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Maxwell and Boltzmann

James Clerk Maxwell (1831-1879) Ludwig Boltzmann (1844-1906)
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The Lorentz gas

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)
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The Lorentz gas

• P locally finite subset of Rd with
density one, i.e.,

lim
R→∞

#(P ∩RD)

Rd
= volD

for all bounded sets D ⊂ Rd with
vol ∂D = 0

• scatterers are fixed open balls of
radius ρ centered at the points in P
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The Lorentz gas

• the particles are assumed to be
non-interacting
• each test particle moves with con-

stant velocity v(t) between colli-
sions
• the scattering is specular reflec-

tion; we can also treat scatter-
ing by compactly supported, spher-
ically symmetric potentials
• we assume w.l.o.g. ‖v(t)‖ = 1
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The Boltzmann-Grad (=low-density) limit

• Consider the dynamics in the limit of small scatterer radius ρ
•
(
q(t), v(t)

)
= “microscopic” phase space coordinate at time t

• A volume argument shows that for ρ→ 0 the mean free path length (i.e., the
average time between consecutive collisions) is asymptotic to

1

total scattering cross section
=

1

ρd−1 volBd−1
1

• We thus measure position and time in the “macroscopic” coordinates(
Q(t),V (t)

)
=
(
ρd−1q(ρ1−dt),v(ρ1−dt)

)

• Time evolution of initial data (Q0,V 0):(
Q(t),V (t)

)
= Φtρ(Q0,V 0)

7



The linear Boltzmann equation

• Time evolution of a particle cloud with initial density f ∈ L1:

f
(ρ)
t (Q,V ) := f

(
Φ−tρ (Q,V )

)

In his 1905 paper Lorentz suggested that f(ρ)
t is governed, as ρ → 0, by the

linear Boltzmann equation:

[
∂

∂t
+ V · ∇Q

]
ft(Q,V ) =

∫
Sd−1

1

[
ft(Q,V

′)− ft(Q,V )
]
σ(V ,V ′)dV ′

where σ(V ,V ′) is the differential cross section of the individual scatterer.
E.g.: σ(V ,V ′) = 1

4‖V − V
′‖3−d for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, . . .
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Main questions:

• What are the random flight processes that emerge in the Boltzmann-Grad
limit?

• What are the associated kinetic transport equations?
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Key microscopic quantities

q0

s1

s3

s2
s4

• q0, v0 initial particle position and
velocity (‖v0‖ = 1)
• τ1 = τ1(q0,v0) first hitting time

• vn = vn(q0,v0) velocity after nth
collision
• τn+1 = τn+1(q0,v0) free path

lengths after nth collision
• sn = τnvn−1 travel intinerary

• mean free path ∼ 1
ρd−1 volBd−1

1
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/4, mean free path= 1
2ρ = 2
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/6, mean free path= 1
2ρ = 3
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/8, mean free path= 1
2ρ = 4
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Key macroscopic quantities

ρ1−dQ0

ρ1−dS1

ρ1−dS3

ρ1−dS2
ρ1−dS4

• Q0 = ρd−1q0,V 0 = v0

• ξ1 = ρd−1τ1(ρ1−dQ0,V 0)

• V n = vn(ρ1−dQ0,V 0)

• ξn+1 = ρd−1τn+1(ρ1−dQ0,V 0)

• Sn = ξnV n−1 = ρd−1s

• (macro) mean free path 1
volBd−1

1
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/4, mean free path= 1
2ρ = 2
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/4; 1/2-zoom: macroscopic mean free path=1
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/6; 1/3-zoom: macroscopic mean free path=1
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius ρ = 1/8; 1/4-zoom: macroscopic mean free path=1
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The main result

• nt = nt(Q0,V 0) the number of collisions within time t, i.e.,

nt = max
{
n ∈ Z≥0 : Tn ≤ t

}
, Tn :=

n∑
j=1

ξj.

• For (Q0,V 0) random w.r.t. Λ ∈ Pac(T1(Rd)),

Θ(ρ) : t 7→ Θ(ρ)(t) =

(
Q0 +

nt∑
j=1

ξjV j−1 + (t− Tnt)V nt,V nt

)

defines a random flight process.

Theorem A
Let P be admissible. Then, for any Λ ∈ Pac(T1(Rd)), there is a random flight
process Θ(0) with P(ξ(0)

j = ∞) = 0 for all j, such that Θ(ρ) converges to
Θ(0) in distribution, as ρ→ 0.
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Outline of proof

The key is to establish the following discrete time analogue of Theorem A.

