

Kinetic transport in crystals

Jens Marklof

University of Bristol
<http://www.maths.bristol.ac.uk>

based on joint work with Andreas Strömbergsson (Uppsala)

The Lorentz gas

Arch. Neerl. (1905)

Hendrik Lorentz (1853-1928)

The Boltzmann-Grad limit

- Consider the dynamics in the limit of small scatterer radius ρ
- $(\mathbf{q}(t), \mathbf{v}(t))$ = “microscopic” phase space coordinate at time t
- A dimensional argument shows that, in the limit $\rho \rightarrow 0$, the mean free path length (i.e., the average time between consecutive collisions) scales like $\rho^{-(d-1)}$ (= 1/total scattering cross section)
- We thus re-define position and time and use the “macroscopic” coordinates

$$(\mathbf{Q}(t), \mathbf{V}(t)) = (\rho^{d-1} \mathbf{q}(\rho^{-(d-1)} t), \mathbf{v}(\rho^{-(d-1)} t))$$

The linear Boltzmann equation

- Time evolution of initial data (Q, V) :

$$(Q(t), V(t)) = \Phi_\rho^t(Q, V)$$

- Time evolution of a particle cloud with initial density $f \in \mathcal{L}^1$:

$$f_t = \mathcal{L}_\rho^t f, \quad [L_\rho^t f](Q, V) := f(\Phi_\rho^{-t}(Q, V))$$

In his 1905 paper Lorentz suggested that f_t is governed, as $\rho \rightarrow 0$, by the linear Boltzmann equation:

$$\left[\frac{\partial}{\partial t} + V \cdot \nabla_Q \right] f_t(Q, V) = \int_{S_1^{d-1}} [f_t(Q, V_0) - f_t(Q, V)] \sigma(V_0, V) dV_0$$

where the collision kernel $\sigma(V_0, V)$ is the cross section of the individual scatterer. E.g.: $\sigma(V_0, V) = \frac{1}{4} \|V_0 - V\|^{3-d}$ for specular reflection at a hard sphere

The linear Boltzmann equation—rigorous proofs

- Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere scatterers
- Spohn (Comm Math Phys 1978): extension to more general random scatterer configurations and potentials
- Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for almost every scatterer configuration

The quantum linear Boltzmann equation

- Spohn (J Stat Phys 1977): Gaussian random potentials, small times
- Erdős and Yau (Contemp Math 1998, Comm Pure Appl Math 2000): General random potentials, weak coupling limit
- Eng and Erdős (Rev Math Phys 2005): Low density limit

The periodic Lorentz gas

Chaotic diffusion for *fixed* scatterer radius ρ

- Bunimovich and Sinai (Comm Math Phys 1980/81): In the case of finite horizon* and in dimension $d = 2$, the dynamics is diffusive in the limit of large times t , and satisfies a central limit theorem with normalization \sqrt{t} .
- Melbourne and Nicol (Comm Math Phys 2005): Invariance principles for $d = 2$ and finite horizon.
- Bleher (J Stat Phys 1992), Szasz-Varju (2007): Central limit theorem for infinite horizon; the normalization is now $\sqrt{t \log t}$ (due to the free flight corridors).
- Central limit theorem still unproven in higher dimensions; cf. Chernov (J Stat Phys 1994), Balint-Toth (2007).

*“Finite horizon” means that the scatterers are configured so that the path length between consecutive collisions is bounded.

The Boltzmann-Grad limit

- *Recall:* We are interested in the dynamics in the limit of small scatterer radius
- $(\mathbf{q}(t), \mathbf{v}(t))$ = “microscopic” phase space coordinate at time t
- Re-define position and time and use the “macroscopic” coordinates

$$(\mathbf{Q}(t), \mathbf{V}(t)) = (\rho^{d-1} \mathbf{q}(\rho^{-(d-1)} t), \mathbf{v}(\rho^{-(d-1)} t))$$

A limiting random process

A cloud of particles with initial density $f(Q, V)$ evolves in time t to

$$f_t(Q, V) = [L_\rho^t f](Q, V) = f(\Phi_\rho^{-t}(Q, V)).$$

Theorem A. For every $t > 0$ there exists a linear operator $L^t : L^1(\mathcal{T}^1(\mathbb{R}^d)) \rightarrow L^1(\mathcal{T}^1(\mathbb{R}^d))$, such that for every $f \in L^1(\mathcal{T}^1(\mathbb{R}^d))$ and any set $\mathcal{A} \subset \mathcal{T}^1(\mathbb{R}^d)$ with boundary of Lebesgue measure zero,

$$\lim_{\rho \rightarrow 0} \int_{\mathcal{A}} [L_\rho^t f](Q, V) dQ dV = \int_{\mathcal{A}} [L^t f](Q, V) dQ dV.$$

The operator L^t thus describes the macroscopic diffusion of the Lorentz gas in the Boltzmann-Grad limit $\rho \rightarrow 0$.

