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1. Set-up

Let M be a d-dimensional compact smooth manifold, and µ
a probability measure on M which is absolutely continuous with
respect to Lebesgue measure. We consider invertible C∞ maps
Φ : M→M which preserve µ, and assume that the fixed points
of each iterate Φn form a set of measure zero. This fixed point
set is furthermore closed, since Φ is continuous, and therefore,
due to the compactness of M, it has Minkowski content zero (cf.
appendix).

Let MN (C) be the space of N × N matrices with complex
coefficients. For a given infinite subset (index set) I ⊂ N, we say
two sequences of matrices,

(1.1) A := {AN}N∈I , B := {BN}N∈I ,
are semiclassically equivalent, if

(1.2) ‖AN −BN‖ → 0

as N ∈ I tends to infinity, where ‖ · ‖ denotes the usual operator
norm

(1.3) ‖A‖ := sup
ψ∈CN−{0}

‖Aψ‖
‖ψ‖

.

We denote this equivalence relation by

(1.4) A ∼ B.

Lemma 1.1. If A ∼ B then TrAN = TrBN + o(N).

Proof. We have

(1.5)
1
N
|TrAN − TrBN | ≤ ‖AN −BN‖ → 0.

�
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Let us define the product of two matrix sequences by AB =
{ANBN}N∈I , the inverse of A by A−1 = {A−1

N }N∈I , and its
hermitian conjugate by A† = {A†N}N∈I .

Axiom 1.1 (The correspondence principle for quantum observ-
ables). Fix a measure µ as above. For some index set I ⊂ N,
there is a sequence Op := {OpN}N∈I of linear maps,

OpN : C∞(M) → MN (C), a 7→ OpN (a),

so that
(a) for all a ∈ C∞(M),

Op(a) ∼ Op(a)†;

(b) for all a1, a2 ∈ C∞(M),

Op(a1)Op(a2) ∼ Op(a1a2);

(c) for all a ∈ C∞(M),

lim
N→∞

1
N

TrOpN (a) =
∫
M
a dµ.

Note that (b), (c) imply for any m ∈ N

(1.6) lim
N→∞

1
N

TrOpN (1)m = 1,

and hence a density-1-subsequence of eigenvalues of OpN (1) are
close to one. Most quantization schemes of course satisfy OpN (1) =
1N .

In standard quantization recipes (such as the one discussed in
Section 5.1) one in addition has the property that
(1.7)

OpN (a1)OpN (a2)−OpN (a2) OpN (a1) ∼
1

2πiN
OpN ({a1, a2})

where { , } is the Poisson bracket. This assumption is how-
ever not necessary for any of the results proved in this paper.
The axioms (a)–(c) in fact apply to examples without quantum
mechanical significance. One interesting case arises in the dis-
cretization of maps, where one can choose observables with the
property

(1.8) Op(a1)Op(a2) = Op(a1a2) = Op(a2)Op(a1).

Axiom 1.2 (The correspondence principle for quantum maps).
There is a sequence of unitary matrices U(Φ) := {UN (Φ)}N∈I
such that for any a ∈ C∞(M) we have

U(Φ)−1Op(a)U(Φ) ∼ Op(a ◦ Φ).

2. Trace asymptotics and Weyl’s law

The following proposition is the key tool to understand the
distribution of eigenvalues of UN (Φ).

Proposition 2.1 (Trace asymptotics). For n 6= 0

(2.1) lim
N→∞

1
N

TrUN (Φ)n = 0.

Proof. Given any ε > 0, we can find an integer R and a partition
of unity on M by mollified characteristic functions (see appen-
dix),

(2.2) 1 = χ̃fix(ξ) +
R∑
r=1

χ̃r(ξ) ∀ξ ∈M

1
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where the support of χ̃fix contains a small open neighbourhood
of the fixed points of Φn, and

∫
χ̃fixdµ < ε. The support of χ̃r,

with r = 1, . . . , R, is chosen small enough, so that supp χ̃r ∩
Φn(supp χ̃r) = ∅ for all ξ ∈ M. This is possible since (by con-
tinuity of Φn) there is a sufficiently small radius η = η(ε) such
that for all balls Bη ⊂ K we have Bη ∩ Φn(Bη) = ∅.

