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The Lorentz gas

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)
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Lorentz gas in the small scatterer limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius r = 1/4, mean free path= 1
2r = 2
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Lorentz gas in the small scatterer limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius r = 1/6, mean free path= 1
2r = 3
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Lorentz gas in the small scatterer limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius r = 1/8, mean free path= 1
2r = 4
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The Boltzmann-Grad (=low-density) limit

• Consider the dynamics in the limit of small scatterer radius r,
dimension d ≥ 2

•
(
q(t), v(t)

)
= “microscopic” phase space coordinate at time t

• A volume argument shows that for r → 0 the mean free path length (i.e., the
average time between consecutive collisions) is asymptotic to

1

total scattering cross section
=

1

rd−1 volBd−1
1

• We thus measure position and time in the “macroscopic” coordinates(
x(t),y(t)

)
=
(
rd−1x(r1−dt),v(r1−dt)

)

• Time evolution of initial data (x0,y0):(
x(t),y(t)

)
= Φtr(x0,y0)
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius r = 1/4, mean free path= 1
2r = 2
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius r = 1/4; 1/2-zoom: macroscopic mean free path=1
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius r = 1/6; 1/3-zoom: macroscopic mean free path=1
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The Boltzmann-Grad limit

Fixed random scatterer configuration Periodic scatterer configuration Z2

Scattering radius r = 1/8; 1/4-zoom: macroscopic mean free path=1
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The linear Boltzmann equation

Time evolution of a particle cloud with initial density f ∈ L1:

f
(r)
t (x,y) := f

(
Φ−tr (x,y)

)

In his 1905 paper Lorentz suggested that f(r)
t is governed, as r → 0, by the

linear Boltzmann equation:

(
∂t + y · ∇x

)
f(t,x,y) =

ˆ
Rd

[
Σ(y,y′)f(t,x,y′)−Σ(y′,y)f(t,x,y)

]
dy′

where Σ(y,y′) is the collision kernel (differential cross section) of the individual
scatterer. E.g. Σ(y,y′) = 1

4‖y− y
′‖3−d for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, . . .
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The linear Boltzmann equation—rigorous proofs

Random

• Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterer configuration
• Spohn (Comm Math Phys 1978): extension to more general random scatterer

configurations and potentials
• Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for

almost every scatterer configuration (w.r.t. the Poisson process)

Periodic

• Golse (Ann Fac Toulouse 2008): failure of linear Boltzmann equation; Caglioti
and Golse (Comptes Rendus 2008, J Stat Phys 2010): identified limit process
in two dimensions
• JM and Strömbergsson (Nonlinearity 2008, Annals Math 2010, Annals Math

2011, GAFA 2011): proof of convergence of Lorentz gas to limit process (in
arbitrary dimension); extension to quasicrystals and other aperiodic scatterer
configurations (Memoirs AMS, to appear)
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The quantum Lorentz gas

Random

• Spohn (J Stat Phys 1977): Gaussian random potentials, weak coupling limit
& small times
• Erdös and Yau (Contemp Math 1998, Comm Pure Appl Math 2000): General

random potentials, weak coupling limit
• Eng and Erdös (Rev Math Phys 2005): random scatterer configuration with

smooth potential, Boltzmann-Grad limit

Periodic “easy”. . . ? >>>this talk<<<

• Griffin and JM (Pure Applied Math 2019, J Stat Phys 2021): periodic scatterer
configuration, new limit process in Boltzmann-Grad limit
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The setting

• Schrödinger equation

i h2π ∂tf(t,x) = Hh,λf(t,x), f(0,x) = f0(x)

• quantum Hamiltonian

Hh,λ = −
h2

8π2
∆ + λV (x)

• potential

V (x) = Vr(x) =
∑
m∈P

W (r−1(x+m)), W ∈ S(Rd)

with P point set describing location of scatterers (e.g. P = Zd)
• solution

f(t,x) = Uh,λ(t)f0(x), Uh,λ(t) = e−2πiHh,λt/h
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2r

~h

1

~r1-d
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Observables

• time evolution of linear operators A(t) (“quantum observables”) given by
Heisenberg evolution A(t) = Uh,λ(t)AUh,λ(t)−1.

• L2 inner product on classical phase space

〈a, b〉 =

ˆ
Rd×Rd

a(x,y) b(x,y) dxdy,

• Hilbert-Schmidt inner product 〈A,B〉HS = TrAB†.
• semiclassical Boltzmann-Grad scaling

Dr,ha(x,y) = rd(d−1)/2hd/2 a(rd−1x, hy),

• standard Weyl quantisation of a ∈ S(Rd × Rd),

Op(a)f(x) =

ˆ
Rd×Rd

a(1
2(x+ x′),y) e((x− x′) · y) f(x′) dx′dy

• Set Opr,h = Op ◦Dr,h and Oph = Op1,h.
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A limiting transport process?

