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The Lorentz gas

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)
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The Boltzmann-Grad limit

• Consider the dynamics in the limit of small scatterer radius ρ

•
(
q(t), v(t)

)
= “microscopic” phase space coordinate at time t

• A dimensional argument shows that, in the limit ρ → 0, the mean free
path length (i.e., the average time between consecutive collisions) scales
like ρ−(d−1) (= 1/total scattering cross section)

• We thus re-define position and time and use the “macroscopic” coordinates(
Q(t),V (t)

)
=
(
ρd−1q(ρ−(d−1)t),v(ρ−(d−1)t)

)
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The linear Boltzmann equation

• Time evolution of initial data (Q,V ):

(Q(t),V (t)) = Φtρ(Q,V )

• Time evolution of a particle cloud with initial density f ∈ L1:

ft = Ltρ f, [Ltρf ](Q,V ) := f
(
Φ−tρ (Q,V )

)

In his 1905 paper Lorentz suggested that ft is governed, as ρ→ 0, by the linear
Boltzmann equation:

[
∂

∂t
+ V · ∇Q

]
ft(Q,V ) =

∫
Sd−1

1

[
ft(Q,V 0)− ft(Q,V )

]
σ(V 0,V )dV 0

where the collision kernel σ(V 0,V ) is the cross section of the individual scat-
terer. E.g.: σ(V 0,V ) = 1

4‖V 0−V ‖3−d for specular reflection at a hard sphere
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The linear Boltzmann equation—rigorous proofs

• Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterers

• Spohn (Comm Math Phys 1978): extension to more general random scatterer
configurations and potentials

• Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for
almost every scatterer configuration

5



The quantum linear Boltzmann equation

• Spohn (J Stat Phys 1977): Gaussian random potentials, small times

• Erdös and Yau (Contemp Math 1998, Comm Pure Appl Math 2000): General
random potentials, weak coupling limit

• Eng and Erdös (Rev Math Phys 2005): Low density limit
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The periodic Lorentz gas
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Chaotic diffusion for fixed scatterer radius ρ

• Bunimovich and Sinai (Comm Math Phys 1980/81): In the case of finite hori-
zon∗ and in dimension d = 2, the dynamics is diffusive in the limit of large
times t, and satisfies a central limit theorem with normalization

√
t.

• Melbourne and Nicol (Comm Math Phys 2005): Invariance principles for d =
2 and finite horizon.

• Bleher (J Stat Phys 1992), Szasz-Varju (2007): Central limit theorem for in-
finite horizon; the normalization is now

√
t log t (due to the free flight corri-

dors).

• Central limit theorem still unproven in higher dimensions; cf. Chernov (J Stat
Phys 1994), Balint-Toth (2007).

∗“Finite horizon” means that the scatterers are configured so that the path length between con-
secutive collisions is bounded.
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The Boltzmann-Grad limit

• Recall: We are interested in the dynamics in the limit of small scatterer radius

• (q(t),v(t)) = “microscopic” phase space coordinate at time t

• Re-define position and time and use the “macroscopic” coordinates

(Q(t),V (t)) = (ρd−1q(ρ−(d−1)t), v(ρ−(d−1)t))
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A limiting random process

A cloud of particles with initial density f(Q,V ) evolves in time t to

ft(Q,V ) = [Ltρf ](Q,V ) = f
(
Φ−tρ (Q,V )

)
.

Theorem A. For every t > 0 there exists a linear operator Lt :

L1(T1(Rd)) → L1(T1(Rd)), such that for every f ∈ L1(T1(Rd)) and
any set A ⊂ T1(Rd) with boundary of Lebesgue measure zero,

lim
ρ→0

∫
A

[Ltρf ](Q,V ) dQ dV =
∫
A

[Ltf ](Q,V ) dQ dV .

The operator Lt thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit ρ→ 0.