By the linearity of Op, we have

(2.3) TrUN (Φ)n = Tr[UN (Φ)n OpN (χ̃fix)]

+
R∑
r=1

Tr[UN (Φ)n OpN (χ̃r)] + o(N).

We begin with the first term on the right hand side:

(2.4) Tr[UN (Φ)n OpN (χ̃fix)] = Tr[UN (Φ)n Opsym
N (χ̃fix)]+oε(N),

with the symmetrized Opsym
N (χ̃fix) as defined in (B.1). Suppose

ψj and µj ≥ 0 are the (normalized) eigenstates and eigenvalues
of Opsym

N (χ̃fix). Then

|Tr[UN (Φ)n Opsym
N (χ̃fix)]| =

∣∣∣∣ N∑
j=1

µj〈ψj , UN (Φ)nψj〉
∣∣∣∣(2.5)

≤
N∑
j=1

µj(2.6)

= Tr Opsym
N (χ̃fix)(2.7)

= Tr OpN (χ̃fix) + oε(N)(2.8)

= NO(ε) + oε(N).(2.9)

For the last term in the sum (2.3) we have

(2.10) U(Φ)nOp(χ̃r) ∼ U(Φ)nOp(χ̃1/2
r )Op(χ̃1/2

r )

∼ Op(χ̃1/2
r ◦ Φ−n)U(Φ)nOp(χ̃1/2

r )

so

Tr[UN (Φ)n OpN (χ̃r)](2.11)

= Tr[OpN (χ̃1/2
r ◦ Φ−n)UN (Φ)n OpN (χ̃1/2

r )] + oε(N)(2.12)

= Tr[OpN (χ̃1/2
r ) OpN (χ̃1/2

r ◦ Φ−n)UN (Φ)n] + oε(N)(2.13)

= Tr[OpN (χ̃1/2
r · χ̃1/2

r ◦ Φ−n)UN (Φ)n] + oε(N)(2.14)

= oε(N)(2.15)

since χ̃1/2
r · χ̃1/2

r ◦ Φ−n = 0 by assumption. Therefore

(2.16) lim
N→∞

1
N

TrUN (Φ)n = O(ε),

which holds for every arbitrarily small ε > 0. This concludes the
proof. �

Theorem 2.2 (Weyl’s law). For any a ∈ C∞(M) and for every
continuous function h : S1 = R/Z → C,

(2.17) lim
N→∞

1
N

N∑
j=1

h(θj) =
∫

S1
h(θ)dθ.

Proof. Let us first assume that the test function h has only finitely
many non-zero Fourier coefficients, i.e.,

(2.18) h(θ) =
∑
n∈Z

ĥ(n)e(nθ)

is a finite sum. We then have

(2.19) lim
N→∞

1
N

N∑
j=1

h(θj) = lim
N→∞

1
N

∑
n∈Z

ĥ(n) TrUN (Φ)n

= ĥ(0) =
∫
h(θ) dθ.

We now extend this result to test functions h ∈ C1(S1). Let

(2.20) hK(θ) =
∑
n∈Z
|n|≤K

ĥ(n)e(nθ)

be the truncated Fourier series. Since h ∈ C1(S1), its Fourier
series converges absolutely and uniformly and hence, for any ε >
0, there is a K such that hK(θ) − ε ≤ h(θ) ≤ hK(θ) + ε for all
θ ∈ S1. By (2.19), the limits of the left and right hand side of

(2.21)
1
N

N∑
j=1

hK(θj)− ε ≤ 1
N

N∑
j=1

h(θj) ≤
1
N

N∑
j=1

hK(θj) + ε

exist and differ by less than 2ε, hence (2.19) holds also for the
current h. The extension of (2.19) to h in C(S1) is achieved by the
same argument, i.e., by approximating h pointwise by functions
hε ∈ C1(S1) so that hε(θ)− ε ≤ h(θ) ≤ hε(θ) + ε. �

3. Generalized Weyl’s law

Proposition 3.1 (Generalized trace asymptotics). For every a ∈
C∞(M) and n 6= 0,

(3.1) lim
N→∞

1
N

Tr[OpN (a)UN (Φ)n] = 0.

Proof. By linearity of the relation (3.1) we may assume without
loss of generality that a is real and minξ a(ξ) ≥ 0. This implies
that a1/2 ∈ C∞(M). Analogously to the proof of Proposition
2.1, we have

(3.2) Tr[OpN (a)UN (Φ)n] = Tr[UN (Φ)n OpN (χ̃fix · a)]

+
R∑
r=1

Tr[UN (Φ)n OpN (χ̃r · a)].

