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This lecture will discuss:

• Classic determinism

• How to generate randomness

• Chaos and randomness in simple models

• Visibility in a forest

• Chaotic transport in crystals
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This lecture will not discuss (sadly):

• Free will

• Quantum effects

• The stock market

• Benford’s law and tax evasion

• How to win the lottery
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Newton’s laws and coin tossing

According to Newton’s laws of motion∗, the knowledge of the initial position,
velocity and spin of a coin precisely determines the outcome of a coin
toss—head or tail. So where does randomness enter?

∗we neglect quantum and relativistic effects
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The perfect coin tosser

from: P. Diaconis et al., Dynamical Bias in the Coin Toss, SIAM Review ‘07
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The deterministic universe

“An intelligence which, at a given instant, would
know all the forces by which Nature is animated,
and the respective situation of all the elements of
which it is composed, if furthermore it were vast
enough to submit all these data to analysis, would
in the same formula encompass the motions of the
largest bodies of the universe, and those of the
most minute atom: nothing for it would be uncer-
tain, and the future as well as the past would be
present to its eyes.”
Pierre-Simon, Marquis de Laplace, 1814 Laplace (1749-1827)
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Generating randomness: a simple model for chaotic dynamics

Consider a machine (a computer) that accepts as an input a number x

between 0 and 1, e.g., 0.625, and produces as an output a new number y,
again between 0 and 1, according to the rule

y = 2x mod 1

where “mod1” means that we remove the integer part of 2x.

For example:
input: x 0.4 0.7

2x 0.8 1.4
output: y 0.8 0.4

One may think of x as the analogue of the data describing the coin’s initial
position, velocity and spin.
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We now run this operation several times by feeding the previous output as
the new input. After n iterations we thus obtain the output

yn = 2nx mod 1

When n is large (say n = 10), changing the input slightly may have
a dramatic effect on the output. We thus have sensitive dependence on
initial conditions, a characteristic feature of chaotic systems.

For example:
input: x 0.30 0.31
output: y10 0.20 0.44
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Detecting randomness

We have constructed a system with sensitive dependence on initial data,
but how random is it? To see how it compares with a fair coin toss, let us
say that we have heads if the output yn is between 0 and 0.5, and tails
when it is between 0.5 and 1.

The following mathematical theorem tells us that, given any ever-so-small
inaccuracy in the initial data, and after a sufficiently large number of itera-
tions, our system produces a fair coin toss.

Let x be uniformly distributed between 0.2999999 and 0.3000001 then the
probability of heads is

Prob(0 < yn < 0.5) ≈ 0.5

with an error of size 2−n.
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. . . in summary:

In chaotic systems, a tiny amount of uncertainty in the initial data produces
almost perfect randomness after a very short time.

That is, we have an exponential amplification of randomness.
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Boltzmann’s statistical mechanics

Boltzmann proposed to explain the motion of
a gas cloud by using the dynamics of micro-
scopic particles—atoms and molecules,
whose existence was highly disputed during
Boltzmann’s lifetime.

In his 1872 paper, Boltzmann derived the
famous Boltzmann equation, assuming that
the dynamics of the colliding gas molecules
is chaotic. Ludwig Boltzmann (1844-1906)
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The Boltzmann gas: Sensitive dependence in two-molecule collision.
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The first rigorous justification of the Boltzmann equation was given by Os-
car Lanford in 1975 for the dynamics over very short time intervals. The
problem for the more realistic macroscopic time scales is still wide open.
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The Lorentz gas

In an attempt to describe the evolution of a
dilute electron gas in a metal, Lorentz pro-
posed in 1905 a model, where the heavier
atoms are assumed to be fixed, whereas the
electrons are interacting with the atoms but
not with each other. For simplicity, Lorentz
assumed like Boltzmann that the atoms can
be modeled by elastic spheres.

The Lorentz gas is still one of the iconic mod-
els for chaotic diffusion, both in a random
and periodic configuration of scatterers. Hendrik Lorentz (1853-1928)
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The Lorentz gas with randomly positioned scatterers.
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The Lorentz gas with a periodic array of scatterers (crystal).
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The periodic Lorentz gas and Brownian motion

Yakov Sinai (Princeton University) is one of
the pioneers in understanding the chaotic
properties of the periodic Lorentz gas. He
proved in 1980, jointly with Leonid Buni-
movich, that in the limit of long times the
dynamics appears as random as Brownian
motion.

Yakov Sinai
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A typical Brownian path in three dimensional space.
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The Boltzmann-Grad limit of the Lorentz gas

To prove the laws postulated by Boltzmann
and Lorentz, one however needs to con-
sider a different limit, the Boltzmann-Grad
limit, where the radius R of each scatterer
tends to zero, and the distance between the
scatterers is rescaled so that the mean free
path lengths remains constant.

Q0 V 0

R ≈ R1−1/d
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Visibility in a forest

The first problem in understanding the
Lorentz gas in the Boltzmann-Grad limit is
concerned with the distribution of the free
path length, which is the distance an elec-
tron travels between consecutive collisions.

This leads to natural problems in probabil-
ity theory and number theory, respectively,
which, in the two-dimensional case were
paraphrased by Pólya as the problem of vis-
ibility in a forest. George Pólya (1887-1985)
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The distribution of free path lengths

In the case of the Lorentz gas
with a random configuration of
scatterers, the probability density
for finding a free path of length L

is exp(−L) (black curve ).

The red curve represents
the distribution for the two-
dimensional periodic Lorentz gas
(Dahlquist, Nonlinearity 1997;
Boca & Zaharescu, Comm. Math.
Phys. 2007).
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The joint distribution of path segments

Jointly with Andreas Strömbergsson (KTH
Stockholm) I have recently developed new
techniques that not only allow us to gen-
eralize the above results to 3+ dimensions,
but also compute the limit distribution of a
path (S1, S2, . . .) with random initial data
(Q0, V 0). In particular we prove that the
path segments are generated by a Markov
process with memory two.

Q0 V 0

S1

S2

R ≈ R1−1/d
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Dynamics of a particle cloud

The result with Strömbergsson allows us to predict the dynamics of a par-
ticle cloud in the periodic Lorentz gas.

Remarkably, this dynamics is not governed by the linear Boltzmann equa-
tion as in the random configuration (Galavotti, 1969), but by a substantially
more complicated process.
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Future research

• Replace the elastic spheres with more realistic potentials, and thus
obtain a model for the chaotic transport of electrons in a crystal

• Consider crystals in electro-magnetic fields; the “free” path segments
will then no longer be straight lines

• Investigate crystals with defects

• Compute quantum effects
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Highly recommended:

Chance and Chaos
by David Ruelle
(Penguin Books 1993)

Ludwig Boltzmann—The Man Who
Trusted Atoms
by Carlo Cercignani
(Oxford University Press 1998)
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