Quantum Lorentz gas in the Boltzmann-Grad limit: random vs periodic

Jens Marklof
School of Mathematics, University of Bristol http://www.maths.bristol.ac.uk
based on joint papers with Jory Griffin (Oklahoma)
supported by EPSRC grant EP/S024948/1

The Lorentz gas

Lorentz gas in the small scatterer limit

Fixed random scatterer configuration

Periodic scatterer configuration \mathbb{Z}^{2}

Scattering radius $r=1 / 4$, mean free path $=\frac{1}{2 r}=2$

Lorentz gas in the small scatterer limit

Fixed random scatterer configuration

Periodic scatterer configuration \mathbb{Z}^{2}

Scattering radius $r=1 / 6$, mean free path $=\frac{1}{2 r}=3$

Lorentz gas in the small scatterer limit

Fixed random scatterer configuration
Periodic scatterer configuration \mathbb{Z}^{2}
Scattering radius $r=1 / 8$, mean free path $=\frac{1}{2 r}=4$

The Boltzmann-Grad (=low-density) limit

- Consider the dynamics in the limit of small scatterer radius r, dimension $d \geq 2$
- $(\boldsymbol{q}(t), \boldsymbol{v}(t))=$ "microscopic" phase space coordinate at time t
- A volume argument shows that for $r \rightarrow 0$ the mean free path length (i.e., the average time between consecutive collisions) is asymptotic to

$$
\frac{1}{\text { total scattering cross section }}=\frac{1}{r^{d-1} \mathrm{vol} B_{1}^{d-1}}
$$

- We thus measure position and time in the "macroscopic" coordinates

$$
(\boldsymbol{x}(t), \boldsymbol{y}(t))=\left(r^{d-1} \boldsymbol{x}\left(r^{1-d} t\right), \boldsymbol{v}\left(r^{1-d} t\right)\right)
$$

- Time evolution of initial data $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$:

$$
(x(t), \boldsymbol{y}(t))=\Phi_{r}^{t}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)
$$

The Boltzmann-Grad limit

Fixed random scatterer configuration

Periodic scatterer configuration \mathbb{Z}^{2}

Scattering radius $r=1 / 4$, mean free path $=\frac{1}{2 r}=2$

The Boltzmann-Grad limit

Fixed random scatterer configuration

Periodic scatterer configuration \mathbb{Z}^{2}

Scattering radius $r=1 / 4 ; 1 / 2$-zoom: macroscopic mean free path=1

The Boltzmann-Grad limit

Fixed random scatterer configuration
Periodic scatterer configuration \mathbb{Z}^{2} Scattering radius $r=1 / 6 ; 1 / 3$-zoom: macroscopic mean free path=1

The Boltzmann-Grad limit

Fixed random scatterer configuration
Periodic scatterer configuration \mathbb{Z}^{2}
Scattering radius $r=1 / 8 ; 1 / 4$-zoom: macroscopic mean free path=1

The linear Boltzmann equation

Time evolution of a particle cloud with initial density $f \in \mathrm{~L}^{1}$:

$$
f_{t}^{(r)}(\boldsymbol{x}, \boldsymbol{y}):=f\left(\Phi_{r}^{-t}(\boldsymbol{x}, \boldsymbol{y})\right)
$$

In his 1905 paper Lorentz suggested that $f_{t}^{(r)}$ is governed, as $r \rightarrow 0$, by the linear Boltzmann equation:

$$
\left(\partial_{t}+\boldsymbol{y} \cdot \nabla_{\boldsymbol{x}}\right) f(t, \boldsymbol{x}, \boldsymbol{y})=\int_{\mathbb{R}^{d}}\left[\Sigma\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right) f\left(t, \boldsymbol{x}, \boldsymbol{y}^{\prime}\right)-\Sigma\left(\boldsymbol{y}^{\prime}, \boldsymbol{y}\right) f(t, \boldsymbol{x}, \boldsymbol{y})\right] d \boldsymbol{y}^{\prime}
$$

where $\Sigma\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right)$ is the collision kernel (differential cross section) of the individual scatterer. E.g. $\Sigma\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right)=\frac{1}{4}\left\|\boldsymbol{y}-\boldsymbol{y}^{\prime}\right\|^{3-d}$ for specular reflection at a hard sphere

Applications: Neutron transport, radiative transfer, ...

