence

$$
F_{r}(t) \rightarrow D(t)=\int_{t}^{\infty} \Psi_{0}(x) d x
$$

in arbitrary dimension, with continuous limit density and tail $(t \rightarrow \infty)$

$$
\begin{aligned}
& \Psi_{0}(t) \sim \frac{A_{d}}{t^{3}}, \quad A_{d}=\frac{2^{2-d}}{d(d+1) \zeta(d)} \\
\Rightarrow & \text { No second moment! }
\end{aligned}
$$

A limiting random process

A cloud of particles with initial density $f(\boldsymbol{Q}, \boldsymbol{V})$ evolves in time t to

$$
f_{t}^{(r)}(\boldsymbol{Q}, \boldsymbol{V})=\left[L_{r}^{t} f\right](\boldsymbol{Q}, \boldsymbol{V})=f\left(\Phi_{r}^{-t}(\boldsymbol{Q}, \boldsymbol{V})\right) .
$$

Theorem A [JM \& Strömbergsson, Annals of Math 2011].
For every $t>0$ there exists a linear operator

$$
L^{t}: \mathrm{L}^{1}\left(\mathrm{~T}^{1}\left(\mathbb{R}^{d}\right)\right) \rightarrow \mathrm{L}^{1}\left(\mathrm{~T}^{1}\left(\mathbb{R}^{d}\right)\right)
$$

such that for every $f \in \mathrm{~L}^{1}\left(\mathrm{~T}^{1}\left(\mathbb{R}^{d}\right)\right)$ and any set $\mathcal{A} \subset \mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$ with boundary of Liouville measure zero,

$$
\lim _{r \rightarrow 0} \int_{\mathcal{A}}\left[L_{r}^{t} f\right](\boldsymbol{Q}, \boldsymbol{V}) d \boldsymbol{Q} d \boldsymbol{V}=\int_{\mathcal{A}}\left[L^{t} f\right](\boldsymbol{Q}, \boldsymbol{V}) d \boldsymbol{Q} d \boldsymbol{V}
$$

The operator L^{t} thus describes the macroscopic diffusion of the Lorentz gas in the Boltzmann-Grad limit $r \rightarrow 0$.

Note: The family $\left\{L^{t}\right\}_{t \geq 0}$ does not form a semigroup.

A generalized linear Boltzmann equation

Consider extended phase space coordinates ($\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}$):
$(\boldsymbol{Q}, \boldsymbol{V}) \in \mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$ - usual position and momentum
$\xi \in \mathbb{R}_{+}$- flight time until the next scatterer

$$
V_{+} \in \mathrm{S}_{1}^{d-1}-\text { velocity after the next hit }
$$

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial t}+\boldsymbol{V} \cdot \nabla_{\boldsymbol{Q}}-\frac{\partial}{\partial \xi}\right] f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right) } \\
&=\int_{\mathbf{S}_{1}^{d-1}} f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}^{\prime}, 0, \boldsymbol{V}\right) p_{0}\left(\boldsymbol{V}^{\prime}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right) d \boldsymbol{V}^{\prime}
\end{aligned}
$$

with a new collision kernel $p_{0}\left(\boldsymbol{V}^{\prime}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right)$, which can be expressed as a product of the scattering cross section of an individual scatterer and a ceratin transition probability for hitting a given point the next scatterer after time ξ.

A generalized linear Boltzmann equation

We obtain the original particle density via the projection

$$
\bar{f}_{t}(\boldsymbol{Q}, \boldsymbol{V})=\int_{0}^{\infty} \int_{\mathrm{S}_{1}^{d-1}} f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right) d \boldsymbol{V}+d \xi
$$

where $f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right)$is the solution of the generalized linear Boltzmann equation subject to the initial condition

$$
\lim _{t \rightarrow 0} f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right)=f(\boldsymbol{Q}, \boldsymbol{V}) p\left(\boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right)
$$

and

$$
p\left(\boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right):=\int_{\xi}^{\infty} \int_{\mathrm{S}_{1}^{d-1}} p_{0}\left(\boldsymbol{V}^{\prime}, \boldsymbol{V}, \xi, \boldsymbol{V}_{+}\right) \sigma\left(\boldsymbol{V}, \boldsymbol{V}^{\prime}\right) d \boldsymbol{V}^{\prime} d \xi^{\prime} .
$$

The latter is a stationary solution of the generalized linear Boltzmann equation.

