Random lattices and their applications in number theory, geometry and statistical mechanics III

Jens Marklof
University of Bristol

Tata Institute for Fundamental Research, Mumbai, February 2023

Outline

Lecture 1 What are random lattices? Basic features and examples

Lecture 2 Random lattices in number theory and geometry

Lecture 3 Random lattices in statistical mechanics - the Lorentz gas

Maxwell and Boltzmann

The Lorentz gas

The Lorentz gas

- \mathcal{P} locally finite subset of \mathbb{R}^{d} with density one, i.e.,

$$
\lim _{R \rightarrow \infty} \frac{\#(\mathcal{P} \cap R \mathcal{D})}{R^{d}}=\operatorname{vol} \mathcal{D}
$$

for all bounded sets $\mathcal{D} \subset \mathbb{R}^{d}$ with vol $\partial \mathcal{D}=0$

- scatterers are fixed open balls of radius ρ centered at the points in \mathcal{P}

The Lorentz gas

- the particles are assumed to be non-interacting
- each test particle moves with constant velocity $\boldsymbol{v}(t)$ between collisions
- the scattering is specular reflection; we can also treat scattering by compactly supported, spherically symmetric potentials
- we assume w.l.o.g. $\|\boldsymbol{v}(t)\|=1$

The Boltzmann-Grad (=low-density) limit

- Consider the dynamics in the limit of small scatterer radius ρ
- $(\boldsymbol{q}(t), \boldsymbol{v}(t))=$ "microscopic" phase space coordinate at time t
- A volume argument shows that for $\rho \rightarrow 0$ the mean free path length (i.e., the average time between consecutive collisions) is asymptotic to

$$
\frac{1}{\text { total scattering cross section }}=\frac{1}{\rho^{d-1} \mathrm{vol} B_{1}^{d-1}}
$$

- We thus measure position and time in the "macroscopic" coordinates

$$
(\boldsymbol{Q}(t), \boldsymbol{V}(t))=\left(\rho^{d-1} \boldsymbol{q}\left(\rho^{1-d} t\right), \boldsymbol{v}\left(\rho^{1-d} t\right)\right)
$$

- Time evolution of initial data $\left(\boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right)$:

$$
(\boldsymbol{Q}(t), \boldsymbol{V}(t))=\Phi_{\rho}^{t}\left(\boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right)
$$

The linear Boltzmann equation

- Time evolution of a particle cloud with initial density $f \in \mathrm{~L}^{1}$:

$$
f_{t}^{(\rho)}(\boldsymbol{Q}, \boldsymbol{V}):=f\left(\Phi_{\rho}^{-t}(\boldsymbol{Q}, \boldsymbol{V})\right)
$$

In his 1905 paper Lorentz suggested that $f_{t}^{(\rho)}$ is governed, as $\rho \rightarrow 0$, by the linear Boltzmann equation:

$$
\left[\frac{\partial}{\partial t}+\boldsymbol{V} \cdot \nabla_{\boldsymbol{Q}}\right] f_{t}(\boldsymbol{Q}, \boldsymbol{V})=\int_{\mathrm{S}_{1}^{d-1}}\left[f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}^{\prime}\right)-f_{t}(\boldsymbol{Q}, \boldsymbol{V})\right] \sigma\left(\boldsymbol{V}, \boldsymbol{V}^{\prime}\right) d \boldsymbol{V}^{\prime}
$$

where $\sigma\left(\boldsymbol{V}, \boldsymbol{V}^{\prime}\right)$ is the differential cross section of the individual scatterer. E.g.: $\sigma\left(\boldsymbol{V}, \boldsymbol{V}^{\prime}\right)=\frac{1}{4}\left\|\boldsymbol{V}-\boldsymbol{V}^{\prime}\right\|^{3-d}$ for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, ...

Main questions:

- What are the random flight processes that emerge in the Boltzmann-Grad limit?
- What are the associated kinetic transport equations?