The linear Boltzmann equation-rigorous proofs

Random

- Galavotti (Phys Rev 1969 \& report 1972): Poisson distributed hard-sphere scatterer configuration
- Spohn (Comm Math Phys 1978): extension to more general random scatterer configurations and potentials
- Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for almost every scatterer configuration (w.r.t. the Poisson process)

Periodic

- Golse (Ann Fac Toulouse 2008): failure of linear Boltzmann equation; Caglioti and Golse (Comptes Rendus 2008, J Stat Phys 2010): identified limit process in two dimensions
- JM and Strömbergsson (Nonlinearity 2008, Annals Math 2010, Annals Math 2011, GAFA 2011): proof of convergence of Lorentz gas to limit process (in arbitrary dimension); extension to quasicrystals and other aperiodic scatterer configurations (Memoirs AMS, to appear)

The quantum Lorentz gas

Random

- Spohn (J Stat Phys 1977): Gaussian random potentials, weak coupling limit \& small times
- Erdös and Yau (Contemp Math 1998, Comm Pure Appl Math 2000): General random potentials, weak coupling limit
- Eng and Erdös (Rev Math Phys 2005): random scatterer configuration with smooth potential, Boltzmann-Grad limit

Periodic "easy"...? >>>this talk \lll

- Griffin and JM (Pure Applied Math 2019, J Stat Phys 2021): periodic scatterer configuration, new limit process in Boltzmann-Grad limit

The setting

- Schrödinger equation

$$
\mathrm{i} \frac{h}{2 \pi} \partial_{t} f(t, \boldsymbol{x})=H_{h, \lambda} f(t, \boldsymbol{x}), \quad f(0, x)=f_{0}(\boldsymbol{x})
$$

- quantum Hamiltonian

$$
H_{h, \lambda}=-\frac{h^{2}}{8 \pi^{2}} \Delta+\lambda V(x)
$$

- potential

$$
V(x)=V_{r}(x)=\sum_{m \in \mathcal{P}} W\left(r^{-1}(x+m)\right), \quad W \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

with \mathcal{P} point set describing location of scatterers (e.g. $\mathcal{P}=\mathbb{Z}^{d}$)

- solution

$$
f(t, x)=U_{h, \lambda}(t) f_{0}(x), \quad U_{h, \lambda}(t)=\mathrm{e}^{-2 \pi \mathrm{i} H_{h, \lambda} t / h}
$$

Observables

- time evolution of linear operators $A(t)$ ("quantum observables") given by Heisenberg evolution $A(t)=U_{h, \lambda}(t) A U_{h, \lambda}(t)^{-1}$.
- L^{2} inner product on classical phase space

$$
\langle a, b\rangle=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} a(\boldsymbol{x}, \boldsymbol{y}) \overline{b(\boldsymbol{x}, \boldsymbol{y})} d \boldsymbol{x} d \boldsymbol{y}
$$

- Hilbert-Schmidt inner product $\langle A, B\rangle_{\mathrm{HS}}=\operatorname{Tr} A B^{\dagger}$.
- semiclassical Boltzmann-Grad scaling

$$
D_{r, h} a(\boldsymbol{x}, \boldsymbol{y})=r^{d(d-1) / 2} h^{d / 2} a\left(r^{d-1} \boldsymbol{x}, h \boldsymbol{y}\right)
$$

- standard Weyl quantisation of $a \in \mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$,

$$
\mathrm{Op}(a) f(\boldsymbol{x})=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} a\left(\frac{1}{2}\left(\boldsymbol{x}+\boldsymbol{x}^{\prime}\right), \boldsymbol{y}\right) \mathrm{e}\left(\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \cdot \boldsymbol{y}\right) f\left(\boldsymbol{x}^{\prime}\right) d \boldsymbol{x}^{\prime} d \boldsymbol{y}
$$

- Set $\mathrm{Op}_{r, h}=\mathrm{Op} \circ D_{r, h}$ and $\mathrm{Op}_{h}=\mathrm{Op}_{1, h}$.

