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Warm-up in dimension one

• Poisson point process in R (homogeneous, with intensity one): sequence
of random variables · · · ξ−2 ≤ ξ−1 ≤ ξ0 ≤ ξ1 ≤ ξ2 · · · such that for any
interval B

P
(
#
{
n : ξn ∈ B

}
= k

)
=
|B|k

k!
e−|B|

and the point counts in disjoint intervals are independent.

• Random (affine) lattice in R: Start with the integer lattice Z and define
sequence of random variable ξn = n + α, n ∈ Z, with α a random variable
uniformly distributed in the unit interval [0,1]. Then

P
(
#
{
n : ξn ∈ B

}
= k

)
= max

(
1−

∣∣∣k − |B|∣∣∣ , 0
)
.

Both random sequences define stationary point processes of intensity one. But
the gaps of the former are independent random variables distributed according to
the exponential distribution e−s, whereas the gaps of the latter are all 1 and thus
completely deterministic. . . more interesting in higher dimensions!
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Two-dimensional random lattices

• To construct two-dimensional random (affine) lattice, could start with Z2 and
randomly shift by a vector α. But unlike in 1d there are now also linear
transformations

R2 → R2, x 7→ x

(
a b
c d

)
= (ax1 + cx2, bx1 + dx2).

We’ll only consider orientation- and area-preserving maps, i.e., ad− bc = 1.

• Basic examples of random lattices:

P1(u) = Z2
(

1 u
0 1

)
, R1(φ) = Z2

(
cosφ − sinφ
sinφ cosφ

)
with u a random variable uniformly distributed in the unit interval [0,1] and φ
is uniformly distributed in [−π2,

π
2]*

• Is this all?

*note the periodicity P1(u+ 1) = P1(u), R1(φ+ π) = R1(φ)
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Two-dimensional random lattices

• We can write a general linear transformation M ∈ SL(2,R) as

M =

(
1 u
0 1

)(
v1/2 0

0 v−1/2

)(
cosφ − sinφ
sinφ cosφ

)

• Can define random lattice

Z2
(

1 u
0 1

)(
v1/2 0

0 v−1/2

)(
cosφ − sinφ
sinφ cosφ

)
with u random in [0,1] and φ in [−π2,

π
2] as above.

But what about v? Any natural probability measure on this variable? What
happens when v → 0?

• How about sequences of random lattices

Z2
(

1 u
0 1

)(
ε 0
0 ε−1

)
, Z2

(
cosφ − sinφ
sinφ cosφ

)(
ε 0
0 ε−1

)
as ε→ 0?
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The space of lattices

• G0 = SL(d,R), Γ0 = SL(d,Z).

• The map Γ0M 7→ ZdM gives a one-to-one correspondence between the
homogeneous space Γ0\G0 and the space of Euclidean lattices in Rd of
covolume one.

• The Haar measure µ0 on G0 can be normalized so that it gives a probability
measure on Γ0\G0 (H. Minkowski); also denote by µ0

• For dimension d = 2 we have (in the above Iwasawa coordinates)

µ0 =
3

π2

du dv dφ

v2

7



Siegel’s mean value formula

• C.L. Siegel (1945): For any measurable function f : Rd → R≥0∫
Γ0\G0

( ∑
x∈ZdM

f(x)

)
dµ0(M) = f(0) +

∫
Rd
f(y) dy.

• C.A. Rogers in the 1950s calculated mean values of higher order sums∫
Γ0\G0

( ∑
x1,...,xk∈ZdM

f(x1, . . . ,xk)

)
dµ0(M) = . . . ,

with significantly more complicated answers.

8



The space of affine lattices

• G = SL(d,R) n Rd the semidirect product with multiplication law

(M, z)(M ′, z′) = (MM ′, zM ′+ z′)

• Define action of g = (M, z) ∈ G on Rd by yg = yM + z.

• Γ = SL(d,Z) n Zd is a lattice in G.

• The Haar measure onG is µ = µ0×Leb (the Lebesgue measure normalised
so that Leb[0,1]d = 1); corresponding probability measure on Γ\G also
denoted by µ.