Note: The family $\{L^t\}_{t \geq 0}$ does *not* form a semigroup.

A generalization of the linear Boltzmann equation

In the case of the periodic Lorentz gas L^t does not form a semigroup, and hence in particular the linear Boltzmann equation does not hold. This problem is resolved by considering extended phase space coordinates (Q, V, ξ, V_+) where

$(Q, V) \in \mathbb{T}^1(\mathbb{R}^d)$ — usual position and momentum

$\xi \in \mathbb{R}_+$ — flight time until the next scatterer

$V_+ \in S_1^{d-1}$ — velocity after the next hit

We prove the following generalization of the linear Boltzmann equation in the extended phase space:

$$\begin{aligned} \left[\frac{\partial}{\partial t} + V \cdot \nabla_Q - \frac{\partial}{\partial \xi} \right] f_t(Q, V, \xi, V_+) \\ = \int_{S_1^{d-1}} f_t(Q, V_0, 0, V) p_0(V_0, V, \xi, V_+) dV_0 \end{aligned}$$

with a new collision kernel $p_0(V_0, V, \xi, V_+)$, given by ...

The collision kernel

$$p_0(V_0, V, \xi, V_+) = \sigma(V, V_+) \Phi_0(\xi, b(V, V_+), -s(V, V_0))$$

- $\sigma(V, V_+)$ the differential cross section
- $\Phi_0(\xi, b(V, V_+), -s(V, V_0))$ the transition probability to exit with parameter $s(V, V_0)$ and hit the next scatterer after time ξ with impact parameter $b(V, V_+)$

The function Φ_0

... yields the probability to exit a scatterer with parameter s and hit the next scatterer with impact parameter b after time ξ .

In dimension $d = 2$ (JM & Strömbergsson, Nonlinearity 2008):

$$\Phi_0(\xi, w, z) = \frac{6}{\pi^2} \Upsilon \left(1 + \frac{\xi^{-1} - \max(|w|, |z|) - 1}{|w + z|} \right)$$

$$\Upsilon(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ x & \text{if } 0 < x < 1 \\ 1 & \text{if } 1 \leq x, \end{cases}$$

cf. also Caglioti & Golse (C.R. Acad. Sci. 2008) and Ustinov (2008).

Our formulas for dimension $d > 2$ are not as explicit and substantially more involved.

The operators L^t in Theorem A can be defined by the relation

$$[L^t g](Q, V) := \int_0^\infty \int_{S_1^{d-1}} f_t(Q, V, \xi, V_+) dV_+ d\xi$$

where $f_t(Q, V, \xi, V_+)$ is a solution of the generalized linear Boltzmann equation subject to the initial condition

$$\lim_{t \rightarrow 0} f_t(Q, V, \xi, V_+) = g(Q, V) p(V, \xi, V_+)$$

with

$$p(V, \xi, V_+) := \int_\xi^\infty \int_{S_1^{d-1}} \sigma(V_0, V) p_0(V_0, V, \xi, V_+) dV_0 d\xi;$$

the latter is a stationary solution of the generalized linear Boltzmann equation.

Why “a generalization” of the linear Boltzmann equation?

$$\begin{aligned} \left[\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla_{\mathbf{Q}} - \frac{\partial}{\partial \xi} \right] f_t(\mathbf{Q}, \mathbf{V}, \xi, \mathbf{V}_+) \\ = \int_{S_1^{d-1}} f_t(\mathbf{Q}, \mathbf{V}_0, 0, \mathbf{V}) p_0(\mathbf{V}_0, \mathbf{V}, \xi, \mathbf{V}_+) d\mathbf{V}_0 \end{aligned}$$

Substituting in the above the transition density for the random (rather than periodic) scatterer configuration

$$p_0(\mathbf{V}_0, \mathbf{V}, \xi, \mathbf{V}_+) = \sigma(\mathbf{V}, \mathbf{V}_+) e^{-\text{vol}(\mathcal{B}_1^{d-1}) \xi}$$

$$f_t(\mathbf{Q}, \mathbf{V}, \xi, \mathbf{V}_+) = g_t(\mathbf{Q}, \mathbf{V}) \sigma(\mathbf{V}, \mathbf{V}_+) e^{-\text{vol}(\mathcal{B}_1^{d-1}) \xi}$$

yields the classical linear Boltzmann equation for $g_t(\mathbf{Q}, \mathbf{V})$.