Key microscopic quantities

- $\boldsymbol{q}_{0}, \boldsymbol{v}_{0}$ initial particle position and velocity $\left(\left\|\boldsymbol{v}_{0}\right\|=1\right)$
- $\tau_{1}=\tau_{1}\left(\boldsymbol{q}_{0}, \boldsymbol{v}_{0}\right)$ first hitting time
- $\boldsymbol{v}_{n}=\boldsymbol{v}_{n}\left(\boldsymbol{q}_{0}, \boldsymbol{v}_{0}\right)$ velocity after nth collision
- $\tau_{n+1}=\tau_{n+1}\left(\boldsymbol{q}_{0}, \boldsymbol{v}_{0}\right)$ free path lengths after nth collision
- $\boldsymbol{s}_{n}=\tau_{n} \boldsymbol{v}_{n-1}$ travel intinerary
- mean free path $\sim \frac{1}{\rho^{d-1} \text { vol } B_{1}^{d-1}}$

The Boltzmann-Grad limit

Fixed random scatterer configuration

Periodic scatterer configuration \mathbb{Z}^{2}

Scattering radius $\rho=1 / 4$, mean free path $=\frac{1}{2 \rho}=2$

The Boltzmann-Grad limit

Fixed random scatterer configuration

Periodic scatterer configuration \mathbb{Z}^{2}

Scattering radius $\rho=1 / 6$, mean free path $=\frac{1}{2 \rho}=3$

The Boltzmann-Grad limit

Fixed random scatterer configuration
Periodic scatterer configuration \mathbb{Z}^{2}
Scattering radius $\rho=1 / 8$, mean free path $=\frac{1}{2 \rho}=4$

Key macroscopic quantities

- $\boldsymbol{Q}_{0}=\rho^{d-1} \boldsymbol{q}_{0}, \boldsymbol{V}_{0}=\boldsymbol{v}_{0}$

- $\xi_{1}=\rho^{d-1} \tau_{1}\left(\rho^{1-d} \boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right)$
- $\boldsymbol{V}_{n}=\boldsymbol{v}_{n}\left(\rho^{1-d} \boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right)$
- $\xi_{n+1}=\rho^{d-1} \tau_{n+1}\left(\rho^{1-d} \boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right)$
- $\boldsymbol{S}_{n}=\xi_{n} \boldsymbol{V}_{n-1}=\rho^{d-1} s$
- (macro) mean free path $\frac{1}{\text { vol } B_{1}^{d-1}}$

The Boltzmann-Grad limit

Fixed random scatterer configuration

Periodic scatterer configuration \mathbb{Z}^{2}

Scattering radius $\rho=1 / 4$, mean free path $=\frac{1}{2 \rho}=2$

The Boltzmann-Grad limit

Fixed random scatterer configuration

Periodic scatterer configuration \mathbb{Z}^{2}

Scattering radius $\rho=1 / 4 ; 1 / 2$-zoom: macroscopic mean free path=1

The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration \mathbb{Z}^{2} Scattering radius $\rho=1 / 6 ; 1 / 3$-zoom: macroscopic mean free path=1

The Boltzmann-Grad limit

Fixed random scatterer configuration
Periodic scatterer configuration \mathbb{Z}^{2}
Scattering radius $\rho=1 / 8 ; 1 / 4$-zoom: macroscopic mean free path=1

The main result

- $n_{t}=n_{t}\left(\boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right)$ the number of collisions within time t, i.e.,

$$
n_{t}=\max \left\{n \in \mathbb{Z}_{\geq 0}: T_{n} \leq t\right\}, \quad T_{n}:=\sum_{j=1}^{n} \xi_{j} .
$$

- For $\left(\boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right)$ random w.r.t. $\wedge \in \operatorname{Pac}\left(T^{1}\left(\mathbb{R}^{d}\right)\right)$,

$$
\Theta^{(\rho)}: t \mapsto \Theta^{(\rho)}(t)=\left(\boldsymbol{Q}_{0}+\sum_{j=1}^{n_{t}} \xi_{j} \boldsymbol{V}_{j-1}+\left(t-T_{n_{t}}\right) \boldsymbol{V}_{n_{t}}, \boldsymbol{V}_{n_{t}}\right)
$$

defines a random flight process.