A limiting transport process?

Pick your favourite scatterer configuration \mathcal{P} (random or deterministic).

Questions.

(i) Does there exist a family of operators $L(t): L^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \rightarrow \mathrm{L}^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that for all $a, b \in \mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right), A=\mathrm{Op}_{r, h}(a), B=\mathrm{Op}_{r, h}(b)$,

$$
\lim _{r \rightarrow 0}\left\langle A\left(t r^{-(d-1)}\right), B\right\rangle_{\mathrm{HS}}=\langle L(t) a, b\rangle \quad ?
$$

(ii) Is $f(t, \boldsymbol{x}, \boldsymbol{y})=L(t) a(\boldsymbol{x}, \boldsymbol{y})$ a solution of the linear Boltzmann equation?

For random scatterer configurations Eng and Erdös (Rev Math Phys 2005) have proved convergence (in the annealed case) to a limit $L(t)$, which in fact is a solution to the linear Boltzmann equation with the standard quantum mechanical collision kernel

$$
\Sigma\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right)=8 \pi^{2} \delta\left(\|\boldsymbol{y}\|^{2}-\left\|\boldsymbol{y}^{\prime}\right\|^{2}\right)\left|T\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right)\right|^{2}
$$

Here $T\left(\boldsymbol{y}, \boldsymbol{y}^{\prime}\right)$ is the (single scatterer) T-matrix.
\ggg Semiclassical propagation with quantum scattering \lll

\ggg Semiclassical propagation with quantum scattering \lll

A limiting transport process!

Consider the periodic scatterer configuration $\mathcal{P}=\mathbb{Z}^{d}$ (or any other lattice in \mathbb{R}^{d} of full rank).

Theorem (Griffin \& JM, J Stat Phys 2021).
Conditional on a generalised Berry-Tabor conjecture:
(i) There exists a family of operators $L(t): \mathrm{L}^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \rightarrow \mathrm{L}^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ such that for all $a, b \in \mathcal{S}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right), A=\mathrm{Op}_{r, h}(a), B=\mathrm{Op}_{r, h}(b), t>0$ and $0<\lambda \leq \lambda_{0}$ (λ_{0} sufficently small)

$$
\lim _{r \rightarrow 0}\left\langle A\left(t r^{-(d-1)}\right), B\right\rangle_{\mathrm{HS}}=\langle L(t) a, b\rangle
$$

(ii) $f(t, \boldsymbol{x}, \boldsymbol{y})=L(t) a(\boldsymbol{x}, \boldsymbol{y})$ is NOT a solution of the linear Boltzmann equation.

The statement can be proved unconditionally up to second order in perturbation theory (in λ): Griffin and JM, Pure \& Applied Analysis 2019.

Collision series for linear Boltzmann

Total scattering cross section $\Sigma_{\text {tot }}(\boldsymbol{y})=\int_{\mathbb{R}^{d}} \Sigma\left(\boldsymbol{y}^{\prime}, \boldsymbol{y}\right) \boldsymbol{y}^{\prime}$
Collision series for solution of the linear Boltzmann equation

$$
f_{\mathrm{LB}}(t, \boldsymbol{x}, \boldsymbol{y})=\sum_{k=1}^{\infty} f_{\mathrm{LB}}^{(k)}(t, \boldsymbol{x}, \boldsymbol{y})
$$

with the zero-collision term

$$
f_{\mathrm{LB}}^{(1)}(t, \boldsymbol{x}, \boldsymbol{y})=a(\boldsymbol{x}-t \boldsymbol{y}, \boldsymbol{y}) \mathrm{e}^{-t \Sigma_{\mathrm{tot}}(\boldsymbol{y})},
$$

and the ($k-1$)-collision term ...

