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The Lorentz gas

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)
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The Lorentz gas

• P — locally finite subset of Rd with
unit density*
• scatterers are fixed open balls of

radius r centered at the points in P
• the particles are assumed to be

non-interacting
• each test particle moves with con-

stant velocity v(t) between colli-
sions
• the scattering is elastic; we may as-

sume w.l.o.g. ‖v(t)‖ = 1

*unit density means that lim
R→∞

#(P ∩RD)

Rd vol(D)
= 1 for all “nice” sets D ⊂ Rd

3



Examples

Example 1: P = a realization of the Poisson process in Rd with intensity 1

Example 2: P = Zd (periodic Lorentz gas)

Example 3: P = the vertex set of a Penrose tiling (quasicrystal)

In the case of fixed scattering radius r, allmost all results to-date on the diffusion
of a test-particle in the Lorentz gas are restricted to the 2-dim periodic setting:

• Bunimovich & Sinai (Comm Math Phys 1980)
• Bleher (J Stat Phys 1992)
• Szász & Varjú (J Stat Phys 2007)
• Dolgopyat & Chernov (Russ Math Surveys, 2009)
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The scattering map

vin

b θ

s vout

vin, vout — incoming/outgoing velocity

b, s — impact/exit parameter

(=the orthogonal projection of the point of impact onto the plane orthogonal to
resp. vin, vout, measured in units of the scattering radius r)

θ = θ(w) — the scattering angle, w := ‖b‖ ∈ [0,1[
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The scattering map

b

vin

θ

vout

Assume:
(A) θ ∈ C1([0,1[ ) is strictly decreasing with θ(0) = π and θ(w) > 0

(as in figure) or
(B) θ ∈ C1([0,1[ ) is strictly increasing with θ(0) = −π and θ(w) < 0

6



Examples

Example 1: In the classical setting of elastic hard-sphere scatterers,

θ(w) = π − 2 arcsin(w)

and thus condition (A) holds

Example 2: Scattering by “muffin-tin” Coulomb potential

V (q) =

α
(
r
‖q‖ − 1

)
(‖q‖ < r)

0 (‖q‖ ≥ r)

with α /∈ {−2E,0} and E the total particle energy
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The Boltzmann-Grad limit

• Consider the dynamics in the limit of small scatterer radius r

•
(
q(t), v(t)

)
= “microscopic” phase space coordinate at time t

• A dimensional argument shows that, in the limit r → 0, the mean free
path length (i.e., the average time between consecutive collisions) scales
like r−(d−1) (= 1/total scattering cross section)

• We thus measure position and time the “macroscopic” coordinates(
Q(t),V (t)

)
=
(
rd−1q(r−(d−1)t), v(r−(d−1)t)

)

• Time evolution of initial data (Q,V ):(
Q(t),V (t)

)
= Φtr(Q,V )
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The linear Boltzmann equation

• Time evolution of a particle cloud with initial density f ∈ L1:

f
(r)
t (Q,V ) := f

(
Φ−tr (Q,V )

)

In his 1905 paper Lorentz suggested that f(r)
t is governed, as r → 0, by the

linear Boltzmann equation:

[
∂

∂t
+ V · ∇Q

]
ft(Q,V ) =

∫
Sd−1

1

[
ft(Q,V

′)− ft(Q,V )
]
σ(V ,V ′)dV ′

where σ(V ,V ′) is the differential cross section of the individual scatterer.
E.g.: σ(V ,V ′) = 1

4‖V − V
′‖3−d for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, . . .
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The linear Boltzmann equation—rigorous proofs

• Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterer configuration P

• Spohn (Comm Math Phys 1978): extension to more general random scatterer
configurations P and potentials

• Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for
almost every scatterer configuration P (w.r.t. the Poisson random measure)

• Quantum: Spohn (J Stat Phys 1977): Gaussian random potentials, weak
coupling limit & small times; Erdös and Yau (Contemp Math 1998, Comm
Pure Appl Math 2000): General random potentials, weak coupling limit; Eng
and Erdös (Rev Math Phys 2005): Low density limit
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. . . but what about non-random scatterer configurations?
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The periodic Lorentz gas
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The distribution of free path length

For random exit parameter and exit velocity, consider the probability Fr(t) of
hitting the next scatterer after time t (measured in units of the mean collision
time).

• Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000):

t−2 � Fr(t)� t−2

• Golse (ICM Madrid, 2006): The above lower bound implies that the linear
Boltzmann equation fails in the periodic setting

Note:
For random scatterer configurations the path length distribution is exponential,
which is consistent with the linear Boltzmann equation
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The distribution of free path length

• Boca, Zaharescu (CMP 2007): proof of
convergence as r → 0 and explicit formula
in dimension d = 2

• JM & Strömbergsson (Annals of Math 2010,
GAFA 2011): proof of convergence

Fr(t)→ D(t) =
∫ ∞
t

Ψ0(x)dx

in arbitrary dimension, with continuous limit
density and tail (t→∞)

Ψ0(t) ∼
Ad
t3
, Ad =

22−d

d(d+ 1)ζ(d)

⇒ No second moment!

D(t) in dim. d = 3

14



A limiting random process

A cloud of particles with initial density f(Q,V ) evolves in time t to

f
(r)
t (Q,V ) = [Ltrf ](Q,V ) = f

(
Φ−tr (Q,V )

)
.

Theorem A [JM & Strömbergsson, Annals of Math 2011].
For every t > 0 there exists a linear operator

Lt : L1(T1(Rd))→ L1(T1(Rd))

such that for every f ∈ L1(T1(Rd)) and any setA ⊂ T1(Rd) with boundary
of Liouville measure zero,

lim
r→0

∫
A

[Ltrf ](Q,V ) dQ dV =
∫
A

[Ltf ](Q,V ) dQ dV .

The operator Lt thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit r → 0.

Note: The family {Lt}t≥0 does not form a semigroup.
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A generalized linear Boltzmann equation

Consider extended phase space coordinates (Q,V , ξ,V +):

(Q,V ) ∈ T1(Rd) — usual position and momentum
ξ ∈ R+ — flight time until the next scatterer
V + ∈ Sd−1

1 — velocity after the next hit

[
∂

∂t
+ V · ∇Q −

∂

∂ξ

]
ft(Q,V , ξ,V +)

=
∫

Sd−1
1

ft(Q,V
′,0,V ) p0(V ′,V , ξ,V +)dV ′

with a new collision kernel p0(V ′,V , ξ,V +), which can be expressed as a prod-
uct of the scattering cross section of an individual scatterer and a ceratin transition
probability for hitting a given point the next scatterer after time ξ.
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A generalized linear Boltzmann equation

We obtain the original particle density via the projection

f t(Q,V ) =
∫ ∞

0

∫
Sd−1

1

ft(Q,V , ξ,V +) dV + dξ.

where ft(Q,V , ξ,V +) is the solution of the generalized linear Boltzmann equa-
tion subject to the initial condition

lim
t→0

ft(Q,V , ξ,V +) = f(Q,V ) p(V , ξ,V +)

and

p(V , ξ,V +) :=
∫ ∞
ξ

∫
Sd−1

1

p0(V ′,V , ξ,V +)σ(V ,V ′) dV ′ dξ′.

The latter is a stationary solution of the generalized linear Boltzmann equation.
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Application: Superdiffusive central limit theorem

The divergent second moment of the path length distribution leads to t log t su-
perdiffusion:

Theorem B [JM & B. Toth, preprint 2014]
Let d ≥ 2 and fix a Euclidean lattice L ⊂ Rd of covolume one. Assume
(Q0,V 0) is distributed according to an absolutely continuous Borel probabil-
ity measure Λ on T1(Rd). Then, for any bounded continuous f : Rd → R,

lim
t→∞

lim
r→0

Ef
(
Q(t)−Q0

Σd
√
t log t

)
=

1

(2π)d/2

∫
Rd
f(x) e−

1
2‖x‖

2
dx,

with

Σ2
d :=

21−dσ

d2(d+ 1)ζ(d)
.