Theorem A

Let \mathcal{P} be admissible. Then, for any $\Lambda \in \operatorname{Pac}\left(T^{1}\left(\mathbb{R}^{d}\right)\right)$, there is a random flight process $\Theta^{(0)}$ with $\mathbb{P}\left(\xi_{j}^{(0)}=\infty\right)=0$ for all j, such that $\Theta^{(\rho)}$ converges to $\Theta^{(0)}$ in distribution, as $\rho \rightarrow 0$.

Outline of proof

The key is to establish the following discrete time analogue of Theorem A.

Theorem B

Let \mathcal{P} be admissible. Then, for any $\Lambda \in \operatorname{Pac}\left(T^{1}\left(\mathbb{R}^{d}\right)\right)$

$$
\left\langle\xi_{j}\left(\boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right), \boldsymbol{V}_{j}\left(\boldsymbol{Q}_{0}, \boldsymbol{V}_{0}\right)\right\rangle_{j=1}^{\infty}
$$

converges in distribution to the random sequence

$$
\left\langle\xi_{j}^{(0)}, \boldsymbol{V}_{j}^{(0)}\right\rangle_{j=1}^{\infty}
$$

(which in general does not form a Markov chain).
There are three steps:

1. Rescaling and spherical equidistribution for each individual inter-collision flight
2. Markovianisation of the limit process through introduction of a marking of \mathcal{P}
3. Induction on the number of inter-collision flights

Step 1: Rescaling

Define $R(v): \mathrm{S}_{1}^{d-1} \rightarrow \mathrm{SO}(d)$ such that $v R(v)=e_{1}=(1,0, \ldots, 0)$ and

$$
D_{\rho}=\left(\begin{array}{cc}
\rho^{d-1} & 0 \\
\mathrm{t}_{0} & \rho^{-1} 1_{d-1}
\end{array}\right) \in \mathrm{SL}(d, \mathbb{R})
$$

Applying $R\left(\boldsymbol{v}_{n}\right) D_{\rho}$ to this cylinder orients it along the \boldsymbol{e}_{1}-axis and makes it well proportioned. First apply $R\left(\boldsymbol{v}_{n}\right)$.

It is important to keep track of the exit parameters b_{n}^{-}and impact parameters b_{n}.

Now apply D_{ρ}.

Step 2: Marking

- Under the above rescaling the cylinder converges to a (ρ, \boldsymbol{v}_{n})-independent cyclinder (with flat caps).
- The point set \mathcal{P} has been replaced by the random point $\operatorname{set}\left(\mathcal{P}-\boldsymbol{y}_{n}\right) R\left(\boldsymbol{v}_{n}\right) D_{\rho}$.
- For \boldsymbol{y} fixed and \boldsymbol{v} random, limit distribution of $(\mathcal{P}-\boldsymbol{y}) R(\boldsymbol{v}) D_{\rho}$ can in general depend on $y \in \mathcal{P}$. In order to keep track of this, we assign a mark to each y; we want the space of marks to be nice.

Assumptions on the scatterer configuration \mathcal{P}

We say \mathcal{P} is admissible if there exists a compact metric space Σ with Borel probability measure m, and map $\varsigma: \mathcal{P} \rightarrow \Sigma$ (the marking) such that for

$$
\begin{gathered}
\mathcal{X}=\mathbb{R}^{d} \times \Sigma, \quad \mu_{\mathcal{X}}=\text { vol } \times \mathrm{m} \\
\tilde{\mathcal{P}}=\{(\boldsymbol{y}, \varsigma(\boldsymbol{y})): \boldsymbol{y} \in \mathcal{P})\} \subset \mathcal{X} \quad \text { (the marked point set) }
\end{gathered}
$$

we have

- Assumption 1 (density)

$$
\lim _{R \rightarrow \infty} \frac{\#(\tilde{\mathcal{P}} \cap R \mathcal{D})}{R^{d}}=\mu_{\mathcal{X}}(\mathcal{D})
$$

for all bounded sets $\mathcal{D} \subset \mathcal{X}$ with $\mu_{\mathcal{X}}(\partial \mathcal{D})=0$