Note: The family {Lt}t≥0 does not form a semigroup.
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A generalization of the linear Boltzmann equation

In the case of the periodic Lorentz gas Lt does not form a semigroup, and hence
in particular the linear Boltzmann equation does not hold. This problem is re-
solved by considering extended phase space coordinates (Q,V , ξ,V +) where

(Q,V ) ∈ T1(Rd) — usual position and momentum
ξ ∈ R+ — flight time until the next scatterer
V + ∈ Sd−1

1 — velocity after the next hit

We prove the following generalization of the linear Boltzmann equation in the
extended phase space:

[
∂

∂t
+ V · ∇Q −

∂

∂ξ

]
ft(Q,V , ξ,V +)

=
∫

Sd−1
1

ft(Q,V 0,0,V )p0(V 0,V , ξ,V +)dV 0

with a new collision kernel p0(V 0,V , ξ,V +), given by . . .
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The collision kernel

p0(V 0,V , ξ,V +) = σ(V ,V +)Φ0
(
ξ, b(V ,V +),−s(V ,V 0)

)

• σ(V ,V +) the differential cross section
• Φ0

(
ξ, b(V ,V +),−s(V ,V 0)

)
the transition probability to exit with parame-

ter s(V ,V 0) and hit the next scatterer after time ξ with impact parameter
b(V ,V +)
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V 0 V

V

ρs ρ−(d−1)ξ

ρbV +
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The function Φ0

. . . yields the probability to exit a scatterer with parameter s and hit the next scat-
terer with impact parameter b after time ξ.

In dimension d = 2 (JM & Strömbergsson, Nonlinearity 2008):

Φ0(ξ, w, z) =
6

π2
Υ
(

1 +
ξ−1 −max(|w|, |z|)− 1

|w + z|

)

Υ(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if 1 ≤ x,
cf. also Caglioti & Golse (C.R. Acad. Sci. 2008) and Ustinov (2008).

Our formulas for dimension d > 2 are not as explicit and substantially more
involved.
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The operators Lt in Theorem A can be defined by the relation

[Ltg](Q,V ) :=
∫ ∞

0

∫
Sd−1

1

ft(Q,V , ξ,V +) dV + dξ

where ft(Q,V , ξ,V +) is a solution of the generalized linear Boltzmann equa-
tion subject to the initial condition

lim
t→0

ft(Q,V , ξ,V +) = g(Q,V )p(V , ξ,V +)

with

p(V , ξ,V +) :=
∫ ∞
ξ

∫
Sd−1

1

σ(V 0,V )p0(V 0,V , ξ,V +) dV 0 dξ;

the latter is a stationary solution of the generalized linear Boltzmann equation.

16



Why “a generalization” of the linear Boltzmann equation?

[
∂

∂t
+ V · ∇Q −

∂

∂ξ

]
ft(Q,V , ξ,V +)

=
∫

Sd−1
1

ft(Q,V 0,0,V )p0(V 0,V , ξ,V +)dV 0

Substituting in the above the transition density for the random (rather than peri-
odic) scatterer configuration

p0(V 0,V , ξ,V +) = σ(V ,V +)e− vol(Bd−1
1 ) ξ

ft(Q,V , ξ,V +) = gt(Q,V )σ(V ,V +)e− vol(Bd−1
1 ) ξ

yields the classical linear Boltzmann equation for gt(Q,V ).
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The key theorem:
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Joint distribution of path segments

S1

S2

S3

S4

S5
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Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes
the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem B. Fix an a.c. Borel probability measure Λ on T1(Rd). Then, for
each n ∈ N there exists a probability density Ψn,Λ on Rnd such that, for any
set A ⊂ Rnd with boundary of Lebesgue measure zero,

lim
ρ→0

Λ
({

(Q0,V 0) ∈ T1(Rd) : (S1, . . . ,Sn) ∈ A
})

=
∫
A

Ψn,Λ(S′1, . . . ,S
′
n) dS′1 · · · dS

′
n,

and, for n ≥ 3,

Ψn,Λ(S1, . . . ,Sn) = Ψ2,Λ(S1,S2)
n∏

j=3

Ψ(Sj−2,Sj−1,Sj),

where Ψ is a continuous probability density independent of Λ (and the lattice).