Application: Superdiffusive central limit theorem

The divergent second moment of the path length distribution leads to $t \log t$ superdiffusion:

Theorem B [JM \& B. Toth, preprint 2014]
Let $d \geq 2$ and fix a Euclidean lattice $\mathcal{L} \subset \mathbb{R}^{d}$ of covolume one. Assume (Q_{0}, V_{0}) is distributed according to an absolutely continuous Borel probability measure \wedge on $\mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$. Then, for any bounded continuous $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\lim _{t \rightarrow \infty} \lim _{r \rightarrow 0} \mathbb{E} f\left(\frac{\boldsymbol{Q}(t)-\boldsymbol{Q}_{0}}{\Sigma_{d} \sqrt{t \log t}}\right)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} f(\boldsymbol{x}) \mathrm{e}^{-\frac{1}{2}\|\boldsymbol{x}\|^{2}} d \boldsymbol{x}
$$

with

$$
\Sigma_{d}^{2}:=\frac{2^{1-d_{\bar{\sigma}}}}{d^{2}(d+1) \zeta(d)} .
$$

For fixed r the analogous result is currently known only in dimension $d=2$, see Szász \& Varjú (J Stat Phys 2007), Chernov \& Dolgopyat (Russ. Math Surveys 2009).

Key ingredient for Theorem A: Joint distribution of path segments

Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem C [JM \& Strömbergsson, Annals of Math 2011]. Fix an a.c. Borel probability measure \wedge on $T^{1}\left(\mathbb{R}^{d}\right)$. Then, for each $n \in \mathbb{N}$ there exists a probability density $\Psi_{n, \wedge}$ on $\mathbb{R}^{n d}$ such that, for any set $\mathcal{A} \subset \mathbb{R}^{n d}$ with boundary of Lebesgue measure zero,

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \wedge\left(\left\{\left(\boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right) \in \mathrm{\top}^{1}\left(\mathbb{R}^{d}\right):\left(\boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{n}\right) \in \mathcal{A}\right\}\right) \\
&=\int_{\mathcal{A}} \Psi_{n, \wedge}\left(\boldsymbol{S}_{1}^{\prime}, \ldots, \boldsymbol{S}_{n}^{\prime}\right) d \boldsymbol{S}_{1}^{\prime} \cdots d \boldsymbol{S}_{n}^{\prime}
\end{aligned}
$$

and, for $n \geq 3$,

$$
\Psi_{n, \wedge}\left(\boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{n}\right)=\Psi_{2, \wedge}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right) \prod_{j=3}^{n} \Psi\left(\boldsymbol{S}_{j-2}, \boldsymbol{S}_{j-1}, \boldsymbol{S}_{j}\right)
$$

where Ψ is a continuous probability density independent of \wedge (and the lattice).
Theorem A follows from Theorem C by standard probabilistic arguments.

First step: The distribution of free path lengths

Lattices

- $\mathcal{L} \subset \mathbb{R}^{d}$-euclidean lattice of covolume one
- recall $\mathcal{L}=\mathbb{Z}^{d} M$ for some $M \in \operatorname{SL}(d, \mathbb{R})$, therefore the homogeneous space $X_{1}=\mathrm{SL}(d, \mathbb{Z}) \backslash \mathrm{SL}(d, \mathbb{R})$ parametrizes the space of lattices of covolume one
- μ_{1}-right-SL (d, \mathbb{R}) invariant prob measure on X_{1} (Haar)

Affine lattices

- $\operatorname{ASL}(d, \mathbb{R})=\mathrm{SL}(d, \mathbb{R}) \ltimes \mathbb{R}^{d}$-the semidirect product group with multiplication law

$$
(M, \boldsymbol{x})\left(M^{\prime}, \boldsymbol{x}^{\prime}\right)=\left(M M^{\prime}, \boldsymbol{x} M^{\prime}+\boldsymbol{x}^{\prime}\right) .
$$