- Assumption 2 (spherical equidistribution) For v random according to λ a.c. w.r.t. vol measure on S_{1}^{d-1}

$$
\tilde{\overline{=}}_{\rho, \boldsymbol{y}}=(\tilde{\mathcal{P}}-\boldsymbol{y}) R(\boldsymbol{v}) D_{\rho} \xrightarrow{\mathrm{d}}_{\tilde{\bar{\Xi}}_{\varsigma(\boldsymbol{y})}} \quad(\rho \rightarrow 0)^{*}
$$

uniformly for all $\boldsymbol{y} \in \mathcal{P}$ in balls of radius $\asymp \rho^{1-d}$, where $\tilde{\bar{\Xi}}_{S}$ depends only on $\varsigma \in \Sigma$

- ... and more
"for $M \in \operatorname{SL}(d, \mathbb{R}) \operatorname{set}(y, \varsigma(y)) M=(y M, \varsigma(y))$

Examples for admissible \mathcal{P}

Example 1: $\mathcal{P}=$ a realization of the Poisson process in \mathbb{R}^{d} with intensity 1 , and $\Sigma=\{1\}$; proof that our assumptions satisfied is non-trivial, follows ideas of Boldrighini, Bunimovich and Sinai (J Stat Phys 1983).

Previous results:

- Galavotti (Phys Rev 1969 \& report 1972): Poisson distributed hard-sphere scatterer configuration \mathcal{P}
- Spohn (Comm Math Phys 1978): extension to more general Fixed random scatterer configurations \mathcal{P} and potentials
- Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for almost every scatterer configuration \mathcal{P} (w.r.t. the Poisson random measure), for hard sphere scatterers only
- Implies CLT for limit process (standard CLT for Markovian random flight process); for intermediate joint Boltzmann-Grad/diffusive scaling see Lutsko and Toth (preprint 2018)

Examples for admissible \mathcal{P}

Example 2: $\mathcal{P}=\mathbb{Z}^{d}$ (or any other Euclidean lattice of co-volume 1) and $\Sigma=\{1\}$ (periodic Lorentz gas); proof uses spherical equidistribution on space of lattices (JM \& Strömbergsson, Annals of Math 2010). The limit process is independent of the choice of lattice!

Previous results:

- Caglioti and Golse, Comptes Rendus 2008, J Stat Phys 2010
- JM \& Strömbergsson, Nonlinearity 2008, Annals of Math 2010/2011, GAFA 2011
- Polya (Arch Math Phys 1918): "Visibility in a forest" ($d=2$)
- Dahlquist (Nonlinearity 1997); Boca, Cobeli, Zaharescu (CMP 2000); Caglioti, Golse (CMP 2003); Boca, Gologan, Zaharescu (CMP 2003); Boca, Zaharescu (CMP 2007): Limit distributions for the free path lengths for various sets of initial data $(d=2)$
- Dumas, Dumas, Golse (J Stat Phys 1997): Asymptotics of mean free path lengths ($d \geq 2$)
- Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000): bounds on possible weak limits ($d \geq 2$)
- Boca \& Gologan (Annales I Fourier 2009), Boca (NY J Math 2010): honeycomb lattice

Examples for admissible \mathcal{P}

Example 3: $\mathcal{P}=\cup_{i=1}^{m}\left(\mathcal{L}+\alpha_{i}\right)$ locally finite periodic point set (e.g. the honeycomb/hexagonal lattice), with \mathcal{L} Euclidean lattice of covolume $m ; \Sigma=\{1,2, \ldots, m\}$. Admissible follows from spherical equidistribution, which here is a consequence of Ratner's theorem on $\operatorname{SL}(d, \mathbb{Z}) \ltimes\left(\mathbb{Z}^{d}\right)^{k} \backslash \mathrm{SL}(d, \mathbb{R}) \ltimes\left(\mathbb{R}^{d}\right)^{k}$.