The proof is concluded in the same way as the proof of Proposi-
tion 2.1, with all mollified characteristic functions χ̃ replaced by
χ̃ · a. �

Theorem 3.2 (Generalized Weyl’s law). Let ϕj ∈ CN (j =
1, . . . , N) be an orthonormal basis of eigenstates of UN (Φ), with
corresponding eigenphases θj ∈ S1. Then, for every a ∈ C∞(M)
and every continuous function h : S1 → C,

(3.3) lim
N→∞

1
N

N∑
j=1

h(θj)〈OpN (a)ϕj , ϕj〉 =
∫
M
a dµ

∫
S1
h(θ) dθ.

Proof. We may assume again without loss of generality that a
is real and minξ a(ξ) ≥ 0. In view of Proposition 3.1 and the
proof of Theorem 2.2 we have for every hK with finite Fourier
expansion (as in (2.18))
(3.4)

lim
N→∞

1
N

N∑
j=1

hK(θj)〈OpN (a)ϕj , ϕj〉 =
∫
M
a dµ

∫ 1

0

hK(θ) dθ.
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For any h ≥ 0 we have

(3.5)

∣∣∣∣∣∣
N∑
j=1

h(θj)〈OpN (a)ϕj , ϕj〉 −
N∑
j=1

h(θj)‖OpN (a1/2)ϕj‖2
∣∣∣∣∣∣

≤ suph
∣∣∣Tr[OpN (a)−OpN (a1/2) OpN (a1/2)†]

∣∣∣ = o(N) suph.

Hence (3.4) is equivalent to
(3.6)

lim
N→∞

1
N

N∑
j=1

hK(θj)‖OpN (a1/2)ϕj‖2 =
∫
M
a dµ

∫ 1

0

hK(θ) dθ.

We now use the same approximation argument as in the proof of
Theorem 2.2, for h ∈ C1(S1). Given any ε > 0, there is a K such
that hK(θ) − ε ≤ h(θ) ≤ hK(θ) + ε for all θ ∈ S1. The limits of
the left and right hand side of

(3.7)
1
N

N∑
j=1

[hK(θj)− ε]‖OpN (a1/2)ϕj‖2

≤ 1
N

N∑
j=1

h(θj)‖OpN (a1/2)ϕj‖2

≤ 1
N

N∑
j=1

[hK(θj) + ε]‖OpN (a1/2)ϕj‖2

differ by less than

2ε suphK lim
N→∞

1
N

N∑
j=1

‖OpN (a1/2)ϕj‖2(3.8)

≤ 2ε suphK lim
N→∞

1
N

Tr[OpN (a1/2) OpN (a1/2)†](3.9)

= 2ε suphK
∫
M
a dµ(3.10)

which can be arbitrarily small for ε→ 0. Thus
(3.11)

lim
N→∞

1
N

N∑
j=1

h(θj)‖OpN (a1/2)ϕj‖2 =
∫
M
a dµ

∫ 1

0

h(θ) dθ.

A similar approximation argument shows that (3.11) holds also
for all continuous h. In view of (3.5), the relation (3.11) is equiv-
alent to (3.3). The assumption h ≥ 0 can be removed by using
the linearity of (3.3) in h. �

4. Quantum ergodicity

Theorem 4.1. Suppose Φ acts ergodically on M. Let ϕ1, . . . , ϕN ∈
CN be an orthonormal basis of eigenstates of UN (φ). Then, for
any a ∈ C∞(M),

(4.1) lim
N→∞

1
N

∑
j∈JN

∣∣∣∣〈OpN (a)ϕj , ϕj〉 −
∫
M
a dµ

∣∣∣∣2 = 0.

Proof. We may assume without loss of generality that
∫
M a dµ =

0 and |a| ≤ 1. It is then sufficient to show

(4.2) S2(a,N) :=
1
N

N∑
j=1

|〈OpN (a)ϕj , ϕj〉|2 → 0

as N →∞.

Define the ergodic average of a by

(4.3) aT :=
1
T

T−1∑
n=0

a ◦ Φn.

