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Measure rigidity is a branch of ergodic theory that has recently contributed to
the solution of some fundamental problems in number theory and mathematical
physics. Examples include
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• quantitative versions of the Oppenheim conjecture m2
1 +m2

2 −
√

2 m2
3

(Eskin, Margulis & Mozes, Annals of Math 1998)

• spacings between the values of quadratic forms
(m1 −

√
2)2 + (m2 −

√
3)2 (Marklof, Annals of Math 2003)

m2
1 +

√
2 m2

2 (Eskin, Margulis & Mozes, Annals of Math 2005)

• quantum unique ergodicity for certain classes of hyperbolic surfaces
(Lindenstrauss, Annals of Math 2006)

• approach to Littlewood conjecture on the nonexistence of multiplicatively badly
approximable numbers
(Einsiedler, Katok & Lindenstrauss, Annals of Math 2006)

• Boltzmann-Grad limit of the periodic Lorentz gas
(Marklof & Strömbergsson, in preparation)
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Ratner’s theorem is one of the central results in measure rigidity. It gives a
complete classification of measures invariant under unipotent flows. In this talk
I’ll discuss a few simple applications of Ratner’s theorem to the analysis of the
statistical properties of basic number-theoretic sequences:

5



• fractional parts of nα, n = 1,2,3, . . .

(a classical, well understood sequence, usually studied by means of contin-
ued fractions; cf. Mazel-Sinai, Bleher, Greenman, Marklof)

• fractional parts of
√
nα, n = 1,2,3, . . .

(as recently studied by Elkies and McMullen, Duke Math J 2004)

• fractional parts of n2α, n = 1,2,3, . . .

(Sinai, Pelegrinotti, Rudnick-Sarnak, Rudnick-Sarnak-Zaharescu, Marklof-
Strömbergsson,. . . )
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For more details see

J. Marklof, Distribution modulo one and Ratner’s theorem

Proc. Montreal Summer School on Equidistribution in Number Theory 2005
(Springer, to appear)
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How to test randomness of point sequences mod 1
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Consider an infinite triangular array of numbers on the circle T = R/Z ' [0,1)

ξ11
ξ21 ξ22

... ... . . .
ξN1 ξN2 . . . ξNN

... ... . . .

Assume that each row is ordered, i.e., ξNj ≤ ξN(j+1); to simplify notation I’ll use
ξj instead of ξNj in the following.

Consider the number of elements in the interval [x0 − `
2, x0 + `

2) mod 1,

SN(`) =
N∑
j=1

χ`(ξj), χ`(x) =
∑
n∈Z

χ
[−1

2,
1
2)

(
x− x0 + n

`

)

Here χ
[−1

2,
1
2)

denotes the characteristic function of the interval [−1
2,

1
2) ⊂ R.
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Uniform distribution mod 1. A sequence {ξj} is uniformly distributed mod 1 if
for every x0, `,

lim
N→∞

SN(`)

N
= `

Well known examples of u.d. sequences are nkα mod 1 (n = 1,2,3, . . .), for
any k ∈ N and α irrational (Weyl 1916)
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Poisson distribution. Let EN(k, L) be the probability of finding k elements in
the randomly shifted interval [x0, x0 + L

N ) of size L/N (very small!)

EN(k, L) := meas {x0 ∈ T : SN(`) = k}

We say the sequence {ξj} is Poisson distributed if

lim
N→∞

EN(k, L) =
Lk

k!
e−L

This means {ξj} behaves like a generic realization of independent random vari-
ables mod 1.