Previous results on free path length: Boca \& Gologan (Annales I Fourier 2009), Boca (NY J Math 2010)

Example 4: $\mathcal{P}=$ Euclidean cut-and-project set (e.g. the vertex set of a Penrose tiling) and $\Sigma \subset \mathbb{R}^{k}$ (the internal space in the c\&p construction); proof of assumptions uses uses equidistribution of lower dimensional spheres in space of lattices, which is again a consequence of Ratner's theorem (JM \& Strömbergsson, CMP 2014; Memoirs AMS in press).

Step 3: Induction \longrightarrow The main theorem

Theorem C

Let \mathcal{P} be admissible. Then, for any $\Lambda \in \operatorname{Pac}\left(T^{1}\left(\mathbb{R}^{d}\right)\right)$, the random process

$$
\begin{aligned}
\mathbb{N} & \rightarrow\left(\mathbb{R}_{>0} \cup\{+\infty\}\right) \times \Sigma \times \mathrm{S}_{1}^{d-1} \\
j & \mapsto\left(\rho^{d-1} \tau_{j}\left(\rho^{1-d} \boldsymbol{q}_{0}, \boldsymbol{v}_{0} ; \rho\right), \varsigma_{j}\left(\rho^{1-d} \boldsymbol{q}_{0}, \boldsymbol{v}_{0} ; \rho\right), \boldsymbol{v}_{j}\left(\rho^{1-d} \boldsymbol{q}_{0}, \boldsymbol{v}_{0} ; \rho\right)\right)
\end{aligned}
$$

converges in distribution to the second-order Markov process

$$
j \mapsto\left(\xi_{j}, \varsigma_{j}, \boldsymbol{v}_{j}\right),
$$

where for any Borel set $A \subset \mathbb{R}_{\geq 0} \times \Sigma \times \mathrm{S}_{1}^{d-1}$,

$$
\mathbb{P}\left(\left(\xi_{1}, \varsigma_{1}, \boldsymbol{v}_{1}\right) \in A \mid\left(\boldsymbol{q}_{0}, \boldsymbol{v}_{0}\right)\right)=\int_{A} p\left(\boldsymbol{v}_{0} ; \xi, \varsigma, \boldsymbol{v}\right) d \xi d \mathrm{~m}(\varsigma) d \boldsymbol{v}
$$

and for $j \geq 2$,

$$
\begin{aligned}
\mathbb{P}\left(\left(\xi_{j}, \varsigma_{j}, \boldsymbol{v}_{j}\right) \in A \mid\left(\boldsymbol{q}_{0}, \boldsymbol{v}_{0}\right)\right. & \left.,\left\langle\left(\xi_{i}, \varsigma_{i}, \boldsymbol{v}_{i}\right)\right\rangle_{i=1}^{j-1}\right) \\
= & \int_{A} p_{0}\left(\boldsymbol{v}_{j-2}, \varsigma_{j-1}, \boldsymbol{v}_{j-1} ; \xi, \varsigma, \boldsymbol{v}\right) d \xi d \mathrm{~m}(\varsigma) d \boldsymbol{v}
\end{aligned}
$$

The functions p, p_{0} depend on \mathcal{P} but are independent of \wedge, and for any fixed $\boldsymbol{v}_{0}, \varsigma, \boldsymbol{v}$ both $p\left(\boldsymbol{v}_{0} ; \cdot\right)$ and $p_{0}\left(\boldsymbol{v}_{0}, \varsigma, \boldsymbol{v} ; \cdot\right)$ are probability densities on $\mathbb{R}_{\geq 0} \times$ $\Sigma \times \mathrm{S}_{1}^{d-1}$. In particular $\mathbb{P}\left(\xi_{j}=\infty\right)=0$ for all j.