9



Mean value formulas for affine lattices

• The analogue of Siegel’s formula is much easier to prove for affine lattice
(use translation invariance of Lebesgue measure):∫

Γ\G

( ∑
x∈Zdg

f(x)

)
dµ(g) =

∫
Rd
f(y) dy.

• Siegel’s formula on the other hand gives us a “Rogers-style” second-order
identity∫

Γ\G

( ∑
x1 6=x2∈Zdg

f(x1,x2)

)
dµ(g) =

∫
Rd
f(y1,y2) dy1dy2
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Probabilistic formulation

• Assume now P = Zdg is a random affine lattice with the random element
g ∈ Γ\G distributed according to µ. Then the formulas on the previous slide
become

E
( ∑
x∈P

f(x)

)
=
∫
Rd
f(y) dy.

E
( ∑
x1 6=x2∈P

f(x1,x2)

)
=
∫
Rd
f(y1,y2) dy1dy2

• The first formula tells us that P is a point process in Rd with intensity one. It
is attributed to N.R. Campbell for general stationary point processes.

• The second formula is the same as for Poisson point process! But
higher-order moments do not agree.
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Distribution functions

• Very difficult to work out explicit formulas for

P
(
|ZdM ∩B| = k

)
or P

(
|Zdg ∩B| = k

)
for general k = 0,1,2, . . . and B ⊂ Rd, especially when d ≥ 3

• As an illustration, let us consider the distribution of the minimal height vector
of lattice points in a strip
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Lattice points in a strip

s

r

r + s

−1 w − 1
2 0 w + 1

2 1

The two linearly independent
lattice vectors with lowest and
second-lowest heights in the
vertical strip between −1 and 1

form a basis. One can show that
at any vertical strip of width one
(in green) contains at least one
of the three points, and hence
the minimal height vector q is ei-
ther r, s or r + s

JM & A. Strömbergsson, The three gap theorem and the space of lattices, American Math. Monthly 2017
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Lattice points in a strip

• If Z2M is a Haar random lattice, then the minimal height vector q = (q1, q2)
in the green strip (w−1

2, w+1
2)×R>0 is distributed according the probability

density

Kw(q1, q2) =
6

π2
H

1 +
q−1

2 −max
(
|w|, |q1 − w|

)
− 1

2

|q1|



H(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if 1 ≤ x.

• If we average the distribution over q1 ∈ (w− 1
2, w+ 1

2) and w ∈ [−1
2,

1
2], we

obtain the distribution of the height of the minimal height vector,

P (s) = 6
π2 ×



1 (s ≤ 1)

1
s + 2

(
1− 1

s

)2
log

(
1− 1

s

)
−1

2

(
1− 2

s

)2
log

∣∣∣∣1− 2
s

∣∣∣∣ (s > 1).
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Do these distributions appear in “nature”?*

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

The distribution of free path length in
the periodic Lorentz gas vs. 2P (2s),
2e−2s

P. Dahlqvist 1997
F. Boca & A. Zaharescu 2007

using lattices: JM & A. Strömbergsson
2008

Particle trajectories in the periodic
Lorentz gas

*For more on this see JM, Random lattices in the wild: from Polya’s orchard to quantum oscilla-
tors, LMS Newsletter, Issue 493 (2021)
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Do these distributions appear in “nature”?*

Quantum energy levels of a two-
dimensional harmonic oscillator:

ω1(m+ 1
2) + ω2(n+ 1

2)

m,n = 0,1,2, . . .

ω1, ω2 frequencies

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

The gap distribution in the energy
spectrum of a two-dimensional
harmonic oscillator with random
frequencies

C. Greenman 1996
using lattices: JM 2000

*For more on this see JM, Random lattices in the wild: from Polya’s orchard to quantum oscilla-
tors, LMS Newsletter, Issue 493 (2021)
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*For more on this see JM, Random lattices in the wild: from Polya’s orchard to quantum oscilla-
tors, LMS Newsletter, Issue 493 (2021)

17



Convergence in distribution

• Previous proofs use continued fractions analytic number theory techniques
(Kloosterman sums)

• Key ingredient in our proof of the path length distribution is the convergence

Z2
(

cosφ − sinφ
sinφ cosφ

)(
ε 0
0 ε−1

)
d−→ Z2M

as ε→ 0 (φ represents the direction of particle velocity)

