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Randomness mod 1

Consider a sequence of real numbers (ξn)n mod 1, and for ξ1, . . . , ξN denote by
s1, . . . , sN the N gaps between consecutive ξj mod 1.

Gap distribution:

PN(L) :=
#{n ≤ N : sn > L

N}
N

Two point correlation:

RN(a, b) :=
#{(m,n) : m 6= n ≤ N, ξm − ξn ∈ [ aN ,

b
N ] + Z}

N

Theorem A. Let (ξn) be an iid sequence, uniformly distributed mod 1. Then
Lebesgue-a.s.

lim
N→∞

PN(L) =
∫ ∞
L

e−sds, lim
N→∞

RN(a, b) = b− a

“Gap and two-point statistics are Poisson”
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Random matrices

Theorem B. (Wigner 1950s, Gaudin 1961)
Let (ξn)n≤N the ev’s of A ∈ U(N). Then Haar-a.s.

lim
N→∞

PN(L) = PGaudin(L), lim
N→∞

RN(a, b) =
∫ b
a

(
1−

(
sin(πs)

πs

)2)
ds

• PGaudin(L) is given by Painlevé transcendent

• Wigner surmise:

PGaudin(L) ≈
∫ ∞
L

32

π2
s2e−4s2/πds
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Riemann zeros

A. M. Odlyzko, Math. Comp., 48 (1987), pp. 273-308
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Lacunary sequences

Theorem C. (Rudnick & Zaharescu, Forum Math 2002)
Let ξn = anα mod 1 with (an) an integer lacunary sequence (i.e.
lim inf

an+1
an

> 1). Then for Lebesgue-a.e. α,

lim
N→∞

PN(L) =
∫ ∞
L

e−sds, lim
N→∞

RN(a, b) = b− a

• Proof for all k-point correlation functions

• Fourier analysis in α reduces problem to estimates of number of solutions of
exponential Diophantine equations

• an = 2n gives Poisson limit law for typical orbit of the “chaotic” doubling map
α 7→ 2α mod 1
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Polynomials mod 1

Theorem D. (Rudnick & Sarnak, Comm Math Phys 1998)
Let ξn = nkα mod 1, with fixed integer k ≥ 2. Then for Lebesgue a.e. α,

lim
N→∞

RN(a, b) = b− a

• Proof uses averages over Weyl sums and
estimating solutions to polynomial Dio-
phantine equations

• Rudnick, Sarnak & Zaharescu: for α that
are well-approximable by rationals, proof
of convergence of gap distribution PN for
n2α to exponential distribution along sub-
sequence of N ; for these however conver-
gence not expected along full sequence

• No proofs for PN , nor for RN for explicit
examples of α e.g. for α =

√
2; cf. al-

gorithmic characterization by Heath-Brown
(Math Proc Camb Phil Soc 2010).
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Linear polynomials mod 1

The gap and two-point statistics
of ξn = nα mod 1 do not con-
verge for α /∈ Q (three gap the-
orem*), but will after randomizing
α or N (Bleher 1990-92, Mazel
& Sinai 1992, Greenman 1996,
Marklof ETDS 2000).

Not much is known about ξn =

pnα mod 1 with pn the nth prime,
except that the two-point statistics
do not converge (Walker, Mathe-
matika 2018).
[*see M. & Strömbergsson, Ameri-
can Math Monthly 2018]
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The three gap theorem (Steinhaus conjecture)

“There are at most three distinct gap lengths in the fractional parts of the se-
quence α,2α, . . . , Nα, for any integer N and real number α.”

α

α

Sós (1957), Surányi (1958), Świerczkowski (1959)
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The three gap theorem and the space of lattices
JM & Strömbergsson, American Math. Monthly 2017

The gap between ξk = kα mod 1 and its next neighbour on R/Z is given by

sk,N = min{(`− k)α+ n > 0 | (`, n) ∈ Z2, 0 < ` ≤ N}
= min{mα+ n > 0 | (m,n) ∈ Z2, −k < m ≤ N − k}
= min{y > 0 | (x, y) ∈ Z2A1, −k < x ≤ N − k},

with the matrix A1 =

(
1 α
0 1

)
.

sk,N
α

−N −k N − k N

Z2A1
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An SL(2,Z)-invariant function

Set G = SL(2,R), Γ = SL(2,Z).