Theorem A follows from Theorem B by standard probabilistic arguments.
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First step: The distribution of free path lengths
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Previous studies

• Polya (Arch Math Phys 1918): “Visibility in a forest” (d = 2)

• Dahlquist (Nonlinearity 1997); Boca, Cobeli, Zaharescu (CMP 2000); Cagli-
oti, Golse (CMP 2003); Boca, Gologan, Zaharescu (CMP 2003); Boca, Za-
harescu (CMP 2007): Limit distributions for the free path lengths for various
sets of initial data (d = 2)

• Dumas, Dumas, Golse (J Stat Phys 1997): Asymptotics of mean free path
lengths (d ≥ 2)

• Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000):
bounds on possible weak limits (d ≥ 2)

See also Golse’s ICM review (Madrid 2006).
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Polya’s forest
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Lattices

• L ⊂ Rd—euclidean lattice of covolume one

• recall L = ZdM for someM ∈ SL(d,R), therefore the homogeneous space
X1 = SL(d,Z)\SL(d,R) parametrizes the space of lattices of covolume
one

• µ1—right-SL(d,R) invariant prob measure on X1 (Haar)
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Affine lattices

• ASL(d,R) = SL(d,R) n Rd—the semidirect product group with multiplica-
tion law

(M,x)(M ′,x′) = (MM ′,xM ′+ x′).

An action of ASL(d,R) on Rd can be defined as

y 7→ y(M,x) := yM + x.

• the space of affine lattices is then represented byX = ASL(d,Z)\ASL(d,R)

where ASL(d,Z) = SL(d,Z) n Zd, i.e.,

Lα := (Zd +α)M = Zd(1,α)(M, 0)

• µ—right-ASL(d,R) invariant prob measure on X
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Let us denote by τ1 = τ(q,v) the free path length corresponding to the initial
condition (q, v). Recall that ρd−1τ1 = ‖S1‖.

Theorem C. Fix a lattice L and the initial position q. Let λ be any a.c. Borel
probability measure on Sd−1

1 . Then, for every ξ > 0, the limit

FL,q(ξ) := lim
ρ→0

λ({v ∈ Sd−1
1 : ρd−1τ1 ≤ ξ})

exists, is continuous in ξ and independent of λ. Furthermore

FL,q(ξ) =

µ1({M ∈ X1 : ZdM ∩ Z(ξ) 6= ∅}) if q ∈ L
µ({(M,x) ∈ X : (ZdM + x) ∩ Z(ξ) 6= ∅}) if q /∈ QL.

with the cylinder

Z(ξ) =
{

(x1, . . . , xd) ∈ Rd : 0 < x1 < ξ, ‖(x2, . . . , xd)‖ < 1
}
.
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Remarks

• There are similar formulas for all q ∈ QL.

• Note that in the case q /∈ QL the limit FL,q(ξ) =: F (ξ) is independent of q
and L; in the case q ∈ L the limit FL,q(ξ) =: F0(ξ) is independent of L.

• Instead of rays emerging from the origin we can also deal with the family of
rays starting at the point ρβ(v) in direction v. This set-up is important for the
joint distribution for the first n path segments in the Lorentz gas.
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Outline of proof of Theorem C
(in the case q ∈ L = Zd)
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ρ−(d−1)ξ

λ
({
v ∈ Sd−1

1 : ρd−1τ1 ≤ ξ
})

= . . .
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ρ−(d−1)ξ

= λ
({
v ∈ Sd−1

1 : at least one scatterer intersects ray(v, ρ−(d−1)ξ)
})
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2ρ

ρ−(d−1)ξ

≈ λ
({
v ∈ Sd−1

1 : Zd ∩ Z(v, ρ−(d−1)ξ, ρ) 6= ∅
})
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2ρ

