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The Lorentz gas

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)



The Boltzmann-Grad limit
Consider the dynamics in the limit of small scatterer radius p
(q(t), v(t)) = “microscopic” phase space coordinate at time ¢

A dimensional argument shows that, in the limit p — 0O, the mean free
path length (i.e., the average time between consecutive collisions) scales
like p—(4=1) (= 1/total scattering cross section)

We thus re-define position and time and use the “macroscopic” coordinates

(QW),V(®) = (p" tqlp~ " Dp), v(p~ "))



The linear Boltzmann equation

e Time evolution of initial data (Q,V):

(Q(), V(1) = 2,(Q,V)

e Time evolution of a particle cloud with initial density f € L1:

fr=LLf  LLAQ,V) = f(2,4(Q,V))

In his 1905 paper Lorentz suggested that f; is governed, as p — O, by the linear
Boltzmann equation:

0
[& —I_ v VQ] ft(Q’ V) — /Sclil [ft(Qa VO) o ft(Q7 V)}O'(VO, V)dVO

where the collision kernel o(V g, V') is the cross section of the individual scat-
terer. E.g.: c(V,V) = 4||VO V' ||3~ for specular reflection at a hard sphere

4



The linear Boltzmann equation—rigorous proofs

e Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterers

e Spohn (Comm Math Phys 1978): extension to more general random scatterer
configurations and potentials

e Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for
almost every scatterer configuration



The quantum linear Boltzmann equation

e Spohn (J Stat Phys 1977): Gaussian random potentials, small times

e Erdos and Yau (Contemp Math 1998, Comm Pure Appl Math 2000): General
random potentials, weak coupling limit

e Eng and Erdos (Rev Math Phys 2005): Low density limit



The periodic Lorentz gas









Chaotic diffusion for fixed scatterer radius p

e Bunimovich and Sinai (Comm Math Phys 1980/81): In the case of finite hori-
zon™ and in dimension d = 2, the dynamics is diffusive in the limit of large
times ¢, and satisfies a central limit theorem with normalization /%.

e Melbourne and Nicol (Comm Math Phys 2005): Invariance principles for d =
2 and finite horizon.

e Bleher (J Stat Phys 1992), Szasz-Varju (2007): Central limit theorem for in-
finite horizon; the normalization is now /¢t logt (due to the free flight corri-
dors).

e Central limit theorem still unproven in higher dimensions; cf. Chernov (J Stat
Phys 1994), Balint-Toth (2007).

*“Finite horizon” means that the scatterers are configured so that the path length between con-
secutive collisions is bounded.
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The Boltzmann-Grad limit
e Recall: We are interested in the dynamics in the limit of small scatterer radius
e (q(t),v(t)) = “microscopic” phase space coordinate at time ¢

e Re-define position and time and use the “macroscopic” coordinates

(Q(), V(1) = (p? 1q(p~ D) w(p= =Dy
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A limiting random process

A cloud of particles with initial density f(Q, V') evolves in time t to

+(Q, V) = [LL11(Q,V) = f(2,(Q,V)).

Theorem A. For every t > O there exists a linear operator L?
LL(TH(RY)) — LY(TI(RY)), such that for every f € LI(TI(R?)) and
any set A ¢ T1(R?) with boundary of Lebesgue measure zero,

lim [ [L6(Q. V) dQav = | [L'f1(Q.V)dQaV.

The operator L! thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit p — O.

Note: The family {L'},~q does not form a semigroup.
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A generalization of the linear Boltzmann equation

In the case of the periodic Lorentz gas Lt does not form a semigroup, and hence
in particular the linear Boltzmann equation does not hold. This problem is re-
solved by considering extended phase space coordinates (Q,V,£,V ) where

(Q,V) € THR?) — usual position and momentum
e Ry — fI|ght time until the next scatterer
Ve Sd — velocity after the next hit

We prove the following generalization of the linear Boltzmann equation in the
extended phase space:

-I-V Vo — ]ft(Q V., V)

— gd—1 ft(Qa VO) 07 V)pO(V07 V7 67 V—I—)dvo
1

with a new collision kernel pg(V o, V,&, V), given by ...