Example. 2nα mod 1 is Poisson distributed for generic α (Rudnick & Zaharescu,
Forum Math 2002) and nkα mod 1 is conjectured to for k ≥ 2 by some people,
others disagree
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Distribution of gaps. A popular statistical measure is the distribution of gaps

sj = N(ξj+1 − ξj)

between consecutive elements. The gap distribution of {ξj} is

PN(s) =
1

N

N∑
j=1

δ(s− sj)

and the question is whether it has a limiting distribution

PN(s)→w P (s),

i.e., for every bounded continuous function g : R → R,

lim
N→∞

∫ ∞
0

g(s)PN(s)ds =
∫ ∞
0

g(s)P (s)ds.
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Note one can show

PN(s)→w P (s) ⇐⇒ EN(0, L)→ E(0, L) with
d2E(0, L)

dL2
= P (L)

In particular for Poisson distributed sequences P (s) = e−s.
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Maple experiments

14



PN(s) for n
√

2 and n2
√

2 vs. the exponential distribution

N = 6001
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PN(s) for
√
n and

√
n
√

2 vs. the exponential distribution

N = 10001
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nα mod 1
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The number of elements in an interval of size ` = L/N and centered at x0 is

SN(`) =
N∑

m=1

∑
n∈Z

χ
[−1

2,
1
2)

(
N

L
(mα+ n− x0)

)

=
∑

(m,n)∈Z2

χ(0,1]

(
m

N

)
χ[−L/2,L/2]

(
N(mα+ n− x0)

)

=
∑

(m,n)∈Z2

ψ

(
(m,n− x0)

(
1 α
0 1

)(
N−1 0
0 N

))

where χI denotes the characteristic function of the interval I ⊂ R and

ψ(x, y) = χ(0,1](x)χ[−L/2,L/2](y)

is the characteristic function of a rectangle.
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Let G = SL(2,R) n R2 with multiplication law

(M, ξ)(M ′, ξ′) = (MM ′, ξM ′+ ξ′),

where ξ, ξ′ ∈ R2 are viewed as row vectors.

The function

F (M, ξ) =
∑

m∈Z2

ψ(mM + ξ)

defines a function on G. Note that, with ψ as above, the sum is always finite, and
hence F is a piecewise constant function.

Note:

SN(`) = F (M, ξ)

for

M =

(
1 α
0 1

)(
N−1 0
0 N

)
, ξ = (0,−x0)M.
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Homogeneous spaces. The crucial observation is now that F is left-invariant
under the discrete subgroup Γ = SL(2,Z) n Z2

F (γg) = F (g) ∀ γ ∈ Γ

(this can be checked by an elementary calculation), and hence F may be viewed
as a piecewise constant function on the homogeneous space Γ\G.
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Dynamics on Γ\G. Right multiplication by

Φt =

((
e−t/2 0

0 et/2

)
,0

)
genrates a flow on Γ\G

Γg 7→ ΓgΦt.

Now observe that SN(`) is related to a function F on Γ\G evaluated along an
orbit of this flow:

SN(`) = F (g0Φ
t)

with t = 2 logN and initial condition

g0 = g0(α, x0) =

((
1 α
0 1

)
, (0,−x0)

)
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Equidistribution

Theorem. For any bounded, piecewise continuous f : Γ\G→ R

lim
t→∞

1

b− a

∫ b
a

∫ 1

0
f(g0(α, y)Φ

t)dα dy =
1

µ(Γ\G)

∫
Γ\G

fdµ.

This theorem can be proved by exploiting the mixing property of the flow Φt.
By chosing the right test function f , the following theorem (first proved by Mazel-
Sinai, and for P (s) by Bleher using different methods based on cont’d fractions)
is a direct corollary.

Values of nα in short intervals for random α

Theorem. For any L > 0,

lim
N→∞

meas{(α, x0) ∈ [a, b]× [0,1] : SN(`) = k}
b− a

= E(k, L),

where

E(k, L) =
µ(g ∈ Γ\G : F (g) = k)

µ(Γ\G)
.
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Equidistribution II. Using Ratner’s theorem, one can in fact strengthen the pre-
vious results by showing:

Theorem. For any irrational x0 and any bounded, piecewise continuous f :

Γ\G→ R

lim
t→∞

1

b− a

∫ b
a
f(g0(α, x0)Φ

t)dα =
1

µ(Γ\G)

∫
Γ\G

fdµ.