For M ∈ G, 0 < t ≤ 1, define

F (M, t) = min
{
y > 0

∣∣∣ (x, y) ∈ Z2M, −t < x ≤ 1− t
}
.

Key point:

sk,N =
1

N
min

{
y > 0

∣∣∣∣∣ (x, y) ∈ Z2AN(α), −
k

N
< x ≤ 1−

k

N

}

=
1

N
F

(
AN(α),

k

N

)

with AN(α) =

(
1 α
0 1

)(
N−1 0

0 N

)
∈ G
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An SL(2,Z)-invariant function

F (M, t) = min
{
y > 0

∣∣∣ (x, y) ∈ Z2M, −t < x ≤ 1− t
}
.

Proposition 1. F is well-defined as a function Γ\G× (0,1]→ R>0.

Proposition 2. For every given M ∈ G, the function t 7→ F (M, t) is piece-
wise constant and takes at most three distinct values. If there are three values,
then the third is the sum of the first and second.

Proof: s

r

r + s

−1 −t 0 1− t 1
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Gap distribution

PN(L) :=
#{k ≤ N : sk,N > L

N}
N

=
#{k ≤ N : F (AN(α), kN ) > L}

N

For N large,

PN(L) ∼ meas{t ∈ [0,1] : F (AN(α), t) > L}

Since the function M 7→ meas{t ∈ [0,1] : F (M, t) > L} is a non-trivial
function on Γ\G, the limit limN→∞ PN(L) will not exist.

However, if we consider α random (w.r.t. an a.c. λ), then

lim
N→∞

∫ 1

0
PN(L)λ(dα) =

∫
Γ\G

∫ 1

0
1[F (M, t) > L] dt dµ0(M) =: P (L).

This follows from the equidistribution of long closed horocycles: for any bounded
continuous f : Γ\G→ R, λ Borel a.c. prob. meas.,

lim
N→∞

∫ 1

0
f(AN(α))λ(dα) =

∫
Γ\G

f(M)dµ0(M).
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How to compute P (L)

We need to work out the distribution of the lowest height vector inside the green
strip.

The trick is to disintegrate. Recall the “space of
random lattices”

X = Γ\G, G = SL(2,R), Γ = SL(2,Z)

Now for each non-zero y ∈ R2 consider the
subspace

X(y) = {ΓM ∈ X : y ∈ Z2M}

s

r

r + s

−1 −t 0 1− t 1
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To determine the restriction to X(y) of the Haar probability measure µ on X we
further decompose

X(y) =
⋃

k∈Z2\{0}
X(k,y), X(k,y) = {ΓM : M ∈ G, kM = y}

For every k = (k1, k2) with gcd(k1, k2) = r we find γ ∈ Γ such that

re1γ = k, e1 = (1,0)

. This yields the disjoint union

X(y) =
∞⋃
r=1

X(re1,y), X(re1,y) = {ΓM : M ∈ G, re1M = y}

Take My such that y = e1My (e.g. My =
(

y1 y2

−y−1
2 0

)
for y2 > 0), and note that

e1M = e1 for all M ∈ H, H :=

{(
1 0
v 1

)
: v ∈ R

}
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Set a(r) =

(
r 0
0 r−1

)
. Then

X(re1,y) = {ΓM : M ∈ G, re1M = e1My}
= {ΓM : M ∈ G, e1a(r)M = e1My}
= {Γa(r)−1hMy : h ∈ H}
= a(r)−1{Γ̃hMy : h ∈ H}

where Γ̃ := a(r)Γa(r)−1 and

{Γ̃hMy : h ∈ H} = Γ̃\Γ̃HMy

' Γ̃∞\HMy

Γ̃∞ = a(r)

{(
1 0
m 1

)
: m ∈ Z

}
a(r)−1 =

{(
1 0

r−2m 1

)
: m ∈ Z

}
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The Haar probability measure on

X(y) =
∞⋃
r=1

a(r)−1{Γ̃hMy : h ∈ H}

is thus ( ∞∑
r=1

r−2
)−1

dv =
6

π2
dv

The Haar probability measure on X reads then (recall that y ranges over a unit
volume)

µ =
6

π2
dv dy1 dy2
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We now want to work out that, given y in the green strip, the measure of v such
that there is no other vector of smaller height in the green strip.