Since ϕj are the eigenfunctions of UN (Φ) we have

S2(a,N) =
1
N

N∑
j=1

∣∣∣∣ 1
T

T−1∑
n=0

〈
UN (Φ)−n OpN (a)UN (Φ)nϕj , ϕj

〉∣∣∣∣2
(4.4)

≤ 1
N

N∑
j=1

∥∥∥∥ 1
T

T−1∑
n=0

UN (Φ)−n OpN (a)UN (Φ)nϕj

∥∥∥∥2

(4.5)

=
1
N

N∑
j=1

∥∥OpN (aT )ϕj
∥∥2

+ oT (1),(4.6)

by Axiom 1.2. Now

1
N

N∑
j=1

∥∥OpN (aT )ϕj
∥∥2

=
1
N

N∑
j=1

〈OpN (aT )†OpN (aT )ϕj , ϕj〉

(4.7)

=
1
N

N∑
j=1

〈OpN (|aT |2)ϕj , ϕj〉+ oT (1)(4.8)

=
∫
M
|aT |2dµ+ oT (1).(4.9)

Since Φ acts ergodically on M, we have a mean ergodic theorem
for test functions a ∈ L2(M), i.e.,

(4.10) lim
T→∞

∫
M
|aT |2dµ = 0,

and hence lim supN→∞ S2(a,N) becomes arbitrarily small for T
sufficiently large. �

Corollary 4.2. There is a set sequence I := {IN}N∈I with den-
sity 1 such that

(4.11) 〈OpN (a)ϕj , ϕj〉 →
∫
M
a dµ

for all j ∈ IN , N →∞.

Proof. Apply Chebyshev’s inequality with the variance given in
(4.1). �

5. Examples

In this section we construct a well known example of quantum
observables on the two-dimensional torus M = T2 := R2/Z2

satisfying Axiom 1.1 and corresponding examples of quantum
maps satisfying Axiom 1.2.

5.1. Quantum tori. It is convenient to represent a vector ψ ∈
CN as a function ψ : Z/NZ → C. Let us define the translation
operators

(5.1) [t1ψ](Q) = ψ(Q+ 1)

and

(5.2) [t2ψ](Q) = eN (Q)ψ(Q),

where eN (x) := e(x/N) = exp(2πix/N). One easily checks that

(5.3) tm1
1 tm2

2 = tm2
2 tm1

1 eN (m1m2) ∀m1,m2 ∈ Z.
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These relations are known as the Weyl-Heisenberg commutation
relations. For m = (m1,m2) ∈ Z2 put

(5.4) TN (m) = eN

(m1m2

2

)
tm2
2 tm1

1 .

Then

(5.5) TN (m)TN (n) = eN

(
ω(m,n)

2

)
TN (m + n)

with the symplectic form

(5.6) ω(m,n) = m1n2 −m2n1.

For any a ∈ C∞(T2), we define the quantum observable

(5.7) OpN (a) =
∑

m∈Z2

â(m)TN (m)

where

(5.8) â(m) =
∫

T2
a(ξ)e(−ξ ·m) dξ

are the Fourier coefficients of a. The observable OpN (a) is also
called the Weyl quantization of a. Axiom 1.1 (a) is trivially sat-
isfied. Axioms 1.1 (b) and (c) follow from the following lemmas.

Lemma 5.1. For all a1, a2 ∈ C∞(T2)

(5.9) ‖OpN (a1) OpN (a2)−OpN (a1a2)‖

≤ π

N

( ∑
m∈Z2

‖m‖|â1(m)|
)( ∑

n∈Z2

‖n‖|â2(n)|
)
.

Proof. Using the commutation relations (5.3) we find

OpN (a1) OpN (a2)(5.10)

=
∑

m,n∈Z2

â1(m)â2(n)TN (m)TN (n)(5.11)

=
∑

m,n∈Z2

eN

(
ω(m,n)

2

)
â1(m)â2(n)TN (m + n)(5.12)

=
∑

m,k∈Z2

eN

(
ω(m,k)

2

)
â1(m)â2(k −m)TN (k)(5.13)

with k = n + m, and hence

(5.14) ‖OpN (a1) OpN (a2)−OpN (a1a2)‖

≤
∑

m,n∈Z2

∣∣∣∣eN (
ω(m,n)

2

)
− 1

∣∣∣∣ ∣∣â1(m)
∣∣ ∣∣â2(n)

∣∣
The lemma now follows from

(5.15) |e(x)− 1| ≤ |2πx|, |ω(m,n)| ≤ ‖m‖ ‖n‖.