Pick your favourite scatterer configuration P (random or deterministic).

Questions.
(i) Does there exist a family of operators L(t) : L1(Rd×Rd)→ L1(Rd×Rd)
such that for all a, b ∈ S(Rd × Rd), A = Opr,h(a), B = Opr,h(b),

lim
r→0
〈A(tr−(d−1)), B〉HS = 〈L(t)a, b〉 ?

(ii) Is f(t,x,y) = L(t)a(x,y) a solution of the linear Boltzmann equation?

For random scatterer configurations Eng and Erdös (Rev Math Phys 2005) have
proved convergence (in the annealed case) to a limit L(t), which in fact is a
solution to the linear Boltzmann equation with the standard quantum mechanical
collision kernel

Σ(y,y′) = 8π2 δ(‖y‖2 − ‖y′‖2) |T (y,y′)|2.

Here T (y,y′) is the (single scatterer) T -matrix.
>>>Semiclassical propagation with quantum scattering<<<
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2r

~h

1

~r1-d

>>>Semiclassical propagation with quantum scattering<<<

18



A limiting transport process!

Consider the periodic scatterer configuration P = Zd (or any other lattice in Rd

of full rank).

Theorem (Griffin & JM, J Stat Phys 2021).
Conditional on a generalised Berry-Tabor conjecture:
(i) There exists a family of operators L(t) : L1(Rd × Rd) → L1(Rd × Rd)
such that for all a, b ∈ S(Rd × Rd), A = Opr,h(a), B = Opr,h(b), t > 0

and 0 < λ ≤ λ0 (λ0 sufficently small)

lim
r→0
〈A(tr−(d−1)), B〉HS = 〈L(t)a, b〉

(ii) f(t,x,y) = L(t)a(x,y) is NOT a solution of the linear Boltzmann equa-
tion.

The statement can be proved unconditionally up to second order in perturbation
theory (in λ): Griffin and JM, Pure & Applied Analysis 2019.
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Collision series for linear Boltzmann

Total scattering cross section Σtot(y) =

ˆ
Rd

Σ(y′,y)y.
′

Collision series for solution of the linear Boltzmann equation

fLB(t,x,y) =
∞∑
k=1

f
(k)
LB (t,x,y)

with the zero-collision term

f
(1)
LB (t,x,y) = a(x− ty,y) e−tΣtot(y),

and the (k − 1)-collision term . . .
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Collision series for linear Boltzmann

. . . and the (k − 1)-collision term

f
(k)
LB (t,x,y) =

ˆ
(Rd)k

ˆ
Rk≥0

δ(y − y1) a

(
x−

k∑
j=1

ujyj,yk

)

× ρ(k)
LB(u,y1, . . . ,yk) δ

(
t−

k∑
j=1

uj

)
du dy1 · · · dyk

with

ρ
(k)
LB(u,y1, . . . ,yk) =

k∏
i=1

e−uiΣtot(yi)
k−1∏
j=1

Σ(yj,yj+1).

The product form of the density ρ(k)
LB shows that the corresponding random flight

process is Markovian, and describes a particle moving along a random piecewise
linear curve with momenta yi and exponentially distributed flight times ui.
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Collision series for our limit process

Collision series

f(t,x,y) =
∞∑
k=1

f(k)(t,x,y)

with the zero-collision term (as for LB)

f(1)(t,x,y) = f
(1)
LB (t,x,y) = a(x− ty,y) e−tΣtot(y),

and the (k − 1)-collision term . . .

f(k)(t,x,y) =
1

k!

k∑
`,m=1

ˆ
(Rd)k

ˆ
Rk≥0

δ(y − y`) a
(
x−

k∑
j=1

ujyj,ym

)

× ρ(k)
`m (u,y1, . . . ,yk) δ

(
t−

k∑
j=1

uj

)
du dy1 · · · dyk,

with the collision densities . . .
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Collision series for our limit process

. . . with the positive collision densities

ρ
(k)
`m (u,y1, . . . ,yk) =

∣∣∣g(k)
`m (u,y1, . . . ,yk)

∣∣∣2 ωk(y1, . . . ,yk)
k∏
i=1

e−uiΣtot(yi).

Here

ωk(y1, . . . ,yk) =
k−1∏
j=1

δ
(

1
2‖yj‖

2 − 1
2‖yj+1‖2

)

and g(k)
`m are the coefficients of the matrix valued function

G(k)(u,y1, . . . ,yk) =
1

(2πi)k

‰
· · ·
‰ (

D(z)−W
)−1

exp(u · z) dz1 · · · dzk,

where D(z) = diag(z1, . . . , zk) and W = W(y1, . . . ,yk) with entries

wij =

0 (i = j)

−2πiT (yi,yj) (i 6= j).