Now, X(re1,y) corresponds to a lattice Z2M

where r(1,0)M = y, so the top row of M
equals r−1y. This means that r−1y ∈ Z2M

and, for k ≥ 2, is a vector in the green strip
(since y is) but of smaller height than y - these
are excluded. We therefore only need to inte-
grate over X(e1,y) rather than the full X(y).

y

−1 −t 0 1− t 1

This is now a simple integral over v ∈ [0,1] with the condition that the lattice

Z2
(

1 0
v 1

)(
y1 y2

−y−1
2 0

)
has no lattice point in the green strip below y.
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This can be calculated by distinguishing the
three cases for y being basis vectors (or their
linear combination) as in the diagram, and we
obtain:

y

−1 −t 0 1− t 1

Kw(y) =
6

π2
H

1 +
y−1

2 −max
(
|w|, |y1 − w|

)
− 1

2

|y1|


where w = 1

2 − t is the center of the interval [−t,1− t] and

H(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if 1 ≤ x.

JM & Strömbergsson, Nonlinearity 2008
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Nearest neighbours in Kronecker sequences

• Fix ~α ∈ Rd, multidimensional torus Td = Rd/Zd

• Consider distances between points ξn = n~α ∈ Td, n = 1, . . . , N

• δn,N = min{|ξm − ξn + `| > 0 | 1 ≤ m ≤ N, ` ∈ Zd}

(= distance of ξn to its nearest neighbour, | · | denotes Euclidean norm in Rd)

• Number of distinct distances gN = |{δn,N | 1 ≤ n ≤ N}|

• Previous studies by Chevallier (1996, 1997, 2000, 2014) and Vijay (2008, “11
distances are enough”; see also Biringer and Schmidt for actions by isome-
tries on general compact manifolds (2008)
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Examples with 5 distances in dimension 2

~α = (0.38,0.132), N = 9 ~α = (0.105,0.275), N = 12
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Example with 7 distances in dimension 3

~α = ( 46
125,

107
500,

43
500), N = 15
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A five distance theorem

Theorem E. (Haynes & JM, IMRN 2021)
For every ~α ∈ Rd and N ∈ N we have that

gN ≤


3 (d = 1)

5 (d = 2)

σd + 1 (d ≥ 3)

where σd is the kissing number for Rd. 3 5 13 25 46 79 135 241 365 555

• Holds also if Zd is replaced by any lattice of full rank in Rd

• Holds also if standard Euclidean metric on Td is replaced by any flat Rieman-
nian metric
• Biringer and Schmidt (2008) showed gN ≤ 3d + 1 (in fact for general iso-

metric anctions on Riemannian manifolds with sectional curvature ≥ 0)
4 10 28 82 244 730 2188 6562 19684 59050

• If metric is given by max-norm, then gN ≤ 2d + 1 (Chevallier 1996 d = 2,
Haynes & Ramirez 2020) 3 5 9 17 33 65 129 257 513 1025
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Lower bounds

We sayN1 < N2 < N3 < . . . of integers is sub-exponential if limi→∞
Ni+1
Ni

= 1.

Theorem F. (Haynes & JM, IMRN 2021)
There is a P ⊂ Rd of full Lebesgue measure, such that for every ~α ∈ P , ~α0 ∈ Rd,
and for every sub-exponential sequence (Ni)i, we have

lim sup
i→∞

gNi(~α) ≥ sup
N∈N

gN(~α0).

• Corollary: For ~α ∈ P we have lim sup
i→∞

gNi(~α)

= 5 if d = 2

≥ 9 if d = 3*

The starting point of the above theorems is our “lattice proof” of the three gap
theorem. Theorem E then requires a detailed geometric analysis on lattice con-
figurations; Theorem F uses in addition the density of typical orbits of a certain
diagonal one-parameter flow on the space of lattices.

*Carl Dettmann found a numerical example with 9 distinct distances
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Fractional parts of small powers

• For fixed 0 < β < 1, β 6= 1
2
, the gap distribution of

nβ mod 1 looks Poisson numerically—-NO PROOFS!*
The example on the right is for β = 1

3

• For β = 1
2
, Elkies & McMullen (Duke Math J 2004) have

shown that the gap distribution exists, and derived an ex-
plicit formula which is clearly different from the exponen-
tial.

