Random lattices and their applications in number theory, geometry and statistical mechanics III

Jens Marklof University of Bristol

Tata Institute for Fundamental Research, Mumbai, February 2023

Outline

Lecture 1 What are random lattices? Basic features and examples

Lecture 2 Random lattices in number theory and geometry

Lecture 3 Random lattices in statistical mechanics – the Lorentz gas

Maxwell and Boltzmann

James Clerk Maxwell (1831-1879)

Ludwig Boltzmann (1844-1906)

The Lorentz gas

Arch. Neerl. (1905)

Hendrik Lorentz (1853-1928)

The Lorentz gas

• \mathcal{P} locally finite subset of \mathbb{R}^d with density one, i.e.,

$$\lim_{R\to\infty}\frac{\#(\mathcal{P}\cap R\mathcal{D})}{R^d} = \operatorname{vol}\mathcal{D}$$

for all bounded sets $\mathcal{D} \subset \mathbb{R}^d$ with vol $\partial \mathcal{D} = 0$

 scatterers are fixed open balls of radius ρ centered at the points in P

The Lorentz gas

- the particles are assumed to be non-interacting
- each test particle moves with constant velocity v(t) between collisions
- the scattering is specular reflection; we can also treat scattering by compactly supported, spherically symmetric potentials
- we assume w.l.o.g. $\|v(t)\| = 1$

The Boltzmann-Grad (=low-density) limit

- Consider the dynamics in the limit of small scatterer radius ho
- (q(t), v(t)) = "microscopic" phase space coordinate at time t
- A volume argument shows that for $\rho \rightarrow 0$ the mean free path length (i.e., the average time between consecutive collisions) is asymptotic to

$$\frac{1}{\text{total scattering cross section}} = \frac{1}{\rho^{d-1} \operatorname{vol} B_1^{d-1}}$$

• We thus measure position and time in the "macroscopic" coordinates

$$\left(\boldsymbol{Q}(t), \boldsymbol{V}(t)\right) = \left(\rho^{d-1}\boldsymbol{q}(\rho^{1-d}t), \boldsymbol{v}(\rho^{1-d}t)\right)$$

• Time evolution of initial data (Q_0, V_0) :

 $\left(\boldsymbol{Q}(t), \boldsymbol{V}(t)\right) = \Phi_{\rho}^{t}(\boldsymbol{Q}_{0}, \boldsymbol{V}_{0})$

The linear Boltzmann equation

• Time evolution of a particle cloud with initial density $f \in L^1$:

 $f_t^{(\rho)}(\boldsymbol{Q}, \boldsymbol{V}) := f(\Phi_{\rho}^{-t}(\boldsymbol{Q}, \boldsymbol{V}))$

In his 1905 paper Lorentz suggested that $f_t^{(\rho)}$ is governed, as $\rho \to 0$, by the linear Boltzmann equation:

$$\left[\frac{\partial}{\partial t} + \boldsymbol{V} \cdot \nabla_{\boldsymbol{Q}}\right] f_t(\boldsymbol{Q}, \boldsymbol{V}) = \int_{\mathsf{S}_1^{d-1}} \left[f_t(\boldsymbol{Q}, \boldsymbol{V}') - f_t(\boldsymbol{Q}, \boldsymbol{V}) \right] \sigma(\boldsymbol{V}, \boldsymbol{V}') d\boldsymbol{V}'$$

where $\sigma(V, V')$ is the differential cross section of the individual scatterer. E.g.: $\sigma(V, V') = \frac{1}{4} ||V - V'||^{3-d}$ for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, ...

Main questions:

- What are the random flight processes that emerge in the Boltzmann-Grad limit?
- What are the associated kinetic transport equations?

Key microscopic quantities

- q_0, v_0 initial particle position and velocity ($||v_0|| = 1$)
- $\tau_1 = \tau_1(q_0, v_0)$ first hitting time
- $v_n = v_n(q_0, v_0)$ velocity after *n*th collision
- $\tau_{n+1} = \tau_{n+1}(q_0, v_0)$ free path lengths after *n*th collision
- $s_n = \tau_n v_{n-1}$ travel intinerary
- mean free path $\sim rac{1}{
 ho^{d-1} \operatorname{vol} B_1^{d-1}}$

Fixed random scatterer configurationPeriodic scatterer configuration \mathbb{Z}^2 Scattering radius $\rho = 1/4$, mean free path $= \frac{1}{2\rho} = 2$