For fixed r the analogous result is currently known only in dimension d = 2, see
Szász & Varjú (J Stat Phys 2007), Chernov & Dolgopyat (Russ. Math Surveys
2009).
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Key ingredient for Theorem A: Joint distribution of path segments

S1

S2

S3

S4

S5
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Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes
the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem C [JM & Strömbergsson, Annals of Math 2011]. Fix an a.c. Borel
probability measure Λ on T1(Rd). Then, for each n ∈ N there exists a prob-
ability density Ψn,Λ on Rnd such that, for any set A ⊂ Rnd with boundary of
Lebesgue measure zero,

lim
r→0

Λ
({

(Q0,V 0) ∈ T1(Rd) : (S1, . . . ,Sn) ∈ A
})

=
∫
A

Ψn,Λ(S′1, . . . ,S
′
n) dS′1 · · · dS

′
n,

and, for n ≥ 3,

Ψn,Λ(S1, . . . ,Sn) = Ψ2,Λ(S1,S2)
n∏

j=3

Ψ(Sj−2,Sj−1,Sj),

where Ψ is a continuous probability density independent of Λ (and the lattice).

Theorem A follows from Theorem C by standard probabilistic arguments.
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First step: The distribution of free path lengths
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Lattices

• L ⊂ Rd—euclidean lattice of covolume one

• recall L = ZdM for someM ∈ SL(d,R), therefore the homogeneous space
X1 = SL(d,Z)\SL(d,R) parametrizes the space of lattices of covolume
one

• µ1—right-SL(d,R) invariant prob measure on X1 (Haar)
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Affine lattices

• ASL(d,R) = SL(d,R) n Rd—the semidirect product group with multiplica-
tion law

(M,x)(M ′,x′) = (MM ′,xM ′+ x′).

An action of ASL(d,R) on Rd can be defined as

y 7→ y(M,x) := yM + x.

• the space of affine lattices is then represented byX = ASL(d,Z)\ASL(d,R)

where ASL(d,Z) = SL(d,Z) n Zd, i.e.,

L = (Zd +α)M = Zd(1,α)(M, 0)

• µ—right-ASL(d,R) invariant prob measure on X
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Let us denote by τ1 = τ(q,v) the free path length corresponding to the initial
condition (q, v).

Theorem D [JM & Strömbergsson, Annals of Math 2010]. Fix a lattice L0

and the initial position q. Let λ be any a.c. Borel probability measure on
Sd−1

1 . Then, for every ξ > 0, the limit

FL0,q(ξ) := lim
r→0

λ({v ∈ Sd−1
1 : rd−1τ1 ≥ ξ})

exists, is continuous in ξ and independent of λ. Furthermore

FL0,q(ξ) =

F0(ξ) := µ1({L ∈ X1 : L ∩ Z(ξ) = ∅}) if q ∈ L0

F (ξ) := µ({(L ∈ X : L ∩ Z(ξ) = ∅}) if q /∈ QL0.

with the cylinder

Z(ξ) =
{

(x1, . . . , xd) ∈ Rd : 0 < x1 < ξ, x2
2 + . . .+ x2

d < 1
}
.
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Idea of proof (q = 0, L0 = Zd)

r−(d−1)ξ

λ
({
v ∈ Sd−1

1 : no scatterer intersects ray(v, r−(d−1)ξ)
})
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Idea of proof (q = 0, L0 = Zd)

2r

r−(d−1)ξ

≈ λ
({
v ∈ Sd−1

1 : Zd ∩ Z(v, r−(d−1)ξ, r) = ∅
})
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Idea of proof (q = 0, L0 = Zd)

2r

r−(d−1)ξ

(
Rotate by K(v) ∈ SO(d) such that v 7→ e1

)
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Idea of proof (q = 0, L0 = Zd)

2r

r−(d−1)ξ

= λ
({
v ∈ Sd−1

1 : ZdK(v) ∩ Z(e1, r
−(d−1)ξ, r) = ∅

})
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Idea of proof (q = 0, L0 = Zd)

(
Apply Dr = diag(rd−1, r−1, . . . , r−1) ∈ SL(d,R)

)
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Idea of proof (q = 0, L0 = Zd)

2

ξ

= λ
({
v ∈ Sd−1

1 : ZdK(v)Dr ∩ Z(e1, ξ,1) = ∅
})
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The following Theorem shows that in the limit r → 0 the lattice

ZdK(v)Dr

behaves like a random lattice with respect to Haar measure µ1.