ρ−(d−1)ξ

(
Rotate by K(v) ∈ SO(d) such that v 7→ e1

)
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2ρ

ρ−(d−1)ξ

λ
({
v ∈ Sd−1

1 : ZdK(v) ∩ Z(e1, ρ
−(d−1)ξ, ρ) 6= ∅

})
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(
Apply Dρ = diag(ρd−1, ρ−1, . . . , ρ−1) ∈ SL(d,R)

)
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2

ξ

λ
({
v ∈ Sd−1

1 : ZdK(v)Dρ ∩ Z(e1, ξ,1) 6= ∅
})
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The following Theorem shows that in the limit ρ→ 0 the lattice

ZdK(v)

(
ρd−1 0

t0 ρ−11

)
behaves like a random lattice with respect to Haar measure µ1.

Define a flow on X1 = SL(d,Z)\SL(d,R) via right translation by

Φt =

(
e−(d−1)t 0

t0 et1

)
, t = log 1/ρ.

Theorem D. Fix any M0 ∈ SL(d,R). Let λ be an a.c. Borel probability
measure on Sd−1

1 . Then, for every bounded continuous function f : X1 → R,

lim
t→∞

∫
Sd−1

1

f(M0K(v)Φt)dλ(v) =
∫
X1

f(M)dµ1(M).
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Theorem D is a direct consequence of the mixing property for the flow Φt.

This concludes the proof of Theorem C when q ∈ L = ZdM0.

The generalization of Theorem D required for the full proof of Theorem C uses
Ratner’s classification of ergodic measures invariant under a unipotent flow. We
exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad. Sci. 1996) on
the uniform distribution of translates of unipotent orbits.

The central argument in the proof of Theorem B (joint distribution of path seg-
ments) follows a similar route, but is significantly more involved.
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Asymptotics
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Asymptotics of the limiting distribution for q /∈ QL

Recall:

F (ξ) := lim
ρ→0

λ({v ∈ Sd−1
1 : ρd−1τ1 ≤ ξ})

=µ({(M,x) ∈ X : (ZdM + x) ∩ Z(ξ) 6= ∅}).

F (ξ) = 1−
π
d−1

2

2ddΓ(d+3
2 ) ζ(d)

ξ−1 +O
(
ξ−1−2

d

)
as ξ →∞

F (ξ) = vol(Bd−1
1 ) ξ +O

(
ξ2
)

as ξ → 0

with vol(Bd−1
1 ) = π(d−1)/2

Γ((d+1)/2).

Note: for a random scatterer configuration F (ξ) = 1− e− vol(Bd−1
1 )ξ.
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Asymptotics of the limiting distribution for q ∈ L

Recall:

F0(ξ) := lim
ρ→0

λ({v ∈ Sd−1
1 : ρd−1τ1 ≤ ξ})

=µ1({M ∈ X1 : ZdM ∩ Z(ξ) 6= ∅}).

F0(ξ) = 1 for ξ sufficiently large

F0(ξ) =
vol(Bd−1

1 )

ζ(d)
ξ +O(ξ2) as ξ → 0.

Note: for a random scatterer configuration F0(ξ) = F (ξ) = 1− e− vol(Bd−1
1 )ξ.

1/ζ(d) is the relative density of primitive lattice points (i.e., the lattice points visi-
ble from the origin).

40



Conclusions

• We have seen that the dynamics of the periodic Lorentz gas converges, in the
Boltzmann-Grad limit, to a random flight process that is Markov with memory
two.

• The distribution of the free path lengths has polynomial tails, in stark contrast
to the random scatterer configuration, where the distribution is exponential.

• The corresponding evolution equation is a generalized Boltzmann equation
with a collision kernel that is independent of the choice of lattice.

• The proof exploits the dynamics on the space of (affine) lattices, and the
transition probabilities of the limit process are related to natural measures on
these homogeneous spaces.
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Outlook

• Long-time dynamics of the limit process? Intermediate scaling limits?

• Other scatterer configurations: Random defects, quasicrystals, electron-phonon
interactions?

• Long-range potentials? Electro-magnetic fields?

• Quantum analogue of the generalized linear Boltzmann equation?
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