An action of $\operatorname{ASL}(d, \mathbb{R})$ on \mathbb{R}^{d} can be defined as

$$
\boldsymbol{y} \mapsto \boldsymbol{y}(M, \boldsymbol{x}):=\boldsymbol{y} M+\boldsymbol{x} .
$$

- the space of affine lattices is then represented by $X=\operatorname{ASL}(d, \mathbb{Z}) \backslash \operatorname{ASL}(d, \mathbb{R})$ where $\operatorname{ASL}(d, \mathbb{Z})=\operatorname{SL}(d, \mathbb{Z}) \ltimes \mathbb{Z}^{d}$, i.e.,

$$
\mathcal{L}=\left(\mathbb{Z}^{d}+\boldsymbol{\alpha}\right) M=\mathbb{Z}^{d}(1, \boldsymbol{\alpha})(M, \mathbf{0})
$$

- μ-right-ASL (d, \mathbb{R}) invariant prob measure on X

Let us denote by $\tau_{1}=\tau(\boldsymbol{q}, \boldsymbol{v})$ the free path length corresponding to the initial condition ($\boldsymbol{q}, \boldsymbol{v}$).

Theorem D [JM \& Strömbergsson, Annals of Math 2010]. Fix a lattice \mathcal{L}_{0} and the initial position \boldsymbol{q}. Let λ be any a.c. Borel probability measure on S_{1}^{d-1}. Then, for every $\xi>0$, the limit

$$
F_{\mathcal{L}_{0}, \boldsymbol{q}}(\xi):=\lim _{r \rightarrow 0} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: r^{d-1} \tau_{1} \geq \xi\right\}\right)
$$

exists, is continuous in ξ and independent of λ. Furthermore

$$
F_{\mathcal{L}_{0}, \boldsymbol{q}}(\xi)= \begin{cases}F_{0}(\xi):=\mu_{1}\left(\left\{\mathcal{L} \in X_{1}: \mathcal{L} \cap \mathcal{Z}(\xi)=\emptyset\right\}\right) & \text { if } \boldsymbol{q} \in \mathcal{L}_{0} \\ F(\xi):=\mu(\{(\mathcal{L} \in X: \mathcal{L} \cap \mathcal{Z}(\xi)=\emptyset\}) & \text { if } \boldsymbol{q} \notin \mathbb{Q} \mathcal{L}_{0}\end{cases}
$$

with the cylinder

$$
\mathcal{Z}(\xi)=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: 0<x_{1}<\xi, x_{2}^{2}+\ldots+x_{d}^{2}<1\right\} .
$$

Idea of proof $\left(q=0, \mathcal{L}_{0}=\mathbb{Z}^{d}\right)$

0000000000000000000000 0000000000000000000000 000000000000000000000000 000000000000000000000

 00000000000000000000000 00000000000000000000 00000000000000000000000 00000000000000000000000 0000000000000000000000

$$
\lambda\left(\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}: \text { no scatterer intersects } \operatorname{ray}\left(\boldsymbol{v}, r^{-(d-1)} \xi\right)\right\}\right)
$$

Idea of proof $\left(q=0, \mathcal{L}_{0}=\mathbb{Z}^{d}\right)$

Idea of proof $\left(q=0, \mathcal{L}_{0}=\mathbb{Z}^{d}\right)$

(Rotate by $K(\boldsymbol{v}) \in \mathrm{SO}(d)$ such that $\boldsymbol{v} \mapsto \boldsymbol{e}_{1}$)

Idea of proof $\left(q=0, \mathcal{L}_{0}=\mathbb{Z}^{d}\right)$

$$
=\lambda\left(\left\{\boldsymbol{v} \in \mathrm{S}_{1}^{d-1}: \mathbb{Z}^{d} K(\boldsymbol{v}) \cap \mathcal{Z}\left(e_{1}, r^{-(d-1)} \xi, r\right)=\emptyset\right\}\right)
$$

Idea of proof $\left(q=0, \mathcal{L}_{0}=\mathbb{Z}^{d}\right)$

(Apply $\left.D_{r}=\operatorname{diag}\left(r^{d-1}, r^{-1}, \ldots, r^{-1}\right) \in \operatorname{SL}(d, \mathbb{R})\right)$