13



The collision kernel

pO(V07 V7 57 V—|—) — O-(Va V—|—) ¢O (57 b(V7 V—|—)7 _S(V7 VO))

e o(V,V ) the differential cross section

o P (g, b(V,Vy),—s(V, Vo)) the transition probability to exit with parame-
ter s(V, V) and hit the next scatterer after time £ with impact parameter
b(V,Vy)
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The function &

... yields the probability to exit a scatterer with parameter s and hit the next scat-
terer with impact parameter b after time €.

In dimension d = 2 (JM & Strombergsson, Nonlinearity 2008):

6 ¢~ —max(wl|, |z]) — 1
(0 ifz<0
T(zx)=qx fO0O<z<]1
1 ifl1 <z,

cf. also Caglioti & Golse (C.R. Acad. Sci. 2008) and Ustinov (2008).

Our formulas for dimension d > 2 are not as explicit and substantially more
involved.
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The operators Lt in Theorem A can be defined by the relation

L)@ V)= [ [, Q. V.6 V) aVy ds
1

where f;(Q,V,& V4 ) is a solution of the generalized linear Boltzmann equa-
tion subject to the initial condition

with

p(V,6, V1) = /;O /Scli_lU(Voav)po(VO,V,ﬁ,V+)dVo de;

the latter is a stationary solution of the generalized linear Boltzmann equation.
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Why “a generalization” of the linear Boltzmann equation?

0 0

ot
— Sclz_l ft(Qa VO) 0, V)pO(V07 V7 £7 V—|—)dVO

Substituting in the above the transition density for the random (rather than peri-
odic) scatterer configuration

pO(VO7 V7€7 V—I—) — O’(V’ V_I_)e_ VOl(Bil_l)s

F(Q, V6, VL) = g(Q,V)o(V,V e VolBI )¢

yields the classical linear Boltzmann equation for ¢;(Q, V).
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The key theorem:
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Joint distribution of path segments




Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes
the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem B. Fix an a.c. Borel probability measure A on T1(R%). Then, for
each n € N there exists a probability density W, o on R™® such that, for any
set A C R™ with boundary of Lebesgue measure zero,

1Im A({(Qo, Vo) € THR? : (S1,...., Sn) € A})

:/Awn,/\(s’,...,sg) s’y ---ds"

and, for n > 3,

W, A(S1,...,80) = W a(S1,82) || w(S;-2,5;-1,5;),
=3

where W is a continuous probability density independent of A (and the lattice).

Theorem A follows from Theorem B by standard probabilistic arguments.
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First step: The distribution of free path lengths
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Previous studies

e Polya (Arch Math Phys 1918): “Visibility in a forest” (d = 2)

e Dahlquist (Nonlinearity 1997); Boca, Cobeli, Zaharescu (CMP 2000); Cagli-
oti, Golse (CMP 2003); Boca, Gologan, Zaharescu (CMP 2003); Boca, Za-
harescu (CMP 2007): Limit distributions for the free path lengths for various
sets of initial data (d = 2)

e Dumas, Dumas, Golse (J Stat Phys 1997): Asymptotics of mean free path
lengths (d > 2)

e Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000):
bounds on possible weak limits (d > 2)

See also Golse’s ICM review (Madrid 2006).
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Lattices

e [ C Re—euyclidean lattice of covolume one

e recall £L = Z%M for some M € SL(d,R), therefore the homogeneous space
X1 = SL(d,Z)\ SL(d,R) parametrizes the space of lattices of covolume
one

o 111—right-SL(d, R) invariant prob measure on X (Haar)
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Affine lattices

e ASL(d,R) = SL(d,R) x R%—the semidirect product group with multiplica-
tion law

(M, z2)(M', ") = (MM, M + 2.
An action of ASL(d,R) on R? can be defined as
y—y(M,x) .= yM + x.

e the space of affine lattices is then represented by X = ASL(d,Z)\ ASL(d,R)
where ASL(d,Z) = SL(d,Z) x Z%, i.e.,

Lo = (Z%+ a)M = Z%1, a) (M, 0)

e u—right-ASL (d,R) invariant prob measure on X
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Let us denote by 1 = 7(q, v) the free path length corresponding to the initial
condition (gq,v). Recall that p9—17; = ||51].