Fixed random scatterer configurationPeriodic scatterer configuration \mathbb{Z}^2 Scattering radius $\rho = 1/6$, mean free path $= \frac{1}{2\rho} = 3$

Fixed random scatterer configurationPeriodic scatterer configuration \mathbb{Z}^2 Scattering radius $\rho = 1/8$, mean free path = $\frac{1}{2\rho} = 4$

Key macroscopic quantities

- $Q_0 = \rho^{d-1} q_0, V_0 = v_0$
- $\xi_1 = \rho^{d-1} \tau_1(\rho^{1-d} Q_0, V_0)$
- $\boldsymbol{V}_n = \boldsymbol{v}_n(\rho^{1-d}\boldsymbol{Q}_0, \boldsymbol{V}_0)$
- $\xi_{n+1} = \rho^{d-1} \tau_{n+1}(\rho^{1-d} Q_0, V_0)$

•
$$\boldsymbol{S}_n = \xi_n \boldsymbol{V}_{n-1} = \rho^{d-1} \boldsymbol{s}$$

• (macro) mean free path $\frac{1}{\operatorname{vol} B_1^{d-1}}$

Fixed random scatterer configurationPeriodic scatterer configuration \mathbb{Z}^2 Scattering radius $\rho = 1/4$, mean free path $= \frac{1}{2\rho} = 2$

Fixed random scatterer configuration Periodic

Periodic scatterer configuration \mathbb{Z}^2

Scattering radius $\rho = 1/4$; 1/2-zoom: macroscopic mean free path=1

Fixed random scatterer configurationPeriodic scatterer configuration \mathbb{Z}^2 Scattering radius $\rho = 1/6$; 1/3-zoom: macroscopic mean free path=1

Fixed random scatterer configurationPeriodic scatterer configuration \mathbb{Z}^2 Scattering radius $\rho = 1/8$; 1/4-zoom: macroscopic mean free path=1

The main result

• $n_t = n_t(Q_0, V_0)$ the number of collisions within time t, i.e.,

$$n_t = \max \{ n \in \mathbb{Z}_{\geq 0} : T_n \le t \}, \qquad T_n := \sum_{j=1}^n \xi_j.$$

m

• For (Q_0, V_0) random w.r.t. $\Lambda \in P_{ac}(T^1(\mathbb{R}^d))$,

$$\Theta^{(\rho)}: t \mapsto \Theta^{(\rho)}(t) = \left(\boldsymbol{Q}_0 + \sum_{j=1}^{n_t} \xi_j \boldsymbol{V}_{j-1} + (t - T_{n_t}) \boldsymbol{V}_{n_t}, \boldsymbol{V}_{n_t} \right)$$

defines a random flight process.

Theorem A

Let \mathcal{P} be admissible. Then, for any $\Lambda \in P_{ac}(\mathbb{T}^1(\mathbb{R}^d))$, there is a random flight process $\Theta^{(0)}$ with $\mathbb{P}(\xi_j^{(0)} = \infty) = 0$ for all j, such that $\Theta^{(\rho)}$ converges to $\Theta^{(0)}$ in distribution, as $\rho \to 0$.

Outline of proof

The key is to establish the following discrete time analogue of Theorem A.

There are three steps:

- 1. **Rescaling** and spherical equidistribution for each individual inter-collision flight
- 2. Markovianisation of the limit process through introduction of a marking of \mathcal{P}
- 3. **Induction** on the number of inter-collision flights

Step 1: Rescaling

Define $R(v) : S_1^{d-1} \to SO(d)$ such that $vR(v) = e_1 = (1, 0, ..., 0)$ and $D_{\rho} = \begin{pmatrix} \rho^{d-1} & 0 \\ t_0 & \rho^{-1} \mathbf{1}_{d-1} \end{pmatrix} \in SL(d, \mathbb{R}).$

Applying $R(v_n)D_{\rho}$ to this cylinder orients it along the e_1 -axis and makes it well proportioned. First apply $R(v_n)$.

It is important to keep track of the exit parameters b_n^- and impact parameters b_n .

Now apply D_{ρ} .

Step 2: Marking

- Under the above rescaling the cylinder converges to a (ρ, v_n) -independent cyclinder (with flat caps).
- The point set \mathcal{P} has been replaced by the random point set $(\mathcal{P}-\boldsymbol{y}_n)R(\boldsymbol{v}_n)D_{\rho}$.
- For *y* fixed and *v* random, limit distribution of (*P* − *y*)*R*(*v*)*D*_ρ can in general depend on *y* ∈ *P*. In order to keep track of this, we assign a **mark** to each *y*; we want the space of marks to be nice.

