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Warm-up in dimension one

e Poisson point process in R (homogeneous, with intensity one): sequence
of random variables --- £ > < £_1 < &y < & < & --- such that for any
interval B

. IBI* _ g
P(#{n L €n € B} k) e
and the point counts in disjoint intervals are independent.

e Random (affine) lattice in R: Start with the integer lattice Z and define
sequence of random variable &, = n + o, n € Z, with « a random variable
uniformly distributed in the unit interval [0, 1]. Then

0).

]P’(#{n:gneB}zk)zmax(l—‘k—

Both random sequences define stationary point processes of intensity one. But
the gaps of the former are independent random variables distributed according to
the exponential distribution e, whereas the gaps of the latter are all 1 and thus
completely deterministic. .. more interesting in higher dimensions!



Two-dimensional random lattices

e To construct two-dimensional random (affine) lattice, could start with Z2 and
randomly shift by a vector a. But unlike in 1d there are now also linear
transformations

R? — R?, T — T (Z Z) = (axq1 + cxo,bxr1 + dxo).

We’ll only consider orientation- and area-preserving maps, i.e., ad — bc = 1.

e Basic examples of random lattices:

21w .2 [COS¢p —sSing
P]_(U) - Z <O 1) ) Rl(¢) - Z <Sin(]5 COSQb )
with v a random variable uniformly distributed in the unit interval [0, 1] and ¢

is uniformly distributed in [-Z, Z]*

e Is this all?

*note the periodicity P1(u 4+ 1) = P1(u), R1(¢ + 7) = R1(¢)



Two-dimensional random lattices

We can write a general linear transformation M € SL(2,R) as
1w\ (vl/2 0 COS¢p —Sing
M = .
01 0 o 1/2)\sing coso

Can define random lattice

52 (1 u vl/2 0 Cos¢ —sing
0 1 0 v 1/2)\sing coso

with u random in [0, 1] and ¢ in [—7, 5] as above.

But what about v? Any natural probability measure on this variable? What
happens when v — 07?

How about sequences of random lattices

72 1 u\fe O 72 cos¢p —sing) (e O
0 1)\0 1)’ sing cos¢ ) \0 €1

ase — 07?



The space of lattices

Go = SL(d,R), Mg = SL(d, 7).

The map oM — Z%M gives a one-to-one correspondence between the
homogeneous space Mo\Go and the space of Euclidean lattices in RY of
covolume one.

The Haar measure g on Gg can be normalized so that it gives a probability
measure on [\ G (H. Minkowski); also denote by ng

For dimension d = 2 we have (in the above lwasawa coordinates)

3 dudvdg

MO — 71'2 1}2




Siegel’s mean value formula

e C.L. Siegel (1945): For any measurable function f : R% — R>q

/I_O\GO< > f(w)> dpo(M) = f(0) +/Rdf(y) dy.

xcZAM

e C.A. Rogers in the 1950s calculated mean values of higher order sums

/ro\Go( Z f(a:l,...,a:k)> duog(M) = ...,

x1,..., e, LM
with significantly more complicated answers.



The space of affine lattices

G = SL(d,R) x R< the semidirect product with multiplication law

(M, 2)(M',2") = (MM', 2M' + ')

Define action of ¢ = (M, 2) € Gon R by yg = yM + z.

r=SL(d,Z) x Z%is a lattice in G.

The Haar measure on GGis u = ugx Leb (the Lebesgue measure normalised
so that Leb[0, 1]¢ = 1); corresponding probability measure on N\G also
denoted by L.



Mean value formulas for affine lattices

e The analogue of Siegel’'s formula is much easier to prove for affine lattice
(use translation invariance of Lebesgue measure):

/F\G( )3 f(w)> du(e) = [, F(y)dy

xcZ4g

e Siegel’'s formula on the other hand gives us a “Rogers-style” second-order
identity

/r\G ( > f(w1,w2)> dp(g) = /Rdf(ylayQ) dy1dy>

T1+TD Eng

10



Probabilistic formulation

e Assume now P = Z%; is a random affine lattice with the random element

g € MG distributed according to n. Then the formulas on the previous slide
become

E( > f(:v)> = [ f@)dy

xecP

E( > f(w17m2)>:/Rdf(ylva)dyldQQ

T1FxoEP

e The first formula tells us that P is a point process in R¢ with intensity one. It
is attributed to N.R. Campbell for general stationary point processes.

e The second formula is the same as for Poisson point process! But
higher-order moments do not agree.