• . . . and in our proof of the gap distribution for harmonic oscillator

Z2
(

1 u
0 1

)(
ε 0
0 ε−1

)
d−→ Z2M

as ε→ 0 (u = ω1/ω2 represents the ratio of the oscillation frequencies)

• In both cases the limit is the same µ0-distributed random lattice (a non-trivial
fact)
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Equidistribution⇒ convergence in distribution

• space of lattices ' SL(2,Z)\SL(2,R)

' T1(SL(2,Z)\H) = unit tangent bundle of modular surface
• The convergence

Z2
(

cosφ − sinφ
sinφ cosφ

)(
ε 0
0 ε−1

)
d−→ Z2M

follows from the equidistribution of large circles on the mod-
ular surface (G. Margulis, A. Eskin & C. McMullen)

• The convergence

Z2
(

1 u
0 1

)(
ε 0
0 ε−1

)
d−→ Z2M

follows from equidistribution of large closed horocycles on
the modular surface (D. Zagier, P. Sarnak, D. Hejhal, L. Flaminio &

G. Forni, A. Strömbergsson)
by C. Kogler

Right multiplication by the diagonal subgroup corresponds to the action of the geodesic flow,
which in turn is closely related to the Gauss map and continued fractions; cf. C. Series, The
modular surface and continued fractions (J. LMS 1985)
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Equidistribution⇒ convergence in distribution

• space of lattices ' SL(2,Z)\SL(2,R)

' T1(SL(2,Z)\H) = unit tangent bundle of modular surface
• The convergence

Z2
(

cosφ − sinφ
sinφ cosφ

)(
ε 0
0 ε−1

)
d−→ Z2M

follows from the equidistribution of large circles on the mod-
ular surface (G. Margulis, A. Eskin & C. McMullen)

• The convergence

Z2
(

1 u
0 1

)(
ε 0
0 ε−1

)
d−→ Z2M

follows from equidistribution of large closed horocycles on
the modular surface (S.G. Dani & J. Smillie, D. Zagier, P. Sarnak, D.

Hejhal, L. Flaminio & G. Forni, A. Strömbergsson)
by C. Kogler

Right multiplication by the diagonal subgroup corresponds to the action of the geodesic flow,
which in turn is closely related to the Gauss map and continued fractions; cf. C. Series, The
modular surface and continued fractions (J. LMS 1985)
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This works in higher dimensions (unlike continued fractions)

• Free path length in higher-dimensional Lorentz gases; no explicit formulas,
but one prove P (s) ∼ Cd s

−3 for any dimension d ≥ 2 * as well as proof
of convergence to a limit Markov process in the Boltzmann-Grad limit† which
exhibits superdiffusion ‡

*JM & A. Strömbergsson, Annals Math 2010, GAFA 2011, improving upper/lower bounds of J.-P.
Bourgain, F. Golse & B. Wennberg CMP 1998/M2AN 2000

†JM & A. Strömbergsson, Annals Math 2011
‡JM & B. Toth, CMP 2017
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This works in higher dimensions, and not just for lattices!

• Free path length in higher-dimensional Lorentz gases; no explicit formulas,
but one prove P (s) ∼ Cd s

−3 for any dimension d ≥ 2 * as well as proof
of convergence to a limit Markov process in the Boltzmann-Grad limit† which
exhibits superdiffusion ‡

• . . . and Lorentz gases in quasicrystals§ (deploys M. Ratner’s measure clas-
sification theorem) and in lattices with defects¶

• Kinetic transport in Lorentz gas for general scatterer configurations||

*JM & A. Strömbergsson, Annals Math 2010, GAFA 2011, improving upper/lower bounds of J.-P.
Bourgain, F. Golse & B. Wennberg CMP 1998/M2AN 2000

†JM & A. Strömbergsson, Annals Math 2011
‡JM & B. Toth, CMP 2017
§JM & A. Strömbergsson, CMP 2014
¶JM & I. Vinogradov, Geom. Dedicata 2017
||JM & A. Strömbergsson, Memoirs AMS (in press)
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Fractional parts of small powers