The key theorem:

Joint distribution of path segments

Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem B. Fix an a.c. Borel probability measure Λ on $T^1(\mathbb{R}^d)$. Then, for each $n \in \mathbb{N}$ there exists a probability density $\Psi_{n,\Lambda}$ on \mathbb{R}^{nd} such that, for any set $\mathcal{A} \subset \mathbb{R}^{nd}$ with boundary of Lebesgue measure zero,

$$\begin{aligned} \lim_{\rho \rightarrow 0} \Lambda\left(\left\{(\mathbf{Q}_0, \mathbf{V}_0) \in T^1(\mathbb{R}^d) : (\mathbf{S}_1, \dots, \mathbf{S}_n) \in \mathcal{A}\right\}\right) \\ = \int_{\mathcal{A}} \Psi_{n,\Lambda}(\mathbf{S}'_1, \dots, \mathbf{S}'_n) d\mathbf{S}'_1 \cdots d\mathbf{S}'_n, \end{aligned}$$

and, for $n \geq 3$,

$$\Psi_{n,\Lambda}(\mathbf{S}_1, \dots, \mathbf{S}_n) = \Psi_{2,\Lambda}(\mathbf{S}_1, \mathbf{S}_2) \prod_{j=3}^n \Psi(\mathbf{S}_{j-2}, \mathbf{S}_{j-1}, \mathbf{S}_j),$$

where Ψ is a continuous probability density independent of Λ (and the lattice).

Theorem A follows from Theorem B by standard probabilistic arguments.

First step: The distribution of free path lengths

Previous studies

- Polya (Arch Math Phys 1918): “Visibility in a forest” ($d = 2$)
- Dahlquist (Nonlinearity 1997); Boca, Cobeli, Zaharescu (CMP 2000); Caglioti, Golse (CMP 2003); Boca, Gologan, Zaharescu (CMP 2003); Boca, Zaharescu (CMP 2007): Limit distributions for the free path lengths for various sets of initial data ($d = 2$)
- Dumas, Dumas, Golse (J Stat Phys 1997): Asymptotics of mean free path lengths ($d \geq 2$)
- Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000): bounds on possible weak limits ($d \geq 2$)

See also Golse’s ICM review (Madrid 2006).

Polya's forest

Lattices

- $\mathcal{L} \subset \mathbb{R}^d$ —euclidean lattice of covolume one
- recall $\mathcal{L} = \mathbb{Z}^d M$ for some $M \in \text{SL}(d, \mathbb{R})$, therefore the homogeneous space $X_1 = \text{SL}(d, \mathbb{Z}) \backslash \text{SL}(d, \mathbb{R})$ parametrizes the space of lattices of covolume one
- μ_1 —right- $\text{SL}(d, \mathbb{R})$ invariant prob measure on X_1 (Haar)

Affine lattices

- $\text{ASL}(d, \mathbb{R}) = \text{SL}(d, \mathbb{R}) \ltimes \mathbb{R}^d$ —the semidirect product group with multiplication law

$$(M, x)(M', x') = (MM', xM' + x').$$

An action of $\text{ASL}(d, \mathbb{R})$ on \mathbb{R}^d can be defined as

$$y \mapsto y(M, x) := yM + x.$$

- the space of affine lattices is then represented by $X = \text{ASL}(d, \mathbb{Z}) \backslash \text{ASL}(d, \mathbb{R})$ where $\text{ASL}(d, \mathbb{Z}) = \text{SL}(d, \mathbb{Z}) \ltimes \mathbb{Z}^d$, i.e.,

$$\mathcal{L}_\alpha := (\mathbb{Z}^d + \alpha)M = \mathbb{Z}^d(1, \alpha)(M, 0)$$

- μ —right- $\text{ASL}(d, \mathbb{R})$ invariant prob measure on X

Let us denote by $\tau_1 = \tau(\mathbf{q}, \mathbf{v})$ the free path length corresponding to the initial condition (\mathbf{q}, \mathbf{v}) . Recall that $\rho^{d-1}\tau_1 = \|S_1\|$.