Collision series for linear Boltzmann

\ldots. and the $(k-1)$-collision term

$$
\begin{aligned}
& f_{\mathrm{LB}}^{(k)}(t, \boldsymbol{x}, \boldsymbol{y})=\int_{\left(\mathbb{R}^{d}\right)^{k}} \int_{\mathbb{R}_{\geq 0}^{k}} \delta\left(\boldsymbol{y}-\boldsymbol{y}_{1}\right) a\left(\boldsymbol{x}-\sum_{j=1}^{k} u_{j} \boldsymbol{y}_{j}, \boldsymbol{y}_{k}\right) \\
& \times \rho_{\mathrm{LB}}^{(k)}\left(\boldsymbol{u}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right) \delta\left(t-\sum_{j=1}^{k} u_{j}\right) d \boldsymbol{u} d \boldsymbol{y}_{1} \cdots d \boldsymbol{y}_{k}
\end{aligned}
$$

with

$$
\rho_{\mathrm{LB}}^{(k)}\left(\boldsymbol{u}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right)=\prod_{i=1}^{k} \mathrm{e}^{-u_{i} \Sigma_{\mathrm{tot}}\left(\boldsymbol{y}_{i}\right)} \prod_{j=1}^{k-1} \Sigma\left(\boldsymbol{y}_{j}, \boldsymbol{y}_{j+1}\right)
$$

The product form of the density $\rho_{\mathrm{LB}}^{(k)}$ shows that the corresponding random flight process is Markovian, and describes a particle moving along a random piecewise linear curve with momenta \boldsymbol{y}_{i} and exponentially distributed flight times u_{i}.

Collision series for our limit process

Collision series

$$
f(t, \boldsymbol{x}, \boldsymbol{y})=\sum_{k=1}^{\infty} f^{(k)}(t, \boldsymbol{x}, \boldsymbol{y})
$$

with the zero-collision term (as for LB)

$$
f^{(1)}(t, \boldsymbol{x}, \boldsymbol{y})=f_{\mathrm{LB}}^{(1)}(t, \boldsymbol{x}, \boldsymbol{y})=a(\boldsymbol{x}-t \boldsymbol{y}, \boldsymbol{y}) \mathrm{e}^{-t \Sigma_{\mathrm{tot}}(\boldsymbol{y})},
$$

and the ($k-1$)-collision term ...

$$
\begin{aligned}
f^{(k)}(t, \boldsymbol{x}, \boldsymbol{y})=\frac{1}{k!} \sum_{\ell, m=1}^{k} & \int_{\left(\mathbb{R}^{d}\right)^{k}} \int_{\mathbb{R}_{\geq 0}^{k}} \delta\left(\boldsymbol{y}-\boldsymbol{y}_{\ell}\right) a\left(\boldsymbol{x}-\sum_{j=1}^{k} u_{j} \boldsymbol{y}_{j}, \boldsymbol{y}_{m}\right) \\
& \times \rho_{\ell m}^{(k)}\left(\boldsymbol{u}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right) \delta\left(t-\sum_{j=1}^{k} u_{j}\right) d \boldsymbol{u} d \boldsymbol{y}_{1} \cdots d \boldsymbol{y}_{k},
\end{aligned}
$$

with the collision densities

Collision series for our limit process

... with the positive collision densities

$$
\rho_{\ell m}^{(k)}\left(\boldsymbol{u}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right)=\left|g_{\ell m}^{(k)}\left(\boldsymbol{u}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right)\right|^{2} \omega_{k}\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right) \prod_{i=1}^{k} \mathrm{e}^{-u_{i} \Sigma_{\mathrm{tot}}\left(\boldsymbol{y}_{i}\right)}
$$