• For fixed 0 < β < 1, β 6= 1
2, the gap

distribution of nβ mod 1 looks Poisson
numerically—-NO PROOFS!* β = 1

3 →

• For β = 1
2, Elkies & McMullen have shown

that the gap distribution exists, and derived
an explicit formula which is clearly differ-
ent from the exponential. Their proof uses
equidistribution of closed nonlinear horocy-
cles on the space of affine lattices and Rat-
ner’s measure classification theorem

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6

0.2

0.4

0.6

0.8

N. Elkies & C. McMullen, Duke Math J 2004

*See recent proof for two-point statistics: C. Lutsko, N. Technau & A. Sourmelidis, Pair correlation
of the fractional parts of αnθ, arXiv:2106.09800 (2021)
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Statistics of directions

• Consider the directions of shifted
lattice points of a Euclidean lattice
L in a large ball

• The gap distribution exists and coin-
cides with the Elkies-McMullen dis-
tribution if (α, β) /∈ QL. Proof
uses again Ratner’s measure classi-
fication theorem—but for a different
unipotent flow!

space
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0.0
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0.0

0

JM & Strömbergsson, Annals Math 2010
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Directions in quasicrystals

JM and A. Strömbergsson, Visibility and directions in quasicrystals, IMRN 2015
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Small-world networks

from: Watts & Strogatz, Nature 1998
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Circulant graphs

1. Fix integers 0 < a1 < . . . < ak ≤ n/2 with gcd(a1, . . . , ak, n) = 1;
2. Connect vertex i and j, if |i− j| ≡ ah mod n for some ah; assign length `h

to this edge.

The resulting graph Cn(`,a) is called a “circulant graph” (its adjacency matrix is
circulant), sometimes also “multiloop network”. It is of course the undirected Cay-
ley graph of the cyclic group of order n w.r.t. the generating set {±a1, . . . ,±ak}.

HighlightGraph@ð, FindDiameterPath@ðDD &@CirculantGraph@41, 81, 15, 20<DD
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Random lattices and circulant graphs

Theorem A (Marklof & Strömbergsson, Combinatorica 2013). Let k ≥ 2,
D ⊂ Rk+1 bounded, non-empty and boundary of Lebesgue measure zero.
Pick (a, n) at random in TD. Then

diamCn(`,a)

(n`1 · · · `k)1/k
d−→ ρ(P, L) as T →∞,

where ρ(P, L) is . . . the covering radius of a random lattice L in Rk with re-
spect to the polytope

P =
{
x ∈ Rk : |x1|+ . . .+ |xk| ≤ 1

}
.

(P is a square for k = 2 and an octahedron for k = 3.)

Improved by Shapira & Zuck (Combinatorica 2019) who proved the above for
fixed n→∞ with only a random.
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. . . a random variable distributed according to the probability density

(numerics for k = 2, ` = (1,1), n = 1000)

 0

 0.5

 1
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 0  0.5  1  1.5  2  2.5  3
 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5  3For k = 2:

p̃2(R) =


0 (0 ≤ R ≤ 1√

2
)

24
π2

(
2R2−1
R log

(
2R2

2R2−1

)
+ 1−R2

R log
(

R2

|1−R2|

))
(R > 1√

2
).

For general k ≥ 2:

p̃k(R) = 0 (R < 1
2(k!)1/k), p̃k(R) ∼

k

2ζ(k)
R−(k+1) (R→∞)
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Random lattices and circulant graphs

Theorem A (Marklof & Strömbergsson, Combinatorica 2013). Let k ≥ 2,
D ⊂ Rk+1 bounded, non-empty and boundary of Lebesgue measure zero.
Pick (a, n) at random in TD. Then

diamCn(`,a)

(n`1 · · · `k)1/k
d−→ ρ(P, L) as T →∞,

where ρ(P, L) is . . . the covering radius of a random lattice L in Rk with re-
spect to the polytope

P =
{
x ∈ Rk : |x1|+ . . .+ |xk| ≤ 1

}
.

(P is a square for k = 2 and an octahedron for k = 3.)

Improved by Shapira & Zuck (Combinatorica 2019) who proved the above for
fixed n→∞ with only a random.
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How about random lattices in hyperbolic geometry?

Escher’s Circle Limit I
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