Theorem C. Fix a lattice \mathcal{L} and the initial position \mathbf{q} . Let λ be any a.c. Borel probability measure on S_1^{d-1} . Then, for every $\xi > 0$, the limit

$$F_{\mathcal{L}, \mathbf{q}}(\xi) := \lim_{\rho \rightarrow 0} \lambda(\{\mathbf{v} \in S_1^{d-1} : \rho^{d-1}\tau_1 \leq \xi\})$$

exists, is continuous in ξ and independent of λ . Furthermore

$$F_{\mathcal{L}, \mathbf{q}}(\xi) = \begin{cases} \mu_1(\{M \in X_1 : \mathbb{Z}^d M \cap \mathcal{Z}(\xi) \neq \emptyset\}) & \text{if } \mathbf{q} \in \mathcal{L} \\ \mu(\{(M, x) \in X : (\mathbb{Z}^d M + x) \cap \mathcal{Z}(\xi) \neq \emptyset\}) & \text{if } \mathbf{q} \notin \mathbb{Q}\mathcal{L}. \end{cases}$$

with the cylinder

$$\mathcal{Z}(\xi) = \{(x_1, \dots, x_d) \in \mathbb{R}^d : 0 < x_1 < \xi, \|(x_2, \dots, x_d)\| < 1\}.$$

Remarks

- There are similar formulas for all $q \in \mathbb{Q}\mathcal{L}$.
- Note that in the case $q \notin \mathbb{Q}\mathcal{L}$ the limit $F_{\mathcal{L},q}(\xi) =: F(\xi)$ is independent of q and \mathcal{L} ; in the case $q \in \mathcal{L}$ the limit $F_{\mathcal{L},q}(\xi) =: F_0(\xi)$ is independent of \mathcal{L} .
- Instead of rays emerging from the origin we can also deal with the family of rays starting at the point $\rho\beta(v)$ in direction v . This set-up is important for the joint distribution for the first n path segments in the Lorentz gas.

Outline of proof of Theorem C

(in the case $q \in \mathcal{L} = \mathbb{Z}^d$)

$$\lambda\left(\left\{v \in S_1^{d-1} : \rho^{d-1}\tau_1 \leq \xi\right\}\right) = \dots$$

$$= \lambda \left(\{ \mathbf{v} \in \mathbb{S}_1^{d-1} : \text{at least one scatterer intersects } \text{ray}(\mathbf{v}, \rho^{-(d-1)}\xi) \} \right)$$

$$\approx \lambda \left(\left\{ \mathbf{v} \in \mathbb{S}_1^{d-1} : \mathbb{Z}^d \cap \mathcal{Z}(\mathbf{v}, \rho^{-(d-1)}\xi, \rho) \neq \emptyset \right\} \right)$$

$\left(\text{Rotate by } K(v) \in \text{SO}(d) \text{ such that } v \mapsto e_1 \right)$

$$\lambda\left(\left\{v \in S_1^{d-1} : \mathbb{Z}^d K(v) \cap \mathcal{Z}(e_1, \rho^{-(d-1)}\xi, \rho) \neq \emptyset\right\}\right)$$

$\left(\text{Apply } D_\rho = \text{diag}(\rho^{d-1}, \rho^{-1}, \dots, \rho^{-1}) \in \text{SL}(d, \mathbb{R})\right)$

$$\lambda\left(\left\{v \in S_1^{d-1} : \mathbb{Z}^d K(v) D_\rho \cap \mathcal{Z}(e_1, \xi, 1) \neq \emptyset\right\}\right)$$

The following Theorem shows that in the limit $\rho \rightarrow 0$ the lattice

$$\mathbb{Z}^d K(\mathbf{v}) \begin{pmatrix} \rho^{d-1} & \mathbf{0} \\ \mathbf{t}_0 & \rho^{-1} \mathbf{1} \end{pmatrix}$$

behaves like a random lattice with respect to Haar measure μ_1 .

Define a flow on $X_1 = \mathrm{SL}(d, \mathbb{Z}) \backslash \mathrm{SL}(d, \mathbb{R})$ via right translation by

$$\Phi^t = \begin{pmatrix} e^{-(d-1)t} & \mathbf{0} \\ \mathbf{t}_0 & e^{t} \mathbf{1} \end{pmatrix}, \quad t = \log 1/\rho.$$

Theorem D. Fix any $M_0 \in \mathrm{SL}(d, \mathbb{R})$. Let λ be an a.c. Borel probability measure on S_1^{d-1} . Then, for every bounded continuous function $f : X_1 \rightarrow \mathbb{R}$,

$$\lim_{t \rightarrow \infty} \int_{S_1^{d-1}} f(M_0 K(\mathbf{v}) \Phi^t) d\lambda(\mathbf{v}) = \int_{X_1} f(M) d\mu_1(M).$$

Theorem D is a direct consequence of the mixing property for the flow Φ^t .