Here

$$
\omega_{k}\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right)=\prod_{j=1}^{k-1} \delta\left(\frac{1}{2}\left\|\boldsymbol{y}_{j}\right\|^{2}-\frac{1}{2}\left\|\boldsymbol{y}_{j+1}\right\|^{2}\right)
$$

and $g_{\ell m}^{(k)}$ are the coefficients of the matrix valued function

$$
\mathbb{G}^{(k)}\left(\boldsymbol{u}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right)=\frac{1}{(2 \pi \mathrm{i})^{k}} \oint \cdots \oint(\mathbb{D}(\boldsymbol{z})-\mathbb{W})^{-1} \exp (\boldsymbol{u} \cdot \boldsymbol{z}) d z_{1} \cdots d z_{k},
$$

where $\mathbb{D}(\boldsymbol{z})=\operatorname{diag}\left(z_{1}, \ldots, z_{k}\right)$ and $\mathbb{W}=\mathbb{W}\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right)$ with entries

$$
w_{i j}= \begin{cases}0 & (i=j) \\ -2 \pi \mathrm{i} T\left(\boldsymbol{y}_{i}, \boldsymbol{y}_{j}\right) & (i \neq j)\end{cases}
$$

\ggg Strong correlation with past momenta \lll

Collision series for our limit process

Explicitly, for the one collision terms

$$
\begin{aligned}
\rho_{11}^{(2)}\left(\boldsymbol{u}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)=\rho_{\mathrm{LB}}^{(2)}\left(\boldsymbol{u}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) & \left|\frac{u_{1} T\left(\boldsymbol{y}_{2}, \boldsymbol{y}_{1}\right)}{u_{2} T\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)}\right| \\
& \times\left|J_{1}\left(4 \pi\left[u_{1} u_{2} T\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) T\left(\boldsymbol{y}_{2}, \boldsymbol{y}_{1}\right)\right]^{1 / 2}\right)\right|^{2} .
\end{aligned}
$$

and

$$
\rho_{12}^{(2)}\left(\boldsymbol{u}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)=\rho_{\mathrm{LB}}^{(2)}\left(\boldsymbol{u}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)\left|J_{0}\left(4 \pi\left[u_{1} u_{2} T\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right) T\left(\boldsymbol{y}_{2}, \boldsymbol{y}_{1}\right)\right]^{1 / 2}\right)\right|^{2}
$$

with J_{k} the standard Bessel functions.
The remaining matrix elements can be computed via the identities

$$
\begin{aligned}
& \rho_{22}^{(2)}\left(u_{1}, u_{2}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)=\rho_{11}^{(2)}\left(u_{2}, u_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{1}\right), \\
& \rho_{21}^{(2)}\left(u_{1}, u_{2}, \boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)=\rho_{12}^{(2)}\left(u_{2}, u_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{1}\right) .
\end{aligned}
$$

- Above formulas strikingly similar to those for two-point spectral statistics in diffractive systems (Bogomolny and Giraud, Nonlinearity 2002)

Key steps in proof

- Use Floquet-Bloch decomposition to reduce problem to L^{2} subspaces of functions

$$
\psi(\boldsymbol{x}+\boldsymbol{k})=\mathrm{e}(\boldsymbol{k} \cdot \boldsymbol{\alpha}) \psi(\boldsymbol{x}), \quad \forall \boldsymbol{k} \in \mathbb{Z}^{d}
$$

with $\alpha \in[0,1)^{d}$

- Consider each α-subspace separately (random or fixed)
- Use iterated application of Duhamel formula for quantum propagator,

$$
U_{\lambda, h}(t)=U_{0, h}(t)-2 \pi \mathrm{i} \lambda \int_{0}^{t} U_{\lambda, h}(t-s) \operatorname{Op}(V) U_{0, h}(s) d s
$$

to produce perturbation expansion

- The eigenphases of $U_{0, h}(t)$ restricted to α-subspace are of the form

$$
\pi t\|\boldsymbol{m}+\boldsymbol{\alpha}\|^{2}, \quad \boldsymbol{m} \in \mathbb{Z}^{d}
$$