Assumptions on the scatterer configuration \mathcal{P}

We say \mathcal{P} is **admissible** if there exists a compact metric space Σ with Borel probability measure m, and map $\varsigma : \mathcal{P} \to \Sigma$ (the marking) such that for

 $\mathcal{X} = \mathbb{R}^d \times \Sigma, \quad \mu_{\mathcal{X}} = \text{vol} \times m$ $\tilde{\mathcal{P}} = \{(\boldsymbol{y},\varsigma(\boldsymbol{y})) : \boldsymbol{y} \in \mathcal{P})\} \subset \mathcal{X} \quad \text{(the marked point set)}$

we have

• Assumption 1 (density)

$$\lim_{R \to \infty} \frac{\#(\tilde{\mathcal{P}} \cap R\mathcal{D})}{R^d} = \mu_{\mathcal{X}}(\mathcal{D})$$

for all bounded sets $\mathcal{D} \subset \mathcal{X}$ with $\mu_{\mathcal{X}}(\partial \mathcal{D}) = 0$

 Assumption 2 (spherical equidistribution) For *v* random according to λ a.c. w.r.t. vol measure on S^{d-1}₁

$$\tilde{\Xi}_{\rho,\boldsymbol{y}} = (\tilde{\mathcal{P}} - \boldsymbol{y})R(\boldsymbol{v})D_{\rho} \xrightarrow{\mathsf{d}} \tilde{\Xi}_{\varsigma(\boldsymbol{y})} \qquad (\rho \to 0)^*$$

uniformly for all $y \in \mathcal{P}$ in balls of radius $\simeq \rho^{1-d}$, where $\tilde{\Xi}_{\varsigma}$ depends only on $\varsigma \in \Sigma$

• ... and more

*for $M \in \mathsf{SL}(d,\mathbb{R})$ set $(\boldsymbol{y},\varsigma(\boldsymbol{y}))M = (\boldsymbol{y}M,\varsigma(\boldsymbol{y}))$

Examples for admissible \mathcal{P}

Example 1: $\mathcal{P} =$ a realization of the Poisson process in \mathbb{R}^d with intensity 1, and $\Sigma = \{1\}$; proof that our assumptions satisfied is non-trivial, follows ideas of Boldrighini, Bunimovich and Sinai (J Stat Phys 1983).

Previous results:

- Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere scatterer configuration \mathcal{P}
- Spohn (Comm Math Phys 1978): extension to more general Fixed random scatterer configurations *P* and potentials
- Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for almost every scatterer configuration *P* (w.r.t. the Poisson random measure), for hard sphere scatterers only
- Implies CLT for limit process (standard CLT for Markovian random flight process); for intermediate joint Boltzmann-Grad/diffusive scaling see Lutsko and Toth (preprint 2018)

Examples for admissible ${\boldsymbol{\mathcal{P}}}$

Example 2: $\mathcal{P} = \mathbb{Z}^d$ (or any other Euclidean lattice of co-volume 1) and $\Sigma = \{1\}$ (periodic Lorentz gas); proof uses spherical equidistribution on space of lattices (JM & Strömbergsson, Annals of Math 2010). The limit process is independent of the choice of lattice!

Previous results:

- Caglioti and Golse, Comptes Rendus 2008, J Stat Phys 2010
- JM & Strömbergsson, Nonlinearity 2008, Annals of Math 2010/2011, GAFA 2011
- Polya (Arch Math Phys 1918): "Visibility in a forest" (d = 2)
- Dahlquist (Nonlinearity 1997); Boca, Cobeli, Zaharescu (CMP 2000); Caglioti, Golse (CMP 2003); Boca, Gologan, Zaharescu (CMP 2003); Boca, Zaharescu (CMP 2007): Limit distributions for the free path lengths for various sets of initial data (d = 2)
- Dumas, Dumas, Golse (J Stat Phys 1997): Asymptotics of mean free path lengths ($d \ge 2$)
- Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000): bounds on possible weak limits $(d \ge 2)$
- Boca & Gologan (Annales I Fourier 2009), Boca (NY J Math 2010): honeycomb lattice

Examples for admissible \mathcal{P}

Example 3: $\mathcal{P} = \bigcup_{i=1}^{m} (\mathcal{L} + \alpha_i)$ locally finite periodic point set (e.g. the honeycomb/hexagonal lattice), with \mathcal{L} Euclidean lattice of covolume m; $\Sigma = \{1, 2, ..., m\}$. Admissible follows from spherical equidistribution, which here is a consequence of Ratner's theorem on $SL(d, \mathbb{Z}) \ltimes (\mathbb{Z}^d)^k \setminus SL(d, \mathbb{R}) \ltimes (\mathbb{R}^d)^k$.