Theorem B
Let P be admissible. Then, for any Λ ∈ Pac(T1(Rd))〈

ξj(Q0,V 0),V j(Q0,V 0)
〉∞
j=1

converges in distribution to the random sequence〈
ξ

(0)
j ,V (0)

j

〉∞
j=1

(which in general does not form a Markov chain).

There are three steps:

1. Rescaling and spherical equidistribution for each individual inter-collision
flight

2. Markovianisation of the limit process through introduction of a marking of P
3. Induction on the number of inter-collision flights
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Step 1: Rescaling

Define R(v) : Sd−1
1 → SO(d) such that vR(v) = e1 = (1,0, . . . ,0) and

Dρ =

(
ρd−1 0

t0 ρ−11d−1

)
∈ SL(d,R).
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yn

vn

2ρ

2ρ

ρ1−dξn+1

forbidden scatterer

particle trajectory

exclusion zone

Applying R(vn)Dρ to this cylinder orients it along the e1-axis and makes it well
proportioned. First apply R(vn).
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ynR(vn)

vnR(vn) = (1,0, . . . ,0)

2ρ 2ρ
ρ1−dξn+1

forbidden scatterer

particle trajectory

exclusion zone

It is important to keep track of the exit parameters b−n and impact parameters bn.
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ρb−n

ynR(vn)

vnR(vn) = (1,0, . . . ,0)

2ρ 2ρ

ρbn+1

ρ1−dξn+1

forbidden scatterer

particle trajectory

exclusion zone

Now apply Dρ.
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b−n

2ρd 2ρd

bn+1

ξn+1

forbidden scatterer

particle trajectory

exclusion zone
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Step 2: Marking

• Under the above rescaling the cylinder converges to a (ρ,vn)-independent
cyclinder (with flat caps).

• The point setP has been replaced by the random point set (P−yn)R(vn)Dρ.

• For y fixed and v random, limit distribution of (P−y)R(v)Dρ can in general
depend on y ∈ P. In order to keep track of this, we assign a mark to each
y; we want the space of marks to be nice.
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Assumptions on the scatterer configuration P

We say P is admissible if there exists a compact metric space Σ with Borel
probability measure m, and map ς : P → Σ (the marking) such that for

X = Rd ×Σ, µX = vol×m
P̃ = {(y, ς(y)) : y ∈ P)} ⊂ X (the marked point set)

we have
• Assumption 1 (density)

lim
R→∞

#(P̃ ∩RD)

Rd
= µX (D)

for all bounded sets D ⊂ X with µX (∂D) = 0
• Assumption 2 (spherical equidistribution) For v random according to λ a.c.

w.r.t. vol measure on Sd−1
1

Ξ̃ρ,y = (P̃ − y)R(v)Dρ
d−→ Ξ̃ς(y) (ρ→ 0)*

uniformly for all y ∈ P in balls of radius � ρ1−d, where Ξ̃ς depends only
on ς ∈ Σ
• . . . and more

*for M ∈ SL(d,R) set (y, ς(y))M = (yM, ς(y))
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Examples for admissible P

Example 1: P = a realization of the Poisson pro-
cess in Rd with intensity 1, and Σ = {1}; proof that
our assumptions satisfied is non-trivial, follows ideas of
Boldrighini, Bunimovich and Sinai (J Stat Phys 1983).

Previous results:

• Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterer configuration P
• Spohn (Comm Math Phys 1978): extension to more general Fixed random

scatterer configurations P and potentials
• Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for

almost every scatterer configuration P (w.r.t. the Poisson random measure),
for hard sphere scatterers only
• Implies CLT for limit process (standard CLT for Markovian random flight pro-

cess); for intermediate joint Boltzmann-Grad/diffusive scaling see Lutsko and
Toth (preprint 2018)
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Examples for admissible P

Example 2: P = Zd (or any other Euclidean lattice of
co-volume 1) and Σ = {1} (periodic Lorentz gas); proof
uses spherical equidistribution on space of lattices (JM
& Strömbergsson, Annals of Math 2010). The limit pro-
cess is independent of the choice of lattice!

Previous results:

• Caglioti and Golse, Comptes Rendus 2008, J Stat Phys 2010
• JM & Strömbergsson, Nonlinearity 2008, Annals of Math 2010/2011,

GAFA 2011

• Polya (Arch Math Phys 1918): “Visibility in a forest” (d = 2)
• Dahlquist (Nonlinearity 1997); Boca, Cobeli, Zaharescu (CMP 2000); Caglioti, Golse (CMP 2003); Boca, Golo-

gan, Zaharescu (CMP 2003); Boca, Zaharescu (CMP 2007): Limit distributions for the free path lengths for
various sets of initial data (d = 2)

• Dumas, Dumas, Golse (J Stat Phys 1997): Asymptotics of mean free path lengths (d ≥ 2)
• Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000): bounds on possible weak limits

(d ≥ 2)

• Boca & Gologan (Annales I Fourier 2009), Boca (NY J Math 2010): honeycomb lattice
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Examples for admissible P

Example 3: P =
⋃m
i=1(L+ αi) locally finite periodic point set (e.g. the honey-

comb/hexagonal lattice), withL Euclidean lattice of covolumem; Σ = {1,2, . . . ,m}.
Admissible follows from spherical equidistribution, which here is a consequence
of Ratner’s theorem on SL(d,Z) n (Zd)k\SL(d,R) n (Rd)k.