�

Lemma 5.2. For any a ∈ C∞(T2) and R > 1

(5.16)
1
N

TrOpN (a) =
∫

T2
a dµ+Oa,R(N−R).

Proof. Note that

(5.17) TrTN (m) =

{
N if m = 0 mod NZ2,
0 otherwise.

The lemma now follows from the rapid decay of the Fourier co-
efficients â(m) for ‖m‖ → ∞. �

Note that we have the alternative representation for OpN (a),

(5.18) [OpN (a)ψ](Q) =
∑
m∈Z

ã

(
m,

Q

N
+

m

2N

)
ψ(Q+m)

where

(5.19) ã(m, q) =
∫

R/Z
a(p, q) e(−pm) dp,

which is sometimes useful. Note that, for any R > 1, there is a
constant CR such that

(5.20) |ã(m, q)| ≤ CR(1 + |m|)−R

for all m, q. This fact is proved using integration by parts.

5.2. Quantum maps. A twist map Ψf is a map T2 → T2 defined
by

(5.21) Ψf :
(
p
q

)
7→

(
p+ f(q)

q

)
mod Z2

where we take f : R → R such that Ψf is C∞. E.g. f(q) =
rq+2πκ cos(2πq) for constants r ∈ Z, κ ∈ R. Obviously Lebesgue
measure dµ = dp dq is invariant under Ψf . A linked twist map Φ
is now obtained by combining two twist maps, Ψf1 and Ψf2 , by
setting

(5.22) Φ = R ◦Ψf1 ◦ R−1 ◦Ψf2

with the rotation

(5.23) R :
(
p
q

)
7→

(
q
−p

)
mod Z2.

Since Ψf1 , Ψf2 and R preserve µ, so does Φ. More explicitly, we
have

(5.24) R ◦Ψf ◦ R−1 :
(
p
q

)
7→

(
p

q − f(p)

)
mod Z2

and thus

(5.25) Φ :
(
p
q

)
7→

(
p+ f2(q)

q − f1
(
p+ f2(q)

)) mod Z2.

We define the quantization of the twist map Ψf by the unitary
operator

(5.26) [UN (Ψf )]ψ(Q) = e

[
−NV

(
Q

N

)]
ψ(Q)

where V : R → R is any C∞ function satisfying f = −V ′, and
NV ((Q + N)/N) = NV (Q/N) mod Z in order to have a well-
defined phase. In the above example f(q) = rq + 2πκ cos(2πq)
we could e.g. take V (q) = − r

2q
2 − κ sin(2πq) with the additional

ristriction that r must be even if N is odd.

Proposition 5.3. For any a ∈ C∞(T2) we have

(5.27) ‖UN (Ψf )−1 OpN (a)UN (Ψf )−OpN (a ◦Ψf )‖ = O(N−2)

where the implied constant depends on a.

Proof. We have

(5.28)

[UN (Ψf )−1 OpN (a)UN (Ψf )ψ](Q) =
∑
m∈Z

ã

(
m,

Q

N
+

m

2N

)
e

{
−N

[
V

(
Q+m

N

)
− V

(
Q

N

)]}
ψ(Q+m),
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and

(5.29) [OpN (a ◦Ψf )ψ](Q) =
∑
m∈Z

ã

(
m,

Q

N
+

m

2N

)
e

[
mf

(
Q

N
+

m

2N

)]
ψ(Q+m),

since

(5.30) ˜(a ◦Ψf )(m, q) = e[mf(q)] ã(m, q).

Therefore

(5.31) ‖UN (Ψf )−1 OpN (a)UN (Ψf )−OpN (a ◦Ψf )‖

≤ max
q

∑
m∈Z

∣∣∣∣ã(m, q +
m

2N

)
cm(q,N)

∣∣∣∣
with
(5.32)
cm(q,N) = e

{
−N

[
V

(
q +

m

N

)
− V (q)

]}
− e

[
mf

(
q +

m

2N

)]
.

Since |cm(q,N)| ≤ 2 and |ã(m, q)| ≤ (1 + |m|)−5, we have

(5.33) max
q

∑
|m|≥N1/2

∣∣∣∣ã(m, q +
m

2N

)
cm(q,N)

∣∣∣∣ ≤ N−2.