Idea of proof $\left(q=0, \mathcal{L}_{0}=\mathbb{Z}^{d}\right)$

The following Theorem shows that in the limit $r \rightarrow 0$ the lattice

$$
\mathbb{Z}^{d} K(\boldsymbol{v}) D_{r}
$$

behaves like a random lattice with respect to Haar measure μ_{1}.
Theorem E. Let λ be an a.c. Borel probability measure on S_{1}^{d-1}. Then, for every bounded continuous function $f: X_{1} \rightarrow \mathbb{R}$,

$$
\lim _{r \rightarrow 0} \int_{\mathrm{S}_{1}^{d-1}} f\left(K(\boldsymbol{v}) D_{r}\right) d \lambda(\boldsymbol{v})=\int_{X_{1}} f(M) d \mu_{1}(M) .
$$

Theorem E is a direct consequence of the mixing property for the flow

$$
\Phi^{t}:=D_{\exp (-t)} .
$$

This concludes the proof of Theorem D when $q \in \mathcal{L}_{0}$.
The generalization of Theorem E required for the full proof of Theorem D uses Ratner's classification of ergodic measures invariant under a unipotent flow. We exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad. Sci. 1996) on the uniform distribution of translates of unipotent orbits.

How about aperiodic scatterer configurations?

- \mathcal{P} - general locally finite subset of \mathbb{R}^{d} with unit density
- The above approach still formally works: instead of $\mathbb{Z}^{d} K(\boldsymbol{v}) D_{r}$ we are now faced with a random point set

$$
\mathcal{P} K(\boldsymbol{v}) D_{r}
$$

with v distributed according to λ

- Question: Does $\mathcal{P} K(\boldsymbol{v}) D_{r}$ converge (in finite-dimensional distribution) to a random point process in \mathbb{R}^{d} ?
(In the case $\mathcal{P}=\mathbb{Z}^{d}$ that random process would be given by the space of random lattices)

Two case studies

Case study 1: Union of lattices

- Consider scatterer locations at the point set

$$
\mathcal{P}=\bigcup_{i=1}^{N} \bar{n}_{i}^{-1 / d} \mathcal{L}_{j}, \quad \mathcal{L}_{i}=\left(\mathbb{Z}^{d}+\omega_{i}\right) M_{i}
$$

with $\omega_{i} \in \mathbb{R}^{d}, M_{i} \in \operatorname{SL}(d, \mathbb{R})$ and $\bar{n}_{i}>0$ such that $\bar{n}_{1}+\ldots+\bar{n}_{N}=1$

- The analogue of the equidistribution Theorem E is:

Theorem F. [JM \& Strömbergsson, J Stat Phys 2014]. If $M_{1}, \ldots, M_{N} \in$ $\mathrm{SL}(d, \mathbb{R})$ are incommensurable, then for every bdd cont $f: X_{1}^{N} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\lim _{r \rightarrow 0} \int_{S_{1}^{d-1}} f\left(M_{1} K(v) D_{r}\right. & \left.\ldots, M_{N} K(v) D_{r}\right) d \lambda(v) \\
& =\int_{X_{1}^{N}} f\left(M_{1}^{\prime}, \ldots, M_{N}^{\prime}\right) d \mu_{1}\left(M_{1}^{\prime}\right) \cdots \mu_{1}\left(M_{N}^{\prime}\right) .
\end{aligned}
$$

- Interesting consequence-the path length distribution decays faster:

$$
\psi_{0}(t) \sim \frac{C}{t^{N+2}}
$$

Case study 2: Quasicrystals

Penrose tiling
(from: de Bruijn, Kon Nederl Akad Wetensch Proc Ser A, 1981)