• At the same time, the two-point function converges to the
Poisson answer (JM, El Baz & Vinogradov, Proc AMS
2015). The proof requires upper bounds for the equidis-
tribution of certain unipotent flows with respect to un-
bounded test functions.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1.2

*See recent proof for two-point statistics for β ≤ 1/3: C. Lutsko, N. Technau & A. Sourmelidis,
Pair correlation of the fractional parts of αnθ, arXiv:2106.09800 (2021)
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Fractional parts of
√
n

N. Elkies & C. McMullen, Duke Math J 2004

• We aim to show that the random set (here s is a random variable uniformly
distributed in [0,1])

PN,s = {N(
√
n+m− s)) | n = 1, . . . , N, m ∈ Z}

converges in distribution to a limit that is described by a random affine lattice.
(The gap distribution will then follow as a corollary.)
• “Lift” this to the following point set in R2:

QN,s =

{(
n1/2

N1/2
, N

(
n1/2 +m− s

)) ∣∣∣∣∣ (m,n) ∈ Z2, n > 0

}

and note that PN,s = π2

[
QN,s ∩

(
(0,1]× R

)]
(cut and project!).

• Here is another point set in R2:

Q̃N,s =

{(
m+ s

N1/2
,−
N1/2(n+ 2ms+ s2)

2N−1/2(m+ s)

) ∣∣∣∣∣ (m,n) ∈ Z2
}

• QN,s and Q̃N,s are close (in the right half plane) . . .
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• Fix any compact set A ⊂ R>0 × R. Then for any element in QN,s ∩ A we
have n1/2 = −m+ s+OA(N−1), so(

n1/2

N1/2
, N

(
n1/2 +m− s

))

=

(
n1/2

N1/2
,
N
(
n− (−m+ s)2

)
n1/2 −m+ s

)

=

(
−m+ s

N1/2
+OA(N−3/2),

N1/2
(
n− (−m+ s)2

)
2N−1/2(−m+ s) +OA(N−3/2)

)

• Now shift n by m2 (this 1:1 on Z) and then replace (m,n) by −(m,n). This
shows that each element in QN,t ∩ A is O(N−3/2)-close to a unique point
in

Q̃N,t =

{(
m+ s

N1/2
,−
N1/2(n+ 2ms+ s2)

2N−1/2(m+ s)

) ∣∣∣∣∣ (m,n) ∈ Z2
}
.
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The key observation

• It is now an exercise to show that

Q̃N,s =

{(
y1,−

y2

2y1

) ∣∣∣∣∣ (y1, y2) ∈ Z2u(s)a(N−1/2)

}
where

u(s) =

((
1 2s
0 1

)
, (s, s2)

)
, a(r) =

((
r 0
0 r−1

)
,0

)
∈ ASL(2,R).

Note that u(s) generates a one-parameter subgroup of ASL(2,R)

• Recall ASL(2,R) = SL(2,R) n R2 with multiplication law

(M, z)(M ′, z′) = (MM ′, zM ′+ z′)
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Limit theorems

• Set G = ASL(2,R), Γ = ASL(2,Z), X = Γ\G. It follows from Ratner’s
measure classification theorem* that for f : X → R bounded continuous, λ
absolutely continuous Borel probability measure on [0,1], and r → 0,∫ 1

0
f(Γu(s)a(r))λ(ds)→

∫
X
f(g)dµ(g)

• Following our previous strategy, this implies convergence

Z2u(s)a(r)
d−→ Z2g

to a (Haar-) random affine lattice
• This in turn implies in view of the previous calculation, via cut and project,

PN,s = {N(
√
n+m− s)) | n = 1, . . . , N, m ∈ Z}

d−→
{
−

y2

2y1

∣∣∣∣∣ (y1, y2) ∈ Z2g, y1 ∈ (0,1]

}
• From this the convergence of the gap distribution and its formula follow.

*For an effective proof see T. Browning, I. Vonogradov, J. LMS 2016, building on the crucial work
by A. Strömbergsson, Duke Math. J. 2015
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How about random lattices in hyperbolic geometry?