11



Distribution functions

e Very difficult to work out explicit formulas for
P(|z'MNB|=k) or P(|z%n Bl =k)

for general k = 0,1,2,...and B C R, especially when d > 3

e As an illustration, let us consider the distribution of the minimal height vector
of lattice points in a strip

12



Lattice points in a strip

The two linearly independent
lattice vectors with lowest and
second-lowest heights in the
vertical strip between —1 and 1
form a basis. One can show that

’ | at any vertical strip of width one
r (in green) contains at least one
: of the three points, and hence
the minimal height vector q is ei-
| | therr, sorr + s
—1 w — % 0 w + % 1

JM & A. Strombergsson, The three gap theorem and the space of lattices, American Math. Monthly 2017

13



Lattice points in a strip

e If Z2M is a Haar random lattice, then the minimal height vector g = (q1, q2)

inthe green strip (w—3, w+3) xR is distributed according the probability
density

—1 1
6 g5~ — max (|w|,|qg1 —w|) =5
Kw(q1,92) =7T2H<1—I— ( )

g1
(0 ifz<O

H(x) =<}z ifO0O<z<1
1 ifl1 <z

o If we average the distribution over ¢; € (w— %, w+ 3) andw € [-3, 3], we
obtain the distribution of the height of the minimal height vector,

1 (s <1)
Py = &« | 1+2(1-1) 1og (1-1)
\ -3 <1—%)2I09‘1—§‘ (s > 1).
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Do these distributions appear in “nature”?*

2.0

1.5

1.0 N

0.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

The distribution of free path length in

gf_gf riodic Lorentz gas vs. 2P(2s), Particle trajectories in the periodic

Lorentz gas

P. Dahlgvist 1997
F. Boca & A. Zaharescu 2007

using lattices: JM & A. Strombergsson
2008

*For more on this see JM, Random lattices in the wild: from Polya’s orchard to quantum oscilla-
tors, LMS Newsletter, Issue 493 (2021)
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Do these distributions appear in “nature”?”

Quantum energy levels of a two- | \
dimensional harmonic oscillator: |/ N1 )

atn+preaerd Y e

0.5 1.0 1.5 2.0 2.5 3.0

m,n=20,1,2, ... The gap distribution in the energy

spectrum of a two-dimensional
harmonic oscillator with random

wi,wo frequencies fraquencies

C. Greenman 1996
using lattices: JM 2000

*For more on this see JM, Random lattices in the wild: from Polya’s orchard to quantum oscilla-
tors, LMS Newsletter, Issue 493 (2021)
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Do these distributions appear in “nature”?”
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. The gap distribution in the energy
teh_eQSperlodlc Lorentz gas vs. 2P (2s), spectrum  of a  two-dimensional

harmonic oscillator with random
frequencies
P. Dahlqvist 1997
F. Boca & A. Zaharescu 2007
using lattices:
JM & A. Strombergsson 2008

C. Greenman 1996
using lattices: JM 2000

*For more on this see JM, Random lattices in the wild: from Polya’s orchard to quantum oscilla-
tors, LMS Newsletter, Issue 493 (2021)
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Convergence in distribution

e Previous proofs use continued fractions analytic number theory techniques
(Kloosterman sums)

e Key ingredient in our proof of the path length distribution is the convergence

Zg<cos¢ —Siﬂqb) (e O) d. 520

sing cos¢ ) \0 e 1

as ¢ — 0O (¢ represents the direction of particle velocity)

e ...and in our proof of the gap distribution for harmonic oscillator

>(1 uw)fe O d 2
z(o 1)(0 6_1>—>ZM

as e — 0 (u = w1 /wy represents the ratio of the oscillation frequencies)

e In both cases the limit is the same uq-distributed random lattice (a non-trivial
fact)

18



Equidistribution = convergence in distribution

e space of lattices ~ SL(2,7Z)\ SL(2,R) :
~ T1(SL(2,Z)\H) = unit tangent bundle of modular surface S
e The convergence

Z2<cos¢ —Siﬂgb) (e O) . 520

sing cosg | \0 e
follows from the equidistribution of large circles on the mod-

ular surface (G. Margulis, A. Eskin & C. McMullen)
e The convergence

> (1 wu e O d 2
z <O 1)(0 6_1> 9, 22

follows from equidistribution of large closed horocycles on
the modular surface (D. Zagier, P. Sarnak, D. Hejhal, L. Flaminio &
G. Forni, A. Strombergsson)

by C. Kogler

Right multiplication by the diagonal subgroup corresponds to the action of the geodesic flow,
which in turn is closely related to the Gauss map and continued fractions; cf. C. Series, The
modular surface and continued fractions (J. LMS 1985)
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Equidistribution = convergence in distribution

e space of lattices ~ SL(2,7Z)\ SL(2,R)
~ T1(SL(2,Z)\H) = unit tangent bundle of modular surface

e The convergence

> (Ccosp —sing) (e O d 2
2\ sing cos¢ J\o 1) —7 LM

follows from the equidistribution of large circles on the mod-
ular surface (G. Margulis, A. Eskin & C. McMullen)

e The convergence

1 wu e O d
0 1/\0 1 ;
follows from equidistribution of large closed horocycles on
the modular surface (S.G. Dani & J. Smillie, D. Zagier, P. Sarnak, D.
Hejhal, L. Flaminio & G. Forni, A. Strombergsson)