Cut and project

- $\mathbb{R}^{n}=\mathbb{R}^{d} \times \mathbb{R}^{m}, \pi$ and $\pi_{\text {int }}$ orthogonal projections onto $\mathbb{R}^{d}, \mathbb{R}^{m}$
- $\mathcal{L} \subset \mathbb{R}^{n}$ a lattice of full rank
- $\mathcal{A}:=\overline{\pi_{\text {int }}(\mathcal{L})}$ is an abelian subgroup of \mathbb{R}^{m}, with Haar measure $\mu_{\mathcal{A}}$
- $\mathcal{W} \subset \mathcal{A}$ a "regular window set" (i.e. bounded with non-empty interior, $\mu_{\mathcal{A}}(\partial \mathcal{W})=0$)
- $\mathcal{P}(\mathcal{W}, \mathcal{L})=\left\{\pi(\boldsymbol{y}): \boldsymbol{y} \in \mathcal{L}, \pi_{\text {int }}(\boldsymbol{y}) \in \mathcal{W}\right\} \subset \mathbb{R}^{d}$ is called a "regular cut-and-project set"
- $\mathcal{P}(\mathcal{W}, \mathcal{L})$ defines the locations of scatterers in our quasicrystal

Recall $\tau_{1}=\tau(\boldsymbol{q}, \boldsymbol{v})$ denotes the free path length corresponding to the initial condition ($\boldsymbol{q}, \boldsymbol{v}$).

Theorem G [JM \& Strömbergsson, Comm Math Phys 2014]. Fix a regular cut-and-project set \mathcal{P} and the initial position \boldsymbol{q}. Let λ be any a.c. Borel probability measure on S_{1}^{d-1}. Then, for every $\xi>0$, the limit

$$
F_{\mathcal{P}, \boldsymbol{q}}(\xi):=\lim _{r \rightarrow 0} \lambda\left(\left\{\boldsymbol{v} \in \mathrm{~S}_{1}^{d-1}: r^{d-1} \tau_{1} \geq \xi\right\}\right)
$$

exists, is continuous in ξ and independent of λ.

In analogy with Theorem D and the space of lattices, we express $F_{\mathcal{P}_{0}, \boldsymbol{q}}(\xi)$ in terms of a random variable in a suitable space of quasicrystals.

Equidistribution

- Set $G=\operatorname{ASL}(n, \mathbb{R}), \Gamma=\operatorname{ASL}(n, \mathbb{Z})$.
- Pick $g \in G$ so that $\mathcal{L}=\mathbb{Z}^{n} g$ (up to a multiplicative constant)
- Define an embedding of $\operatorname{SL}(d, \mathbb{R})$ in G by the map

$$
\varphi_{g}: \mathrm{SL}(d, \mathbb{R}) \rightarrow G, \quad A \mapsto g\left(\left(\begin{array}{cc}
A & 0 \\
0 & 1_{m}
\end{array}\right), 0\right) g^{-1}
$$

- It follows from Ratner's theorems that there exists a closed connected subgroup H_{g} of G such that
- $\Gamma \cap H_{g}$ is a lattice in H_{g}
- $\varphi_{g}(\mathrm{SL}(d, \mathbb{R})) \subset H_{g}$
- the closure of $\Gamma \backslash \Gamma \varphi_{g}(\mathrm{SL}(d, \mathbb{R}))$ in $\Gamma \backslash G$ is given by $\Gamma \backslash\left\ulcorner H_{g}\right.$.
- Denote the unique right- H_{g} invariant probability measure on $\Gamma \backslash \Gamma H_{g}$ by μ_{g}.

Theorem H. Let λ be an a.c. Borel probability measure on S_{1}^{d-1}. Then, for every bounded continuous function $f: \Gamma \backslash G \rightarrow \mathbb{R}$,

$$
\lim _{r \rightarrow 0} \int_{\mathrm{S}_{1}^{d-1}} f\left(\varphi_{g}\left(K(\boldsymbol{v}) D_{r}\right)\right) d \lambda(\boldsymbol{v})=\int_{\Gamma \backslash\left\ulcorner H_{g}\right.} f(h) d \mu_{g}(h) .
$$