Evolution of densities

Recall: a cloud of particles with initial density $f(\boldsymbol{Q}, \boldsymbol{V})$ evolves in time t to

$$
\left[L_{\rho}^{t} f\right](\boldsymbol{Q}, \boldsymbol{V})=f\left(\Phi_{\rho}^{-t}(\boldsymbol{Q}, \boldsymbol{V})\right)
$$

Theorem D

Let \mathcal{P} be admissible. Then for every $t>0$ there exists a linear operator

$$
L^{t}:\left\llcorner^ { 1 } (\top ^ { 1 } (\mathbb { R } ^ { d })) \rightarrow \left\llcorner^{1}\left(\top^{1}\left(\mathbb{R}^{d}\right)\right)\right.\right.
$$

such that for every $f \in L^{1}\left(\top^{1}\left(\mathbb{R}^{d}\right)\right)$ and any set $\mathcal{A} \subset \top^{1}\left(\mathbb{R}^{d}\right)$ with boundary of Liouville measure zero,

$$
\lim _{\rho \rightarrow 0} \int_{\mathcal{A}}\left[L_{\rho}^{t} f\right](\boldsymbol{Q}, \boldsymbol{V}) d \boldsymbol{Q} d \boldsymbol{V}=\int_{\mathcal{A}}\left[L^{t} f\right](\boldsymbol{Q}, \boldsymbol{V}) d \boldsymbol{Q} d \boldsymbol{V}
$$

The operator L^{t} thus describes the macroscopic diffusion of the Lorentz gas in the Boltzmann-Grad limit $\rho \rightarrow 0$. (We in fact prove convergence of the Lorentz process to a random flight process.)

Note: The family $\left\{L^{t}\right\}_{t \geq 0}$ does in general not form a semigroup.

A generalized linear Boltzmann equation

Consider extended phase space coordinates ($\boldsymbol{Q}, \boldsymbol{V}, \varsigma, \xi, \boldsymbol{V}_{+}$):
$(\boldsymbol{Q}, \boldsymbol{V}) \in \mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$ - usual position and momentum
$\varsigma \in \Sigma$ - the mark of current scatterer location
$\xi \in \mathbb{R}_{+}$- flight time until the next scatterer $V_{+} \in \mathrm{S}_{1}^{d-1}$ - velocity after the next hit

$$
\begin{aligned}
{\left[\frac{\partial}{\partial t}+\boldsymbol{V}\right.} & \left.\cdot \nabla_{\boldsymbol{Q}}-\frac{\partial}{\partial \xi}\right] f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}, \varsigma, \xi, \boldsymbol{V}_{+}\right) \\
& =\int_{\Sigma} \int_{\mathrm{S}_{1}^{d-1}} f_{t}\left(\boldsymbol{Q}, \boldsymbol{V}^{\prime}, \varsigma^{\prime}, 0, \boldsymbol{V}\right) p_{0}\left(\boldsymbol{V}^{\prime}, \varsigma^{\prime}, \boldsymbol{V}, \varsigma, \xi, \boldsymbol{V}_{+}\right) d \boldsymbol{V}^{\prime} d \mathrm{~m}\left(\varsigma^{\prime}\right)
\end{aligned}
$$

with a collision kernel $p_{0}\left(\boldsymbol{V}^{\prime}, \varsigma^{\prime}, \boldsymbol{V}, \varsigma, \xi, \boldsymbol{V}_{+}\right)$, which can be expressed as a product of the scattering cross section of an individual scatterer and a certain transition probability for hitting a given point on the next scatterer with mark ς after time ξ, given the present scatterer has mark ς^{\prime}.

Crystals

The distribution $\Phi(\xi)$ of free path lengths for lattice configurations

$\Phi(\xi)$ in dimension two vs. $2 \mathrm{e}^{-2 \xi}$

$\int_{\xi}^{\infty} \Phi\left(\xi^{\prime}\right) d \xi^{\prime}$ in dimension three

Tail asymptotics (JM \& Strömbergsson, GAFA 2011):

$$
\begin{array}{cr}
\Phi(\xi)=\frac{2^{2-d}}{d(d+1) \zeta(d)} \xi^{-3}+O\left(\xi^{\left.-3-\frac{2}{d} \log \xi\right)}\right. & (\xi \rightarrow \infty) \\
\Phi(\xi)=\frac{\bar{\sigma}}{\zeta(d)}+O(\xi) & (\xi \rightarrow 0) \\
\quad \text { with } \bar{\sigma}=\operatorname{vol}\left(\mathcal{B}_{1}^{d-1}\right)=\frac{\pi^{(d-1) / 2}}{\Gamma((d+1) / 2) .} &
\end{array}
$$