>>>Strong correlation with past momenta<<<
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Collision series for our limit process

Explicitly, for the one collision terms

ρ
(2)
11 (u,y1,y2) = ρ

(2)
LB(u,y1,y2)

∣∣∣∣∣u1T (y2,y1)

u2T (y1,y2)

∣∣∣∣∣
×
∣∣∣J1

(
4π[u1u2T (y1,y2)T (y2,y1)]1/2

)∣∣∣2.
and

ρ
(2)
12 (u,y1,y2) = ρ

(2)
LB(u,y1,y2)

∣∣∣J0

(
4π[u1u2T (y1,y2)T (y2,y1)]1/2

)∣∣∣2
with Jk the standard Bessel functions.

The remaining matrix elements can be computed via the identities

ρ
(2)
22 (u1, u2,y1,y2) = ρ

(2)
11 (u2, u1,y2,y1),

ρ
(2)
21 (u1, u2,y1,y2) = ρ

(2)
12 (u2, u1,y2,y1).

• Above formulas strikingly similar to those for two-point spectral statistics in
diffractive systems (Bogomolny and Giraud, Nonlinearity 2002)
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Key steps in proof

• Use Floquet-Bloch decomposition to reduce problem to L2 subspaces of
functions

ψ(x+ k) = e(k ·α)ψ(x), ∀k ∈ Zd

with α ∈ [0,1)d

• Consider each α-subspace separately (random or fixed)
• Use iterated application of Duhamel formula for quantum propagator,

Uλ,h(t) = U0,h(t)− 2πiλ

ˆ t

0
Uλ,h(t− s) Op(V )U0,h(s)ds,

to produce perturbation expansion
• The eigenphases of U0,h(t) restricted to α-subspace are of the form

π t ‖m+α‖2, m ∈ Zd
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Key steps in proof

• Set Pα = Zd +α

• The (n− 1) collision term can be expressed in the form

rd
∑

p1,...,pn=p0∈Pα
non-consec

Ht,`,n
(
r2−d(1

2‖p0‖2, . . . , 1
2‖pn‖

2), rp0, . . . , rpn
)

form some (not so well behaved) function Ht,`,n, which has translation in-
variance in the first coordinates so that it only depends on the differences
between the ‖pj‖2

• The above expression is thus the n-point correlation density of P tested
against Ht,`,n — measured on the scale of their mean separation
• Our key assumption in this work is that we can replace Pα, for typical

(or random) α by a Poisson point process in Rd of intensity one
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How random is Pα = Zd +α ?

Illustrative example for d = 2:

• Fix α = (
√

2,
√

3)←− not even generic/random

• Consider the sequence (λi, θi)i∈N of elements of the set{(
π‖n+α‖2,

1

2π
arg(n+α)

)
∈ R≥0 × [0,1)

∣∣∣∣∣n ∈ Z2
}

arranged in increasing order according to the first component

• Our assumption is concerned with the distribution of points (λi, θi) restricted
to a strip [R−∆R,R)× [0,1) for ∆R > 0 fixed and R→∞
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Scatter plots of (λi, θi) in the strip [R−∆R,R)× [0,1) for R = π×1002, with
∆R = 104. For large R we expect the point set to be modelled by a Poisson
point process.
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Scatter plots of (λi, θi) in the strip [R−∆R,R)× [0,1) for R = π×5002, with
∆R = 104. For large R we expect the point set to be modelled by a Poisson
point process.
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Scatter plot for the sequence (λi+1− λi, θi) for R = π× 5002 and ∆R = 104
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Histogram for the sequence (λi+1 − λi, θi) for R = π × 5002 and ∆R = 104
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Theoretical evidence

• Our key assumption can be established for two-point correlations, in the case
of random, generic and Diophantine α ∈ Rd (JM, Annals Math 2003, Duke
Math J 2002)

• Can be used to prove macroscopic limit up to order λ2 (Griffin & JM, Pure &
Applied Analysis 2019)
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Outlook

• Can our hypothesis on the Poisson nature of

‖m+α‖2, m ∈ Zd

can be made rigorous?

• Is the long-time limit of the macroscopic process (super-) diffusive?

(Cf. superdiffusive CLT for kinetic limit of classical periodic Lorentz gas, JM
& Toth 2016)

• Other scalling limits: h� r or r � h

• Extension to quasicrystals or other scatterer configurations with long-range
correlations
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Further reading

• J. Griffin and J. Marklof, Quantum transport in a low-density periodic poten-
tial: homogenisation via homogeneous flows, Pure and Applied Analysis 1
(2019) 571-614

• J. Griffin and J. Marklof, Quantum transport in a crystal with short-range inter-
actions: The Boltzmann-Grad limit, Journal of Statistical Physics 184 (2021)
no. 16; 46pp
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