Theorem E. Let λ be an a.c. Borel probability measure on Sd−1
1 . Then, for

every bounded continuous function f : X1 → R,

lim
r→0

∫
Sd−1

1

f(K(v)Dr)dλ(v) =
∫
X1

f(M)dµ1(M).

Theorem E is a direct consequence of the mixing property for the flow

Φt := Dexp(−t).

This concludes the proof of Theorem D when q ∈ L0.

The generalization of Theorem E required for the full proof of Theorem D uses
Ratner’s classification of ergodic measures invariant under a unipotent flow. We
exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad. Sci. 1996) on
the uniform distribution of translates of unipotent orbits.
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How about aperiodic scatterer configurations?

• P — general locally finite subset of Rd with unit density

• The above approach still formally works: instead of ZdK(v)Dr we are now
faced with a random point set

PK(v)Dr

with v distributed according to λ

• Question: Does PK(v)Dr converge (in finite-dimensional distribution)
to a random point process in Rd ?

(In the case P = Zd that random process would be given by the space of
random lattices)
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Two case studies
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Case study 1: Union of lattices

• Consider scatterer locations at the point set

P =
N⋃
i=1

n
−1/d
i Lj, Li = (Zd + ωi)Mi

with ωi ∈ Rd, Mi ∈ SL(d,R) and ni > 0 such that n1 + . . .+ nN = 1

• The analogue of the equidistribution Theorem E is:

Theorem F. [JM & Strömbergsson, J Stat Phys 2014]. If M1, . . . ,MN ∈
SL(d,R) are incommensurable, then for every bdd cont f : XN

1 → R,

lim
r→0

∫
Sd−1

1

f(M1K(v)Dr, . . . ,MNK(v)Dr)dλ(v)

=
∫
XN

1

f(M ′1, . . . ,M
′
N)dµ1(M ′1) · · ·µ1(M ′N).

• Interesting consequence—the path length distribution decays faster:

Ψ0(t) ∼
C

tN+2
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Case study 2: Quasicrystals

Penrose tiling
(from: de Bruijn, Kon Nederl Akad Wetensch Proc Ser A, 1981)
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Cut and project

• Rn = Rd × Rm, π and πint orthogonal projections onto Rd, Rm

• L ⊂ Rn a lattice of full rank

• A := πint(L) is an abelian subgroup of Rm, with Haar measure µA

• W ⊂ A a “regular window set”
(i.e. bounded with non-empty interior, µA(∂W) = 0)

• P(W,L) = {π(y) : y ∈ L, πint(y) ∈ W} ⊂ Rd

is called a “regular cut-and-project set”

• P(W,L) defines the locations of scatterers in our quasicrystal
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Recall τ1 = τ(q, v) denotes the free path length corresponding to the initial
condition (q, v).

Theorem G [JM & Strömbergsson, Comm Math Phys 2014]. Fix a regular cut-
and-project set P and the initial position q. Let λ be any a.c. Borel probability
measure on Sd−1

1 . Then, for every ξ > 0, the limit

FP,q(ξ) := lim
r→0

λ({v ∈ Sd−1
1 : rd−1τ1 ≥ ξ})

exists, is continuous in ξ and independent of λ.

In analogy with Theorem D and the space of lattices, we express FP0,q(ξ) in
terms of a random variable in a suitable space of quasicrystals.
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Equidistribution

• Set G = ASL(n,R), Γ = ASL(n,Z).
• Pick g ∈ G so that L = Zng (up to a multiplicative constant)
• Define an embedding of SL(d,R) in G by the map

ϕg : SL(d,R)→ G, A 7→ g

((
A 0
0 1m

)
, 0

)
g−1.