Previous results on free path length: Boca & Gologan (Annales I Fourier 2009),
Boca (NY J Math 2010)

Example 4: P = Euclidean cut-and-project set (e.g. the
vertex set of a Penrose tiling) and Σ ⊂ Rk (the inter-
nal space in the c&p construction); proof of assumptions
uses uses equidistribution of lower dimensional spheres
in space of lattices, which is again a consequence of
Ratner’s theorem (JM & Strömbergsson, CMP 2014;
Memoirs AMS in press).
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Step 3: Induction −→ The main theorem
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Theorem C
Let P be admissible. Then, for any Λ ∈ Pac(T1(Rd)), the random process

N→ (R>0 ∪ {+∞})×Σ× Sd−1
1

j 7→
(
ρd−1τj(ρ

1−dq0, v0; ρ), ςj(ρ
1−dq0, v0; ρ), vj(ρ

1−dq0, v0; ρ)
)

converges in distribution to the second-order Markov process

j 7→
(
ξj, ςj,vj

)
,

where for any Borel set A ⊂ R≥0 ×Σ× Sd−1
1 ,

P
(

(ξ1, ς1,v1) ∈ A
∣∣∣∣ (q0,v0)

)
=
∫
A
p(v0; ξ, ς, v) dξ dm(ς) dv,

and for j ≥ 2,

P
(

(ξj, ςj,vj) ∈ A
∣∣∣∣ (q0, v0),

〈
(ξi, ςi, vi)

〉j−1

i=1

)
=
∫
A
p0(vj−2, ςj−1, vj−1; ξ, ς, v) dξ dm(ς) dv.

The functions p, p0 depend on P but are independent of Λ, and for any fixed
v0, ς, v both p(v0 ; · ) and p0(v0, ς, v ; · ) are probability densities on R≥0×
Σ× Sd−1

1 . In particular P(ξj =∞) = 0 for all j.
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Evolution of densities

Recall: a cloud of particles with initial density f(Q,V ) evolves in time t to

[Ltρf ](Q,V ) = f
(
Φ−tρ (Q,V )

)
.

Theorem D
Let P be admissible. Then for every t > 0 there exists a linear operator

Lt : L1(T1(Rd))→ L1(T1(Rd))

such that for every f ∈ L1(T1(Rd)) and any setA ⊂ T1(Rd) with boundary
of Liouville measure zero,

lim
ρ→0

∫
A

[Ltρf ](Q,V ) dQ dV =
∫
A

[Ltf ](Q,V ) dQ dV .

The operator Lt thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit ρ → 0. (We in fact prove convergence of the Lorentz
process to a random flight process.)

Note: The family {Lt}t≥0 does in general not form a semigroup.
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A generalized linear Boltzmann equation

Consider extended phase space coordinates (Q,V , ς, ξ,V +):

(Q,V ) ∈ T1(Rd) — usual position and momentum
ς ∈ Σ — the mark of current scatterer location
ξ ∈ R+ — flight time until the next scatterer
V + ∈ Sd−1

1 — velocity after the next hit

[
∂

∂t
+ V · ∇Q −

∂

∂ξ

]
ft(Q,V , ς, ξ,V +)

=
∫

Σ

∫
Sd−1

1

ft(Q,V
′, ς ′,0,V ) p0(V ′, ς ′,V , ς, ξ,V +)dV ′dm(ς ′).

with a collision kernel p0(V ′, ς ′,V , ς, ξ,V +), which can be expressed as a prod-
uct of the scattering cross section of an individual scatterer and a certain transi-
tion probability for hitting a given point on the next scatterer with mark ς after time
ξ, given the present scatterer has mark ς ′.
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Crystals
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The distribution Φ(ξ) of free path lengths for lattice configurations

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

Φ(ξ) in dimension two vs. 2e−2ξ ∫∞
ξ

Φ(ξ′)dξ′ in dimension three

Tail asymptotics (JM & Strömbergsson, GAFA 2011):