Escher’s Circle Limit I
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Random hyperbolic lattices

• G = SL(2,R) acts by Möbius transformations on complex upper half plane

H→ H, z 7→
az + b

cz + d
,

(
a b
c d

)
∈ G

• Γ < G Fuchsian subgroup of finite co-volume

• For w ∈ H consider the hyperbolic lattice Γw in H

• Deform Γw by g ∈ G to obtain gΓw

• The space of such lattices is parametrized by G/Γ, which carries a (unique)
G-invariant probability measure µ

• We can define the µ-random hyperbolic lattice gΓw
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Directions in hyperbolic lattices

• Previous work on two-point statistics by F. Boca, V. Paşol, A. Popa, A. Zaharescu (2014), D.
Kelmer & A. Kontorovich (2015), M. Risager & A. Södergren (2017)

• As for Euclidean lattices and quasicrystals,
can now study distribution of angles of
hyperbolic lattice points Γw, as seen from
an observer at the origin i ∈ H

• The convergence of the gap distribution fol-
lows from the convergence of the point pro-
cesses(
ε−1 0
0 ε

)(
cosφ − sinφ
sinφ cosφ

)
Γw

d−→ gΓw

as ε → 0, with θ a uniform random variable
in [0,2π], g is µ-random.

0 1 2 3 4 5 6

Gap distribution

JM and I. Vinogradov, Directions in hyperbolic lattices, Crelle 2018
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Random hyperbolic lattices and roots of quadratic congruences

• Consider the roots µ of the quadratic congruence

µ2 ≡ D (mod m)

with m = 1,2,3, . . . and D > 0 square-free (all will work also for D < 0; it’s easier)

• Define sequence ξ1, ξ2, . . . ∈ T = R/Z by normalised roots µ
m, ordered by

increasing denominator m (choose arbitrary order for terms with same m)

• C. Hooley (1963): We have uniform distribution mod 1

lim
N→∞

1

N
#
{
j ≤ N : ξj ∈ [a, b) + Z

}
= b− a

• Extension to higher-order polynomial congruences (C. Hooley 1964); use of modular forms,
Poincaré series (V.A. Bykovskii 1984; see also A. Good 1983); u.d. still holds form restricted
to primes (W. Duke, J. Friedlander, H. Iwaniec 1995); joint distribution (S. Zahavi 2020); fits
in more general CRT framework (E. Kowalski and K. Soundararajan 2020).
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Gaps between roots

Theorem G. (JM & M. Welsh, Duke Math. J., in press)
Let D > 0 square-free, D 6≡ 1 mod 4. Then the distribution of gaps between
the elements of the finite sequence (ξj)

N
j=1 converges weakly to limit with con-

tinuous distribution function.

D = 2,3,10 N = 106
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Two-point statistics

D = 2,3,10 N = 106

Here we consider distances between all (rather than just consecutive) elements.
The red curve is our theoretic prediction.
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Key insight: the geometry of roots

Theorem H. (JM & M. Welsh, Duke Math. J., in press)
For D as above, there exists a finite set of geodesics {c1, . . . , ch} such that:

(i) For any m > 0 and µ satisfying µ2 ≡ D (mod m), there is a unique
geodesic of the form γcl ⊂ H with γ ∈ SL(2,Z) and its top at the point

µ

m
+ i

√
D

m

(ii) Conversely, given any geodesic of the above form, there exist unique m >

0 and µ (mod m) satisfying µ2 ≡ D (mod m).

• The geodesics {c1, . . . , ch} project to closed geodesics of equal length in SL(2,Z)\H
• Extends to setting with additional congruence conditions m ≡ 0 (mod n), and µ ≡ ν

(mod n), need to replace SL(2,Z) by Γ0(n)
• See M. Welsh (Algebra & Number Th. 2022) for parametrization of roots of higher-degree

polynomial congruences
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Geodesic line processes

• c geodesic in H that projects to closed
geodesic in Γ\H

• Corresponding stabiliser subgroup Γc

= {g ∈ SL(2,R) : gc = c} < Γ

• Consider orbit of geodesic
Γc = {γc : γ ∈ Γ/Γc}

• Deform by g ∈ G to obtain gΓc = {gγc : γ ∈ Γ/Γc}

• The space of such unions of geodesics is again parametrized by G/Γ

• We can define the µ-random line process gΓc, with g distributed according to the (unique)
G-invariant probability measure µ

• Use convergence
(
ε−1 0
0 ε

)(
cosφ − sinφ
sinφ cosφ

)
Γc

d−→ gΓc to prove Theorem A
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