This concludes the proof of Theorem C when $q \in \mathcal{L} = \mathbb{Z}^d M_0$.

The generalization of Theorem D required for the full proof of Theorem C uses Ratner's classification of ergodic measures invariant under a unipotent flow. We exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad. Sci. 1996) on the uniform distribution of translates of unipotent orbits.

The central argument in the proof of Theorem B (joint distribution of path segments) follows a similar route, but is significantly more involved.

Asymptotics

Asymptotics of the limiting distribution for $q \notin \mathbb{Q}\mathcal{L}$

Recall:

$$\begin{aligned} F(\xi) &:= \lim_{\rho \rightarrow 0} \lambda(\{v \in S_1^{d-1} : \rho^{d-1} \tau_1 \leq \xi\}) \\ &= \mu(\{(M, x) \in X : (\mathbb{Z}^d M + x) \cap \mathcal{Z}(\xi) \neq \emptyset\}). \end{aligned}$$

$$F(\xi) = 1 - \frac{\pi^{\frac{d-1}{2}}}{2^d d \Gamma(\frac{d+3}{2}) \zeta(d)} \xi^{-1} + O\left(\xi^{-1-\frac{2}{d}}\right) \quad \text{as } \xi \rightarrow \infty$$

$$F(\xi) = \text{vol}(\mathcal{B}_1^{d-1}) \xi + O\left(\xi^2\right) \quad \text{as } \xi \rightarrow 0$$

$$\text{with } \text{vol}(\mathcal{B}_1^{d-1}) = \frac{\pi^{(d-1)/2}}{\Gamma((d+1)/2)}.$$

Note: for a random scatterer configuration $F(\xi) = 1 - e^{-\text{vol}(\mathcal{B}_1^{d-1})\xi}$.

Asymptotics of the limiting distribution for $q \in \mathcal{L}$

Recall:

$$\begin{aligned} F_0(\xi) &:= \lim_{\rho \rightarrow 0} \lambda(\{v \in S_1^{d-1} : \rho^{d-1} \tau_1 \leq \xi\}) \\ &= \mu_1(\{M \in X_1 : \mathbb{Z}^d M \cap \mathcal{Z}(\xi) \neq \emptyset\}). \end{aligned}$$

$$F_0(\xi) = 1$$

for ξ sufficiently large

$$F_0(\xi) = \frac{\text{vol}(\mathcal{B}_1^{d-1})}{\zeta(d)} \xi + O(\xi^2) \quad \text{as } \xi \rightarrow 0.$$

Note: for a random scatterer configuration $F_0(\xi) = F(\xi) = 1 - e^{-\text{vol}(\mathcal{B}_1^{d-1})\xi}$.

$1/\zeta(d)$ is the relative density of primitive lattice points (i.e., the lattice points visible from the origin).

Conclusions

- We have seen that the dynamics of the periodic Lorentz gas converges, in the Boltzmann-Grad limit, to a random flight process that is Markov with memory two.
- The distribution of the free path lengths has polynomial tails, in stark contrast to the random scatterer configuration, where the distribution is exponential.
- The corresponding evolution equation is a generalized Boltzmann equation with a collision kernel that is independent of the choice of lattice.
- The proof exploits the dynamics on the space of (affine) lattices, and the transition probabilities of the limit process are related to natural measures on these homogeneous spaces.

Outlook

- Long-time dynamics of the limit process? Intermediate scaling limits?
- Other scatterer configurations: Random defects, quasicrystals, electron-phonon interactions?
- Long-range potentials? Electro-magnetic fields?
- Quantum analogue of the generalized linear Boltzmann equation?

References

1. J. Marklof, Distribution modulo one and Ratner's theorem, Proc. Montreal Summer School on Equidistribution in Number Theory 2005 (Springer 2007)
2. J. Marklof and A. Strömbergsson, The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems, arXiv:0706.4395, Annals of Mathematics, to appear
3. J. Marklof and A. Strömbergsson, The Boltzmann-Grad limit of the periodic Lorentz gas, arXiv:0801.0612
4. J. Marklof and A. Strömbergsson, Kinetic transport in the two-dimensional periodic Lorentz gas, Nonlinearity 21 (2008) 1413-1422
5. J. Marklof and A. Strömbergsson, The periodic Lorentz gas in the Boltzmann-Grad limit: Asymptotic estimates (in preparation)