• It follows from Ratner’s theorems that there exists a closed connected sub-
group Hg of G such that
– Γ ∩Hg is a lattice in Hg
– ϕg(SL(d,R)) ⊂ Hg
– the closure of Γ\Γϕg(SL(d,R)) in Γ\G is given by Γ\ΓHg.

• Denote the unique right-Hg invariant probability measure on Γ\ΓHg by µg.

Theorem H. Let λ be an a.c. Borel probability measure on Sd−1
1 . Then, for

every bounded continuous function f : Γ\G→ R,

lim
r→0

∫
Sd−1

1

f(ϕg(K(v)Dr))dλ(v) =
∫

Γ\ΓHg
f(h)dµg(h).
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Examples

• If P = P(L,W), then for almost every L in the space of lattices and almost
every q, we have Hg = ASL(n,R), Γ ∩Hg = ASL(n,Z).

FP,q(ξ) � ξ−1 (ξ → ∞) where the implied constants depend on n, W, δ.
Again FP,q(ξ) is independent of P and q. (⇒ The tail is of the same order
as in the lattice case P = L.)

• IfP is the vertex set of a Penrose tiling and q ∈ P, we haveHg = SL(2,R)2,
Γ ∩Hg = a congruence subgroup of the Hilbert modular group SL(2,OK),
with OK the ring of integers of K = Q(

√
5).

FP,q(ξ) � work in progress . . .
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Conclusions

• The linear Boltzmann equation governs the Boltzmann-Grad limit of the Lorentz
gas for “typical” scatterer configurations. . .

• . . . but may fail when long-range correlations are present. New transport
equations emerge, whose transition kernel is governed by non-trivial SL(d,R)-
invariant point processes

• Proof of convergence reduces to equidistribution of expanding spheres in the
relevant moduli spaces
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Future challenges

• Classify SL(d,R)-invariant point processes

• Lorentz gas in force fields

• Other scaling limits

• Quantum Lorentz gas
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Further reading

• The low-density limit of the Lorentz gas:
periodic, aperiodic and random
Proceedings of the ICM 2014
arXiv:1404.3293

• Kinetic limits of dynamical systems
summer school lecture notes
arXiv:1408.1307
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Appendix: A refined Stosszahlansatz
(for general scatterer configurations P)
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t1v0

t2v1

t3v2

t4v3

t5v4

tn — nth collision time, vn — velocity after nth collision
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The nth collision

bn

vn−1

θn

yn

vn

Consider a beam of parallel particles with velocity vn−1 hitting a scatterer at
yn ∈ P with random impact parameter bn.
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Intercollision flights

rsn

yn

vn

2r 2r

rbn+1

r−(d−1)tn+1

forbidden scatterer

particle trajectory

exclusion zone

Intercollision flight in the Lorentz gas between the nth and (n + 1)st collision.
The exclusion zone is a long and thin cylinder of radius r with spherical caps.
Scatterers are centered at P.
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Collision coordinates

vn = (1, 0)R−1
n (velocity after nth collision)

sn = (0,wn)R−1
n (exit parameter at nth collision)

bn+1 = (0,wn+1)R−1
n (impact parameter at (n+ 1)st collision)

Rn := Rn−1S(wn) = R(v0)S(w1) · · ·S(wn).

R(v0) ∈ SO(d) so that v0R(v0) = (1, 0)
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Intercollision flights

rsn

yn

vn

2r 2r

rbn+1

r−(d−1)tn+1

forbidden scatterer

particle trajectory

exclusion zone

Now apply the linear mapRnD(r) to this picture, withD(r) =

(
rd−1 0

0 r−11d−1

)
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Intercollision flights

wn

ynRnD(r)

(1, 0)

wn+1

tn+1

forbidden scatterer

particle trajectory

exclusion zone

The exclusion zone is now approximately a r-independent cylinder with radius 1
and flat caps. Scatterers are centered at PRnD(r) = PRn−1S(wn)D(r).
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