Examples

- If $\mathcal{P}=\mathcal{P}(\mathcal{L}, \mathcal{W})$, then for almost every \mathcal{L} in the space of lattices and almost every \boldsymbol{q}, we have $H_{g}=\operatorname{ASL}(n, \mathbb{R}), \Gamma \cap H_{g}=\operatorname{ASL}(n, \mathbb{Z})$.
$F_{\mathcal{P}, \boldsymbol{q}}(\xi) \asymp \xi^{-1}(\xi \rightarrow \infty)$ where the implied constants depend on n, \mathcal{W}, δ. Again $F_{\mathcal{P}, \boldsymbol{q}}(\xi)$ is independent of \mathcal{P} and \boldsymbol{q}. (\Rightarrow The tail is of the same order as in the lattice case $\mathcal{P}=\mathcal{L}$.)
- If \mathcal{P} is the vertex set of a Penrose tiling and $\boldsymbol{q} \in \mathcal{P}$, we have $H_{g}=\operatorname{SL}(2, \mathbb{R})^{2}$, $\Gamma \cap H_{g}=$ a congruence subgroup of the Hilbert modular group $\operatorname{SL}\left(2, \mathcal{O}_{K}\right)$, with \mathcal{O}_{K} the ring of integers of $K=\mathbb{Q}(\sqrt{5})$.
$F_{\mathcal{P}, q}(\xi) \asymp$ work in progress \ldots

Conclusions

- The linear Boltzmann equation governs the Boltzmann-Grad limit of the Lorentz gas for "typical" scatterer configurations. . .
- ...but may fail when long-range correlations are present. New transport equations emerge, whose transition kernel is governed by non-trivial $\mathrm{SL}(d, \mathbb{R})$ invariant point processes
- Proof of convergence reduces to equidistribution of expanding spheres in the relevant moduli spaces

Future challenges

- Classify $\operatorname{SL}(d, \mathbb{R})$-invariant point processes
- Lorentz gas in force fields
- Other scaling limits
- Quantum Lorentz gas

Further reading

- The low-density limit of the Lorentz gas: periodic, aperiodic and random
Proceedings of the ICM 2014
arXiv:1404.3293
- Kinetic limits of dynamical systems
summer school lecture notes
arXiv:1408.1307

Appendix: A refined Stosszahlansatz

 (for general scatterer configurations \mathcal{P})
$t_{n}-n$th collision time, \boldsymbol{v}_{n} - velocity after nth collision

The nth collision

Consider a beam of parallel particles with velocity v_{n-1} hitting a scatterer at $y_{n} \in \mathcal{P}$ with random impact parameter b_{n}.

Intercollision flights

Intercollision flight in the Lorentz gas between the nth and $(n+1)$ st collision. The exclusion zone is a long and thin cylinder of radius r with spherical caps. Scatterers are centered at \mathcal{P}.

Collision coordinates

$$
\begin{gathered}
\boldsymbol{v}_{n}=(1,0) R_{n}^{-1} \quad \text { (velocity after } n \text {th collision) } \\
\boldsymbol{s}_{n}=\left(0, \boldsymbol{w}_{n}\right) R_{n}^{-1} \quad \text { (exit parameter at } n \text {th collision) } \\
\boldsymbol{b}_{n+1}=\left(0, \boldsymbol{w}_{n+1}\right) R_{n}^{-1} \quad \text { (impact parameter at }(n+1) \text { st collision) } \\
R_{n}:=R_{n-1} S\left(\boldsymbol{w}_{n}\right)=R\left(\boldsymbol{v}_{0}\right) S\left(\boldsymbol{w}_{1}\right) \cdots S\left(\boldsymbol{w}_{n}\right) \\
R\left(\boldsymbol{v}_{0}\right) \in \mathrm{SO}(d) \text { so that } \boldsymbol{v}_{0} R\left(\boldsymbol{v}_{0}\right)=(1,0)
\end{gathered}
$$

Intercollision flights

Now apply the linear map $R_{n} D(r)$ to this picture, with $D(r)=\left(\begin{array}{cc}r^{d-1} & 0 \\ 0 & r^{-1} 1_{d-1}\end{array}\right)$

Intercollision flights

The exclusion zone is now approximately a r-independent cylinder with radius 1 and flat caps. Scatterers are centered at $\mathcal{P} R_{n} D(r)=\mathcal{P} R_{n-1} S\left(\boldsymbol{w}_{n}\right) D(r)$.