Previous results on free path length: Boca & Gologan (Annales I Fourier 2009), Boca (NY J Math 2010)

Example 4: \mathcal{P} = Euclidean cut-and-project set (e.g. the vertex set of a Penrose tiling) and $\Sigma \subset \mathbb{R}^k$ (the internal space in the c&p construction); proof of assumptions uses uses equidistribution of lower dimensional spheres in space of lattices, which is again a consequence of Ratner's theorem (JM & Strömbergsson, CMP 2014; Memoirs AMS in press).

Step 3: Induction \longrightarrow The main theorem

Theorem C

Let \mathcal{P} be admissible. Then, for any $\Lambda \in P_{ac}(\mathsf{T}^1(\mathbb{R}^d))$, the random process

 $\mathbb{N} \to (\mathbb{R}_{>0} \cup \{+\infty\}) \times \Sigma \times \mathsf{S}_1^{d-1}$ $j \mapsto \left(\rho^{d-1}\tau_j(\rho^{1-d}q_0, \boldsymbol{v}_0; \rho), \varsigma_j(\rho^{1-d}q_0, \boldsymbol{v}_0; \rho), \boldsymbol{v}_j(\rho^{1-d}q_0, \boldsymbol{v}_0; \rho)\right)$

converges in distribution to the second-order Markov process

$$j\mapsto (\xi_j,\varsigma_j,\boldsymbol{v}_j),$$

where for any Borel set $A \subset \mathbb{R}_{\geq 0} \times \Sigma \times S_1^{d-1}$,

$$\mathbb{P}\Big((\xi_1,\varsigma_1,\boldsymbol{v}_1)\in A\,\Big|\,(\boldsymbol{q}_0,\boldsymbol{v}_0)\Big)=\int_A p(\boldsymbol{v}_0;\boldsymbol{\xi},\varsigma,\boldsymbol{v})\,d\boldsymbol{\xi}\,d\mathsf{m}(\varsigma)\,d\boldsymbol{v},$$

and for $j \geq 2$,

$$\mathbb{P}\Big((\xi_j,\varsigma_j,\boldsymbol{v}_j)\in A\,\Big|\,(\boldsymbol{q}_0,\boldsymbol{v}_0),\,\,\Big\langle(\xi_i,\varsigma_i,\boldsymbol{v}_i)\Big\rangle_{i=1}^{j-1}\Big)\\ =\int_A p_0(\boldsymbol{v}_{j-2},\varsigma_{j-1},\boldsymbol{v}_{j-1};\xi,\varsigma,\boldsymbol{v})\,d\xi\,d\mathsf{m}(\varsigma)\,d\boldsymbol{v}.$$

The functions p, p_0 depend on \mathcal{P} but are independent of Λ , and for any fixed v_0, ς, v both $p(v_0; \cdot)$ and $p_0(v_0, \varsigma, v; \cdot)$ are probability densities on $\mathbb{R}_{\geq 0} \times \Sigma \times S_1^{d-1}$. In particular $\mathbb{P}(\xi_j = \infty) = 0$ for all j.

Evolution of densities

Recall: a cloud of particles with initial density f(Q, V) evolves in time t to $[L_{\rho}^{t}f](Q, V) = f(\Phi_{\rho}^{-t}(Q, V)).$

Theorem D Let \mathcal{P} be admissible. Then for every t > 0 there exists a linear operator $L^t : L^1(T^1(\mathbb{R}^d)) \to L^1(T^1(\mathbb{R}^d))$ such that for every $f \in L^1(T^1(\mathbb{R}^d))$ and any set $\mathcal{A} \subset T^1(\mathbb{R}^d)$ with boundary of Liouville measure zero, $\lim_{\rho \to 0} \int_{\mathcal{A}} [L^t_{\rho} f](Q, V) \, dQ \, dV = \int_{\mathcal{A}} [L^t f](Q, V) \, dQ \, dV.$

The operator L^t thus describes the macroscopic diffusion of the Lorentz gas in the Boltzmann-Grad limit $\rho \rightarrow 0$. (We in fact prove convergence of the Lorentz process to a random flight process.)

Note: The family $\{L^t\}_{t>0}$ does in general *not* form a semigroup.