72 72 M

by C. Kogler

Right multiplication by the diagonal subgroup corresponds to the action of the geodesic flow,
which in turn is closely related to the Gauss map and continued fractions; cf. C. Series, The
modular surface and continued fractions (J. LMS 1985)

20



This works in higher dimensions (unlike continued fractions)

e Free path length in higher-dimensional Lorentz gases; no explicit formulas,
but one prove P(s) ~ C;s~3 for any dimension d > 2 * as well as proof
of convergence to a limit Markov process in the Boltzmann-Grad limitT which
exhibits superdiffusion¥ ° °© ° ° ° ° ° e e o o o 0o o 0 o oso o

*JM & A. Strombergsson, Annals Math 2010, GAFA 2011, improving upper/lower bounds of J.-P.
Bourgain, F. Golse & B. Wennberg CMP 1998/M2AN 2000

TJM & A. Strémbergsson, Annals Math 2011
+JM & B. Toth, CMP 2017
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This works in higher dimensions, and not just for lattices!

e Free path length in higher-dimensional Lorentz gases; no explicit formulas,
but one prove P(s) ~ C;s—3 for any dimension d > 2 * as well as proof
of convergence to a limit Markov process in the Boltzmann-Grad limitT which
exhibits superdiffusion ¥

e ...and Lorentz gases in quasicrystals® (deploys M. Ratner’s measure clas-
sification theorem) and in lattices with defects

e Kinetic transport in Lorentz gas for general scatterer configurationsl|

*JM & A. Strombergsson, Annals Math 2010, GAFA 2011, improving upper/lower bounds of J.-P.
Bourgain, F. Golse & B. Wennberg CMP 1998/M2AN 2000

TJM & A. Strémbergsson, Annals Math 2011

+JM & B. Toth, CMP 2017

SJM & A. Strémbergsson, CMP 2014

1JM & 1. Vinogradov, Geom. Dedicata 2017

IJM & A. Strémbergsson, Memoirs AMS (in press)
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Fractional parts of small powers

e Forfixed 0 < 8 < 1, 8 # % the gap -
distribution of n” mod 1 looks Poisson "
numerically—-NO PROOFS!* 5:%_)0_6

e For 3 = 2, Elkies & McMullen have shown
that the gap distribution exists, and derived
an explicit formula which is clearly differ- -
ent from the exponential. Their proof uses ..
equidistribution of closed nonlinear horocy-
cles on the space of affine lattices and Rat-
ner's measure classification theorem

N. Elkies & C. McMullen, Duke Math J 2004

*See recent proof for two-point statistics: C. Lutsko, N. Technau & A. Sourmelidis, Pair correlation
of the fractional parts of an?, arXiv:2106.09800 (2021)
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Statistics of directions

Consider the directi f shifted ﬁ\/

e Consider the directions of shifte

lattice points of a Euclidean lattice / \ / \
L in a large ball E/‘\V /

0.8

e The gap distribution exists and coin- :
cides with the Elkies-McMullen dis-  ““JJi
tribution if (a,8) ¢ QL. Proof oIl
uses again Ratner’s measure classi- _
fication theorem—»but for a different

0.2

N

unipotent flow! To e

JM & Strombergsson, Annals Math 2010
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Directions in quasicrystals

research papers

@ CrossMark

Acta Crystallographica Section A
Foundations and
Advances

Radial spacing distributions from planar point sets

ISSN 2053-2733 M. Baake,* F. Gotze, C. Huck and T. Jakobi

Received 12 February 2014
Accepted 14 May 2014

Department of Mathematics, Bielefeld University, Bielefeld, Germany. Correspondence e-mail:
mbaake@math.uni-bielefeld.de

This paper explores the radial projection method for locally finite planar point

sets and provides numerical examples for different types of order. The main

question is whether the method is suitable to analyse order in a quantitative way.

The findings indicate that the answer is affirmative. In this context, local
© 2014 International Union of Crystallography visibility conditions are also studied for certain types of aperiodic point sets.
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Figure 8

Visible vertices of the eightfold symmetric Ammann-Beenker tiling (left:

direct space, right: internal space).