(Remarkably, A. Strömbergsson has recently proved this results by analytic tech-
niques, without using Ratner’s theory.)

Hence we obtain the value distribution in intervals with fixed rather than random
x0.

Theorem. For any L > 0 and x0 irrational,

lim
N→∞

meas{α ∈ [a, b] : SN(`) = k}
b− a

= E(k, L),

with the same E(k, L) as before.
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√
nα mod 1
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We are interested in the distribution of

SN(`) =
N∑
n=1

∑
m∈Z

χ
[−1

2,
1
2)

(
N

L
(
√
nα− x0 +m)

)
.

Similar to the previous section on can show that for α = 1

SN(`) ≈ F (g0(x)Φ
t)

with t = 2 logN and initial condition

g0(x) =

((
1 2x
0 1

)
, (x, x2)

)
Again

F (M, ξ) =
∑

m∈Z2

ψ(mM + ξ)

but now

ψ(x, y) = χ(0,1](x)χ(−L,L]

(
y

x

)
which represents the characteristic function of a triangle.
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Equidistribution III

The following follows again from Ratner’s theorem (Elkies & McMullen 2004).

Theorem. For any bounded, piecewise continuous f : Γ\G→ R

lim
t→∞

∫ 1

0
f(g0(x)Φ

t) dx =
1

µ(Γ\G)

∫
Γ\G

fdµ.

This implies, as before:

Values of
√

n in short intervals

Theorem. For any L > 0,

lim
N→∞

meas{x ∈ [0,1] : SN(`) = k} = E(k, L),

where

E(k, L) =
µ(g ∈ Γ\G : F (g) = k)

µ(Γ\G)
.
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The above argument can be adapted for rational α but no longer works for ir-
rational α. In fact heuristic arguments (see lecture notes) as well as numerical
experiments predict that then

√
nα should be Poisson distributed, at least for

typical α.
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Ratner’s theorem
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Let
— G be a Lie group (e.g. SL(2,R) n R2)
— Γ be a discrete subgroup (e.g. SL(2,Z) n Z2)
— U a group generated by unipotent subgroups

Examples of such U we had discussed earlier are{((
1 t
0 1

)
,0

)}
t

{((
1 0
0 1

)
, (0, t)

)}
t

{((
1 2t
0 1

)
, (t, t2)

)}
t

Ratner’s theorem. Let ν be an ergodic, right-U -invariant probability measure on
Γ\G. Then there is a closed, connected subgroup H ⊂ G, and a point g ∈ Γ\G
such that

1. ν is H-invariant,

2. ν is supported on the orbit gH.
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Equidistribution IV

The equidistribution theorems we had used earlier are corollaries of the following
theorem, which in turn is a special case of a theorem by Shah (Proc. Indian Acad
Sci 1996).

Theorem. Suppose G contains a Lie subgroup H isomorphic to SL(2,R) (we
denote the corresponding embedding by ϕ : SL(2,R) → G), such that the set
Γ\ΓH is dense in Γ\G. Then, for any bounded continuous f : Γ\G→ R

lim
t→∞

∫ b
a
f

(
ϕ

((
1 x
0 1

)(
e−t/2 0

0 et/2

)))
dx =

b− a

µ(Γ\G)

∫
Γ\G

fdµ

where µ is the Haar measure of G.
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The general strategy of proof for statements of the above type is as follows.

1. Show that the sequences of probability measures νt defined by

νt(f) =
1

b− a

∫ b
a
f

(
ϕ

((
1 x
0 1

)(
e−t/2 0

0 et/2

)))
dx

is tight. Then, by the Helly-Prokhorov theorem, it is relatively compact, i.e., every
sequence of νt contains a convergent subsequence with weak limit ν, say.

3. Show that ν is invariant under a unipotent subgroup U ; in the present case,

U =

{
ϕ

((
1 x
0 1

))}
x∈R

.

4. Use a density argument to rule out measures concentrated on subvarieties
(exploit the assumption that Γ\ΓH is dense in Γ\G).
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