Key steps in proof

- Set $\mathcal{P}_{\alpha}=\mathbb{Z}^{d}+\alpha$
- The $(n-1)$ collision term can be expressed in the form

$$
r_{\substack{d}}^{\substack{p_{1}, \ldots, \boldsymbol{n}_{n}=\boldsymbol{p}_{0} \in \mathcal{P}_{\alpha} \\ \text { non-consec }}} H_{t, \ell, n}\left(r^{2-d}\left(\frac{1}{2}\left\|\boldsymbol{p}_{0}\right\|^{2}, \ldots, \frac{1}{2}\left\|\boldsymbol{p}_{n}\right\|^{2}\right), r \boldsymbol{p}_{0}, \ldots, r \boldsymbol{p}_{n}\right)
$$

form some (not so well behaved) function $H_{t, \ell, n}$, which has translation invariance in the first coordinates so that it only depends on the differences between the $\left\|p_{j}\right\|^{2}$

- The above expression is thus the n-point correlation density of \mathcal{P} tested against $H_{t, \ell, n}$ - measured on the scale of their mean separation
- Our key assumption in this work is that we can replace \mathcal{P}_{α}, for typical (or random) α by a Poisson point process in \mathbb{R}^{d} of intensity one

How random is $\mathcal{P}_{\alpha}=\mathbb{Z}^{d}+\alpha$?

Illustrative example for $d=2$:

- $\operatorname{Fix} \alpha=(\sqrt{2}, \sqrt{3}) \longleftarrow$ not even generic/random
- Consider the sequence $\left(\lambda_{i}, \theta_{i}\right)_{i \in \mathbb{N}}$ of elements of the set

$$
\left\{\left.\left(\pi\|n+\alpha\|^{2}, \frac{1}{2 \pi} \arg (n+\alpha)\right) \in \mathbb{R}_{\geq 0} \times[0,1) \right\rvert\, n \in \mathbb{Z}^{2}\right\}
$$

arranged in increasing order according to the first component

- Our assumption is concerned with the distribution of points $\left(\lambda_{i}, \theta_{i}\right)$ restricted to a strip $[R-\Delta R, R) \times[0,1)$ for $\Delta R>0$ fixed and $R \rightarrow \infty$

Scatter plots of $\left(\lambda_{i}, \theta_{i}\right)$ in the strip $[R-\Delta R, R) \times[0,1)$ for $R=\pi \times 100^{2}$, with $\Delta R=10^{4}$. For large R we expect the point set to be modelled by a Poisson point process.

Scatter plots of $\left(\lambda_{i}, \theta_{i}\right)$ in the strip $[R-\Delta R, R) \times[0,1)$ for $R=\pi \times 500^{2}$, with $\Delta R=10^{4}$. For large R we expect the point set to be modelled by a Poisson point process.

Scatter plot for the sequence $\left(\lambda_{i+1}-\lambda_{i}, \theta_{i}\right)$ for $R=\pi \times 500^{2}$ and $\Delta R=10^{4}$

Histogram for the sequence $\left(\lambda_{i+1}-\lambda_{i}, \theta_{i}\right)$ for $R=\pi \times 500^{2}$ and $\Delta R=10^{4}$

Theoretical evidence

- Our key assumption can be established for two-point correlations, in the case of random, generic and Diophantine $\alpha \in \mathbb{R}^{d}$ (JM, Annals Math 2003, Duke Math J 2002)
- Can be used to prove macroscopic limit up to order λ^{2} (Griffin \& JM, Pure \& Applied Analysis 2019)

Outlook

- Can our hypothesis on the Poisson nature of

$$
\|m+\alpha\|^{2}, \quad m \in \mathbb{Z}^{d}
$$

can be made rigorous?

- Is the long-time limit of the macroscopic process (super-) diffusive?
(Cf. superdiffusive CLT for kinetic limit of classical periodic Lorentz gas, JM \& Toth 2016)
- Other scalling limits: $h \ll r$ or $r \ll h$
- Extension to quasicrystals or other scatterer configurations with long-range correlations

Further reading

- J. Griffin and J. Marklof, Quantum transport in a low-density periodic potential: homogenisation via homogeneous flows, Pure and Applied Analysis 1 (2019) 571-614
- J. Griffin and J. Marklof, Quantum transport in a crystal with short-range interactions: The Boltzmann-Grad limit, Journal of Statistical Physics 184 (2021) no. 16; 46pp