For |m| < N1/2, Taylor expansion around x = q + m
2N yields

(the second order terms cancel)

V
(
x+

m

2N

)
− V

(
x− m

2N

)
= V ′ (x)

m

N
+O

(
m3

N3

)
(5.34)

= −f (x)
m

N
+O

(
m3

N3

)
.(5.35)

uniformly for all |m| < N1/2 and all q. Hence in this case

(5.36) cm(q,N) = O

(
m3

N2

)
and

max
q

∑
|m|<N1/2

∣∣∣∣ã(m, q +
m

2N

)
cm(q,N)

∣∣∣∣(5.37)

≤ O(N−2) max
q

∑
m∈Z

∣∣∣∣m3ã

(
m, q +

m

2N

)∣∣∣∣(5.38)

= O(N−2).(5.39)

�

The discrete Fourier transform FN is a unitary operator de-
fined by

(5.40) [FNψ](P ) =
1√
N

N−1∑
Q=0

ψ(Q)eN (−QP ).

Its inverse is given by the formula

(5.41) [F−1
N ψ](Q) =

1√
N

N−1∑
P=0

ψ(P )eN (PQ).

Proposition 5.4. For any a ∈ C∞(T2)

(5.42) F−1
N OpN (a)FN = OpN (a ◦ R)

with the rotation R as in (5.23).

Proof. This follows from F−1
N t1FN = t−1

2 and F−1
N t2FN = t1. �

The Fourier transform may therefore be viewed as a quanti-
zation of the rotation R which satisfies an exact correspondence
principle, cf. Axiom 1.2.

The quantization of the linked twist map is now defined by

(5.43) UN (Φ) = FN UN (Ψf1)F−1
N UN (Ψf2).

Proposition 5.5. For any a ∈ C∞(T2), we have

(5.44) ‖UN (Φ)−1 OpN (a)UN (Φ)−OpN (a ◦ Φ)‖ = O(N−2)

where the implied constant depends on a.

Proof. Apply Propositions 5.3 and 5.4. �

The quantum map UN (Φ) thus satisfies Axiom 1.2.

Appendix A. Minkowski content

We fix an atlas of local charts φj : Vj → Rd, where the open
subsets Vj cover M. In the following we thus identify subsets
S of M with subsets Σ of Rd in the standard way. Let Σ be a
subset of Rd, and

(A.1) Σ(ε) = {ξ ∈ Rd : d(ξ,Σ) ≤ ε}
its closed ε-neighbourhood, where d( · , · ) is the euclidean met-
ric on Rd. The s-dimensional upper Minkowski content of Σ is
defined as

(A.2) M∗s(Σ) := lim sup
ε→0

(2ε)s−dν
(
Σ(ε)

)
,

where ν is Lebesgue measure. We say Σ has Minkowski content
zero if M∗d(Σ) = 0. This is equivalent to saying that for every δ >
0 we can cover Σ with equi-radial euclidean balls of total measure
less than δ. We say a subset S of M has Minkowski content zero
if each of the sets Σj := φj(S|Vj

) ⊂ Rd has Minkowski content
zero.

Appendix B. Mollified characteristic functions

Consider the characteristic function χD of a domain D ⊂ M
with boundary of Minkowski content zero. An ε-mollified charac-
teristic function χ̃D ∈ C∞(M) has values in [0, 1] and χ̃D(x) =
χD(x) on a set of x of measure 1 − ε. Since D has boundary
of Minkowski content zero, we can construct such a smoothed
function for any ε > 0. Furthermore we are able to construct
ε-mollified χ̃D whose support is either contained in D, or whose
support contains D, again for any ε > 0. Note that if χ̃D is
ε-mollified, so is χ̃nD for any n ∈ N with the same ε.

After mollification, we may associate with a characteristic func-
tion χD a quantum observable OpN (χ̃D). Since OpN (χ̃D) is in
general not hermitian, it is sometimes more convenient to consider
the symmetrized version, the positive definite hermitian matrix

(B.1) Opsym
N (χ̃D) := OpN (χ̃1/2

D ) OpN (χ̃1/2
D )†.

Note that χ̃1/2
D ∈ C∞(M) since χ̃D ≥ 0. Furthermore, we have

(B.2) Opsym(χ̃D) ∼ Op(χ̃D).
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