A generalized linear Boltzmann equation

Consider extended phase space coordinates $(Q, V, \varsigma, \xi, V_+)$:

 $(Q, V) \in T^1(\mathbb{R}^d)$ — usual position and momentum $\varsigma \in \Sigma$ — the mark of current scatterer location $\xi \in \mathbb{R}_+$ — flight time until the next scatterer $V_+ \in S_1^{d-1}$ — velocity after the next hit

$$\begin{split} \left[\frac{\partial}{\partial t} + \boldsymbol{V} \cdot \nabla_{\boldsymbol{Q}} - \frac{\partial}{\partial \xi} \right] f_t(\boldsymbol{Q}, \boldsymbol{V}, \varsigma, \xi, \boldsymbol{V}_+) \\ &= \int_{\Sigma} \int_{S_1^{d-1}} f_t(\boldsymbol{Q}, \boldsymbol{V}', \varsigma', \boldsymbol{0}, \boldsymbol{V}) \ p_0(\boldsymbol{V}', \varsigma', \boldsymbol{V}, \varsigma, \xi, \boldsymbol{V}_+) d\boldsymbol{V}' d\mathsf{m}(\varsigma'). \end{split}$$

with a collision kernel $p_0(V', \varsigma', V, \varsigma, \xi, V_+)$, which can be expressed as a product of the scattering cross section of an individual scatterer and a certain transition probability for hitting a given point on the next scatterer with mark ς after time ξ , given the present scatterer has mark ς' .

Crystals

The distribution $\Phi(\xi)$ of free path lengths for lattice configurations

Tail asymptotics (JM & Strömbergsson, GAFA 2011):

$$\Phi(\xi) = \frac{2^{2-d}}{d(d+1)\zeta(d)} \xi^{-3} + O\left(\xi^{-3-\frac{2}{d}}\log\xi\right) \qquad (\xi \to \infty)$$

$$\Phi(\xi) = \frac{\overline{\sigma}}{\zeta(d)} + O(\xi) \qquad (\xi \to 0)$$

with $\overline{\sigma} = \operatorname{vol}(\mathcal{B}_1^{d-1}) = \frac{\pi^{(d-1)/2}}{\Gamma((d+1)/2)}.$

Application: Superdiffusive central limit theorem

The divergent second moment of the path length distribution leads to $t \log t$ superdiffusion:

Theorem E [JM & B. Toth, CMP 2016] Let $d \ge 2$ and fix a Euclidean lattice $\mathcal{L} \subset \mathbb{R}^d$ of covolume one. Assume (Q_0, V_0) is distributed according to an absolutely continuous Borel probability measure Λ on $T^1(\mathbb{R}^d)$. Then, for any bounded continuous $f : \mathbb{R}^d \to \mathbb{R}$, $\lim_{t\to\infty} \lim_{r\to 0} \mathbb{E}f\left(\frac{Q(t)-Q_0}{\Sigma_d\sqrt{t\log t}}\right) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} f(x) e^{-\frac{1}{2}||x||^2} dx$, with $\Sigma_d^2 := \frac{2^{1-d}\overline{\sigma}}{d^2(d+1)\zeta(d)}$.

For fixed r the analogous result is currently known only in dimension d = 2, see Szász & Varjú (J Stat Phys 2007), Chernov & Dolgopyat (Russ. Math Surveys 2009).

Quasicrystals

Cut and project

- $\mathbb{R}^n = \mathbb{R}^d \times \mathbb{R}^m$, π and π_{int} orthogonal projections onto \mathbb{R}^d , \mathbb{R}^m
- $\mathcal{L} \subset \mathbb{R}^n$ a lattice of full rank
- $\mathcal{A} := \overline{\pi_{int}(\mathcal{L})}$ is an abelian subgroup of \mathbb{R}^m , with Haar measure $\mu_{\mathcal{A}}$
- *W* ⊂ *A* a "regular window set"
 (i.e. bounded with non-empty interior, μ_A(∂W) = 0)
- $\mathcal{P}(\mathcal{W}, \mathcal{L}) = \{\pi(\boldsymbol{y}) : \boldsymbol{y} \in \mathcal{L}, \ \pi_{int}(\boldsymbol{y}) \in \mathcal{W}\} \subset \mathbb{R}^d$ is called a "regular cut-and-project set"
- $\mathcal{P}(\mathcal{W}, \mathcal{L})$ defines the locations of scatterers in our quasicrystal

Example: The Penrose tiling

(from: de Bruijn, Kon Nederl Akad Wetensch Proc Ser A, 1981)