Application: Superdiffusive central limit theorem

The divergent second moment of the path length distribution leads to $t \log t$ superdiffusion:

Theorem E [JM \& B. Toth, CMP 2016]
Let $d \geq 2$ and fix a Euclidean lattice $\mathcal{L} \subset \mathbb{R}^{d}$ of covolume one. Assume (Q_{0}, V_{0}) is distributed according to an absolutely continuous Borel probability measure \wedge on $\mathrm{T}^{1}\left(\mathbb{R}^{d}\right)$. Then, for any bounded continuous $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$,

$$
\lim _{t \rightarrow \infty} \lim _{r \rightarrow 0} \mathbb{E} f\left(\frac{\boldsymbol{Q}(t)-\boldsymbol{Q}_{0}}{\Sigma_{d} \sqrt{t \log t}}\right)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} f(x) \mathrm{e}^{-\frac{1}{2}\|\boldsymbol{x}\|^{2}} d \boldsymbol{x}
$$

with

$$
\Sigma_{d}^{2}:=\frac{2^{1-d_{\bar{\sigma}}}}{d^{2}(d+1) \zeta(d)} .
$$

For fixed r the analogous result is currently known only in dimension $d=2$, see Szász \& Varjú (J Stat Phys 2007), Chernov \& Dolgopyat (Russ. Math Surveys 2009).

Quasicrystals

Cut and project

- $\mathbb{R}^{n}=\mathbb{R}^{d} \times \mathbb{R}^{m}, \pi$ and $\pi_{\text {int }}$ orthogonal projections onto $\mathbb{R}^{d}, \mathbb{R}^{m}$
- $\mathcal{L} \subset \mathbb{R}^{n}$ a lattice of full rank
- $\mathcal{A}:=\overline{\pi_{\text {int }}(\mathcal{L})}$ is an abelian subgroup of \mathbb{R}^{m}, with Haar measure $\mu_{\mathcal{A}}$
- $\mathcal{W} \subset \mathcal{A}$ a "regular window set" (i.e. bounded with non-empty interior, $\mu_{\mathcal{A}}(\partial \mathcal{W})=0$)
- $\mathcal{P}(\mathcal{W}, \mathcal{L})=\left\{\pi(\boldsymbol{y}): \boldsymbol{y} \in \mathcal{L}, \pi_{\text {int }}(\boldsymbol{y}) \in \mathcal{W}\right\} \subset \mathbb{R}^{d}$ is called a "regular cut-and-project set"
- $\mathcal{P}(\mathcal{W}, \mathcal{L})$ defines the locations of scatterers in our quasicrystal

Example: The Penrose tiling

(from: de Bruijn, Kon Nederl Akad Wetensch Proc Ser A, 1981)

Density

We have the following well known facts:

- $\mathcal{P}(\mathcal{W}, \mathcal{L})$ is a Delone set, i.e., uniformly discrete and relatively dense in \mathbb{R}^{d}
- For any bounded $\mathcal{D} \subset \mathbb{R}^{d}$ with boundary of Lebesgue measure zero,

$$
\lim _{T \rightarrow \infty} \frac{\#(\mathcal{P} \cap T \mathcal{D})}{T^{d}}=c_{\mathcal{L}} \operatorname{vol}(\mathcal{D}) \mu_{\mathcal{A}}(\mathcal{W})
$$

(the constant $c_{\mathcal{L}}$ is explicit)

Spherical averages of cut-and-project sets and "random quasicrystals"