0.0 0.5 1.0 1.5 20 2.5 30

Figure 9
Distribution of the radial spacings of a large Dg-symmetric AB patch.

JM and A. Strombergsson, Visibility and directions in quasicrystals, IMRN 2015
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Small-world networks

Collective dynamics of
‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall,

Cornell University, Ithaca, New York 14853, USA

Networks of coupled dynamical systems have been used to model
biclogical oscillators'™, Josephson junction arrays™, excitable
media’, neural networks*'®, spatial games', genetic control
networks' and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many bielogical, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon™" (popularly known as six degrees of separation®).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

Regular Small-world

Increasing randomness

Figure 1 Random rewiring procedure for interpolating between a regular ring
lattice and a random netwaork, without altering the number of vertices oredges in
the graph. We start with a ring of n vertices, each connected to its & nearest
neighbours by undirected edges. {For clarity, 7 = 20 and k¥ = & in the schematic
examples shown here, but much largern and & are used in the rest of this Letter)
We choose a vertex and the edge that connacts it 1o its nearest neighbour in a
clockwise sense. With probability p, we reconnect this edge to a vertex chosen
uniformly at random owver the entire ring, with duplicate edges forbidden; other-
wise we leave the edge in place. We repeat this process by moving clockwise

from: Watts & Strogatz, Nature 1998
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Circulant graphs

1. Fixintegers 0 < a1 < ... < ap <n/2withgcd(aq,...,ar,n) = 1;
2. Connect vertex ¢ and j, if |i — j| = a;, mod n for some ay,; assign length ¢,
to this edge.

The resulting graph Cy, (£, a) is called a “circulant graph” (its adjacency matrix is
circulant), sometimes also “multiloop network”. It is of course the undirected Cay-
ley graph of the cyclic group of order n w.r.t. the generating set {+a1, ..., +a;}.

H ghl i ght G aph[#, Fi ndD aneterPath[#]] &[C rcul ant G aph[41, {1, 15, 20}]1]

o—0—e
o —e
o | e

- A
/O \ .\ .\ ‘N ‘/‘ / / O\
SR A
O/o \‘“‘\“PWQ o v."‘!' ‘ 71"/ o\O
NS y
== 222,
o OG-
"‘ I 4 N AN N
NS ""’!”’0""’"‘“‘5\"‘ S
o . / / ”‘ \ \ o P
O\O O/O

——0—
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Random lattices and circulant graphs

Theorem A (Marklof & Strombergsson, Combinatorica 2013). Let &k > 2,
D c RF+1 pounded, non-empty and boundary of Lebesgue measure zero.
Pick (a,n) at random in T'D. Then
diamCp(4,a) 4
(nly - G)1/F
where p(°B, L) is ...

> p(B, L) as T — oo,

28




...a random variable distributed according to the probability density

25| 7 (numerics for k = 2, £ = (1,1), n = 1000)

15 F

05

For k = 2: Yo 03
0 1)
o NG
p2(R> — Y24/2R2-1 2R2 1— R R? 1
7T2( r |09 (232_1> +=x log (\1—32\» (B> 75).

For general k > 2:
k

pr(R) =0 (R < S(kDYE),  Br(R) ~ mfz—“ﬁ“) (R — o)

29



Random lattices and circulant graphs

Theorem A (Marklof & Strombergsson, Combinatorica 2013). Let &k > 2,
D c RF+1 pounded, non-empty and boundary of Lebesgue measure zero.
Pick (a,n) at random in T'D. Then
diamCp(4,a) 4
(nly - G)1/F
where p(°B, L) is ...

> p(B, L) as T — oo,
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Random lattices and circulant graphs

Theorem A (Marklof & Strombergsson, Combinatorica 2013). Let &k > 2,
D c RF+1 pounded, non-empty and boundary of Lebesgue measure zero.
Pick (a,n) at random in T'D. Then

diamCp(4,a) 4
(ny - )1k

where p(B, L) is ...the covering radius of a random lattice L in R* with re-
spect to the polytope

> p(B, L) as T — oo,

P={xcR":|z1|+ ...+ |y < 1}.

(’B8 is a square for k = 2 and an octahedron for £k = 3.)

Improved by Shapira & Zuck (Combinatorica 2019) who proved the above for
fixed n — oo and only a random.
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How about random lattices in hyperbolic geometry?

Escher’s Circle Limit |
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Outline

Lecture 1 What are random lattices? Basic features and examples

Lecture 2 Random lattices in number theory and geometry (Tomorrow)

Lecture 3 Random lattices in statistical mechanics — the Lorentz gas (Friday)
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