Density

We have the following well known facts:

- $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is a Delone set, i.e., uniformly discrete and relatively dense in \mathbb{R}^d
- For any bounded $\mathcal{D} \subset \mathbb{R}^d$ with boundary of Lebesgue measure zero,

$$\lim_{T \to \infty} \frac{\#(\mathcal{P} \cap T\mathcal{D})}{T^d} = c_{\mathcal{L}} \operatorname{vol}(\mathcal{D}) \mu_{\mathcal{A}}(\mathcal{W})$$

(the constant $c_{\mathcal{L}}$ is explicit)

Spherical averages of cut-and-project sets and "random quasicrystals"

- Set $G = SL(n, \mathbb{R})$, $\Gamma = SL(n, \mathbb{Z})$, $\mathcal{L} = \mathbb{Z}^n g$ for some $g \in G$.
- Note that for $A \in SL(d, \mathbb{R})$,

$$\mathcal{P}(\mathcal{W},\mathcal{L})A = \left\{ \pi(\boldsymbol{y}) : \boldsymbol{y} \in \mathbb{Z}^n g \begin{pmatrix} A & 0 \\ 0 & 1_m \end{pmatrix}, \ \pi_{\mathsf{int}}(\boldsymbol{y}) \in \mathcal{W} \right\}$$

• This motivates the definition of the embedding of $SL(d, \mathbb{R})$ in G by the map

$$\varphi_g : \mathsf{SL}(d,\mathbb{R}) \to G, \quad A \mapsto g \begin{pmatrix} A & 0 \\ 0 & 1_m \end{pmatrix} g^{-1}.$$

Spherical averages of cut-and-project sets and "random quasicrystals"

- It follows from Ratner's theorem that there exists a closed connected subgroup H_g ofc G such that
 - $\Gamma \cap H_g$ is a lattice in H_g
 - $-\varphi_g(\mathsf{SL}(d,\mathbb{R})) \subset H_g$
 - the closure of $\Gamma \setminus \Gamma \varphi_g(\mathsf{SL}(d, \mathbb{R}))$ in $\Gamma \setminus G$ is given by $\Gamma \setminus \Gamma H_g$.
- Denote the unique right- H_g invariant probability measure on $\Gamma \setminus \Gamma H_g$ by μ_g .
- Using an equidistribution result for unipotent translates due to N. Shah* based on Ratner's theorem, one can show that[†] for v random according to any a.c. Borel probability measure on S₁^{d-1},

 $\mathcal{P}(\mathcal{W},\mathcal{L})R(\boldsymbol{v})D_{\rho} = \{\pi(\boldsymbol{y}) : \boldsymbol{y} \in \mathbb{Z}^{n}\varphi_{g}(R(\boldsymbol{v})D_{\rho})g, \ \pi_{\mathsf{int}}(\boldsymbol{y}) \in \mathcal{W}\}$ $\xrightarrow{\mathsf{d}} \{\pi(\boldsymbol{y}) : \boldsymbol{y} \in \mathbb{Z}^{n}hg, \ \pi_{\mathsf{int}}(\boldsymbol{y}) \in \mathcal{W}\}$

where $h \in \Gamma \setminus \Gamma H_g$ is distributed according to μ_g .

*N. Shah, Proc. Indian Acad. Sci. Math. Sci., 1996 *JM & Strömbergsson, Comm. Math. Phys. 2014

Examples

• If $\mathcal{P}(\mathcal{L}, \mathcal{W})$, then for almost every \mathcal{L} in the space of lattices, we have

$$H_g = SL(n, \mathbb{R}), \qquad \Gamma \cap H_g = SL(n, \mathbb{Z}).$$

• If $\mathcal{P}(\mathcal{L}, \mathcal{W})$ is the vertex set of the classical Penrose tiling, we have

$$H_g = \mathrm{SL}(2,\mathbb{R})^2$$

and $\Gamma \cap H_g =$ a congruence subgroup of the Hilbert modular group $SL(2, \mathcal{O}_K)$, with \mathcal{O}_K the ring of integers of $K = \mathbb{Q}(\sqrt{5})$.

• A complete classification of all H_g that can arise in our context has recently been given by see Ruehr, Smilansky & Weiss (JEMS in press)

Future challenges

- "Classify" point processes that can arise as spherical averages; which of these are SL(d, ℝ)-invariant and/or translation invariant?
- Lorentz gas in force fields; trajectories will be curved
- (Super-) diffusive limits
- Quantum Lorentz gas