- Set $G=\operatorname{SL}(n, \mathbb{R}), \Gamma=\operatorname{SL}(n, \mathbb{Z}), \mathcal{L}=\mathbb{Z}^{n} g$ for some $g \in G$.
- Note that for $A \in \operatorname{SL}(d, \mathbb{R})$,

$$
\mathcal{P}(\mathcal{W}, \mathcal{L}) A=\left\{\pi(\boldsymbol{y}): \boldsymbol{y} \in \mathbb{Z}^{n} g\left(\begin{array}{cc}
A & 0 \\
0 & 1_{m}
\end{array}\right), \pi_{\text {int }}(\boldsymbol{y}) \in \mathcal{W}\right\}
$$

- This motivates the definition of the embedding of $\operatorname{SL}(d, \mathbb{R})$ in G by the map

$$
\varphi_{g}: \mathrm{SL}(d, \mathbb{R}) \rightarrow G, \quad A \mapsto g\left(\begin{array}{cc}
A & 0 \\
0 & 1_{m}
\end{array}\right) g^{-1}
$$

Spherical averages of cut-and-project sets and "random quasicrystals"

- It follows from Ratner's theorem that there exists a closed connected subgroup H_{g} ofc G such that
- $\Gamma \cap H_{g}$ is a lattice in H_{g}
- $\varphi_{g}(\mathrm{SL}(d, \mathbb{R})) \subset H_{g}$
- the closure of $\Gamma \backslash\left\lceil\varphi_{g}(\mathrm{SL}(d, \mathbb{R}))\right.$ in $\Gamma \backslash G$ is given by $\Gamma \backslash \Gamma H_{g}$.
- Denote the unique right- H_{g} invariant probability measure on $\Gamma \backslash\left\ulcorner H_{g}\right.$ by μ_{g}.
- Using an equidistribution result for unipotent translates due to N . Shah* based on Ratner's theorem, one can show that ${ }^{\dagger}$ for v random according to any a.c. Borel probability measure on S_{1}^{d-1},

$$
\begin{aligned}
\mathcal{P}(\mathcal{W}, \mathcal{L}) R(\boldsymbol{v}) D_{\rho}=\{\pi(\boldsymbol{y}): \boldsymbol{y} & \left.\in \mathbb{Z}^{n} \varphi_{g}\left(R(\boldsymbol{v}) D_{\rho}\right) g, \pi_{\text {int }}(\boldsymbol{y}) \in \mathcal{W}\right\} \\
& \xrightarrow{\mathrm{d}}\left\{\pi(\boldsymbol{y}): \boldsymbol{y} \in \mathbb{Z}^{n} h g, \pi_{\text {int }}(\boldsymbol{y}) \in \mathcal{W}\right\}
\end{aligned}
$$

where $h \in \Gamma \backslash\left\ulcorner H_{g}\right.$ is distributed according to μ_{g}.
*N. Shah, Proc. Indian Acad. Sci. Math. Sci., 1996
†JM \& Strömbergsson, Comm. Math. Phys. 2014

Examples

- If $\mathcal{P}(\mathcal{L}, \mathcal{W})$, then for almost every \mathcal{L} in the space of lattices, we have

$$
H_{g}=\operatorname{SL}(n, \mathbb{R}), \quad\left\ulcorner\cap H_{g}=\operatorname{SL}(n, \mathbb{Z})\right.
$$

- If $\mathcal{P}(\mathcal{L}, \mathcal{W})$ is the vertex set of the classical Penrose tiling, we have

$$
H_{g}=\mathrm{SL}(2, \mathbb{R})^{2}
$$

and $\Gamma \cap H_{g}=$ a congruence subgroup of the Hilbert modular group $\mathrm{SL}\left(2, \mathcal{O}_{K}\right)$, with \mathcal{O}_{K} the ring of integers of $K=\mathbb{Q}(\sqrt{5})$.

- A complete classification of all H_{g} that can arise in our context has recently been given by see Ruehr, Smilansky \& Weiss (JEMS in press)

Future challenges

- "Classify" point processes that can arise as spherical averages; which of these are $\mathrm{SL}(d, \mathbb{R})$-invariant and/or translation invariant?
- Lorentz gas in force fields; trajectories will be curved
- (Super-) diffusive limits
- Quantum Lorentz gas