Theorem C. Fix a lattice £ and the initial position q. Let A be any a.c. Borel
probability measure on S¢71. Then, for every ¢ > 0, the limit

o d—1 . d-1
Frq(© = lImA({v e ST p'7lry <€}
exists, is continuous in £ and independent of \. Furthermore

p1({M e X1 :728M N Z(&) # 0)) ifg e L

feal®) = {u({(M,a;) € X :(Z'M+x)nZ() #0}) ifqé¢QL.

with the cylinder

2(€) ={(z1,...,3g) €RT: 0 <21 <& ||(22,...,zg)|| < 1}.
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Remarks

e There are similar formulas for all g € QL.

e Note that in the case g ¢ QL the limit Fz (&) =: F'(&) is independent of g
and £; in the case g € L the limit 'z ,(£) =: Fp(&) is independent of L.

e Instead of rays emerging from the origin we can also deal with the family of
rays starting at the point p3(v) in direction v. This set-up is important for the
joint distribution for the first n path segments in the Lorentz gas.
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Outline of proof of Theorem C
(in the case q € £ = Z%
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)\({v c S‘ll_1 . at least one scatterer intersects ray(v, p_(d_1>§)})
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~ A({’v C Scf_l Wida Z(v,p_(d_l)f,p) = @})
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(Rotate by K(v) € SO(d) such that v — el)
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(Apply D, =diag(p® 1, p7 ...

o 1) e sLd, R))
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AM{vesi ™t z'K(v)Dyn Z(e1,6,1) # 0})
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The following Theorem shows that in the limit p — O the lattice

J ,Od_l 0
7 K(v)( 0 ,0_11>

behaves like a random lattice with respect to Haar measure 1.

Define a flow on X7 = SL(d,Z)\ SL(d, R) via right translation by

—(d—1)t
Pl = <e 0 e?1>’ t=1log1/p.

Theorem D. Fix any My € SL(d,R). Let X\ be an a.c. Borel probability
measure on S‘ll_l. Then, for every bounded continuous function f : X1 — R,

im fog 2 S (MoK (0)e)dA() = /Xl F(M)dpy (M),

t—00
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Theorem D is a direct consequence of the mixing property for the flow &?.
This concludes the proof of Theorem C when g € £ = Z%Mj.

The generalization of Theorem D required for the full proof of Theorem C uses
Ratner’s classification of ergodic measures invariant under a unipotent flow. We
exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad. Sci. 1996) on
the uniform distribution of translates of unipotent orbits.

The central argument in the proof of Theorem B (joint distribution of path seg-
ments) follows a similar route, but is significantly more involved.
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Asymptotics
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Asymptotics of the limiting distribution for g ¢ QL

Recall:
F(&) == lim A({v € S : p?71r < &})
p—0
=pu({(M,z) € X : (Z°M + z) N Z(¢) # 0}).
d2 2
F(&) =1- 2iar (55) ) &r4+0o(ed) as o oo
F(&) = vol(Bf 1) £ +0(¢?) as £ — 0
. _ A(d-1)/2

with voI(Bcll by = F((dF1)/2)"

d—1
Note: for a random scatterer configuration F/(§) =1 — e~ vol(By )¢,
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Asymptotics of the limiting distribution for g € £

Recall:
Fo(€) :==lim A({v € S¥71: p9=1r <¢})
p—0

=p1({M € X1 : Z°M N Z(¢) # 0}).

Fop(¢) =1 for £ sufficiently large
vol(B4—1) 5
Fo(§) = &+ 0(6%) as £ — 0.
’ C(d)
Note: for a random scatterer configuration Fy(¢) = F (&) = 1 — e~ VoI (B] e,

1/¢(d) is the relative density of primitive lattice points (i.e., the lattice points visi-
ble from the origin).
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Conclusions

We have seen that the dynamics of the periodic Lorentz gas converges, in the
Boltzmann-Grad limit, to a random flight process that is Markov with memory
two.

The distribution of the free path lengths has polynomial tails, in stark contrast
to the random scatterer configuration, where the distribution is exponential.

The corresponding evolution equation is a generalized Boltzmann equation
with a collision kernel that is independent of the choice of lattice.

The proof exploits the dynamics on the space of (affine) lattices, and the
transition probabilities of the limit process are related to natural measures on
these homogeneous spaces.
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Outlook

Long-time dynamics of the limit process? Intermediate scaling limits?

Other scatterer configurations: Random defects, quasicrystals, electron-phonon

interactions?

Long-range potentials? Electro-magnetic fields?

Quantum analogue of the generalized linear Boltzmann equation?
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