Φ(ξ) =
22−d

d(d+ 1)ζ(d)
ξ−3 +O

(
ξ−3−2

d log ξ
)

(ξ →∞)

Φ(ξ) =
σ

ζ(d)
+O(ξ) (ξ → 0)

with σ = vol(Bd−1
1 ) = π(d−1)/2

Γ((d+1)/2).
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Application: Superdiffusive central limit theorem

The divergent second moment of the path length distribution leads to t log t su-
perdiffusion:

Theorem E [JM & B. Toth, CMP 2016]
Let d ≥ 2 and fix a Euclidean lattice L ⊂ Rd of covolume one. Assume
(Q0,V 0) is distributed according to an absolutely continuous Borel probabil-
ity measure Λ on T1(Rd). Then, for any bounded continuous f : Rd → R,

lim
t→∞

lim
r→0

Ef
(
Q(t)−Q0

Σd
√
t log t

)
=

1

(2π)d/2

∫
Rd
f(x) e−

1
2‖x‖

2
dx,

with

Σ2
d :=

21−dσ

d2(d+ 1)ζ(d)
.

For fixed r the analogous result is currently known only in dimension d = 2, see
Szász & Varjú (J Stat Phys 2007), Chernov & Dolgopyat (Russ. Math Surveys
2009).
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Quasicrystals
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Cut and project

• Rn = Rd × Rm, π and πint orthogonal projections onto Rd, Rm

• L ⊂ Rn a lattice of full rank

• A := πint(L) is an abelian subgroup of Rm, with Haar measure µA

• W ⊂ A a “regular window set”
(i.e. bounded with non-empty interior, µA(∂W) = 0)

• P(W,L) = {π(y) : y ∈ L, πint(y) ∈ W} ⊂ Rd

is called a “regular cut-and-project set”

• P(W,L) defines the locations of scatterers in our quasicrystal
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Example: The Penrose tiling

(from: de Bruijn, Kon Nederl Akad Wetensch Proc Ser A, 1981)
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Density

We have the following well known facts:

• P(W,L) is a Delone set, i.e., uniformly discrete and relatively dense in Rd

• For any bounded D ⊂ Rd with boundary of Lebesgue measure zero,

lim
T→∞

#(P ∩ TD)

T d
= cL vol(D)µA(W)

(the constant cL is explicit)
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Spherical averages of cut-and-project sets and “random quasicrystals”

• Set G = SL(n,R), Γ = SL(n,Z), L = Zng for some g ∈ G.

• Note that for A ∈ SL(d,R),

P(W,L)A =

{
π(y) : y ∈ Zng

(
A 0
0 1m

)
, πint(y) ∈ W

}

• This motivates the definition of the embedding of SL(d,R) in G by the map

ϕg : SL(d,R)→ G, A 7→ g

(
A 0
0 1m

)
g−1.
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Spherical averages of cut-and-project sets and “random quasicrystals”

• It follows from Ratner’s theorem that there exists a closed connected sub-
group Hg ofc G such that
– Γ ∩Hg is a lattice in Hg
– ϕg(SL(d,R)) ⊂ Hg
– the closure of Γ\Γϕg(SL(d,R)) in Γ\G is given by Γ\ΓHg.

• Denote the unique right-Hg invariant probability measure on Γ\ΓHg by µg.

• Using an equidistribution result for unipotent translates due to N. Shah* based
on Ratner’s theorem, one can show that† for v random according to any a.c.
Borel probability measure on Sd−1

1 ,

P(W,L)R(v)Dρ = {π(y) : y ∈ Znϕg(R(v)Dρ)g, πint(y) ∈ W}
d−→ {π(y) : y ∈ Znhg, πint(y) ∈ W}

where h ∈ Γ\ΓHg is distributed according to µg.

*N. Shah, Proc. Indian Acad. Sci. Math. Sci., 1996
†JM & Strömbergsson, Comm. Math. Phys. 2014
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Examples

• If P(L,W), then for almost every L in the space of lattices, we have

Hg = SL(n,R), Γ ∩Hg = SL(n,Z).

• If P(L,W) is the vertex set of the classical Penrose tiling, we have

Hg = SL(2,R)2

and Γ∩Hg = a congruence subgroup of the Hilbert modular group SL(2,OK),
with OK the ring of integers of K = Q(

√
5).

• A complete classification of all Hg that can arise in our context has recently
been given by see Ruehr, Smilansky & Weiss (JEMS in press)
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Future challenges

• “Classify” point processes that can arise as spherical averages; which of
these are SL(d,R)-invariant and/or translation invariant?

• Lorentz gas in force fields; trajectories will be curved

• (Super-) diffusive limits

• Quantum Lorentz gas
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