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Lecture I: A basic survey

1. What is measure rigidity? What are homogeneous flows?

2. Margulis’ proof of the Oppenheim conjecture

3. Quantum chaos

4. Randomness mod 1

5. The Lorentz gas (→ Lecture II)

6. Frobenius numbers and circulant graphs (→ Lecture III)
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What is measure rigidity?
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An illustration: Two proofs of a classic equidistribution theorem

Let T = R/Z. (View this as a circle of length one.)

Theorem (Weyl, Sierpinsky, Bohl 1909-10).
If α ∈ R \ Q then, for any continuous f : T →
R,

lim
N→∞

1

N

N∑
n=1

f(nα) =
∫
T
f(x) dx.
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√

2, N = 100

Hermann Weyl (1885-1955)
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Proof #1—“harmonic analysis” (after Weyl 1914)

By Weierstrass’ approximation theorem (trigonometric polynomials are dense in
C(T)) it is enough to show that

lim
N→∞

1

N

N∑
n=1

f(nα) =
∫
T
f(x) dx (1)

holds for finite Fourier series f of the form

f(x) =
K∑

k=−K
ck e2πikx.

To establish eq. (1) we have to check that

lim
N→∞

1

N

N∑
n=1

c0 = c0 =
∫
T
f(x) dx (2)

and secondly that for every k 6= 0

lim
N→∞

1

N

N∑
n=1

e2πik nα = lim
N→∞

e2πikα

N

1− e2πikNα

1− e2πikα
= 0. (3)

Eq. (2) is obvious and (3) follows from the formula for the geometric sum (which
requires α /∈ Q).
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Proof #2—“measure rigidity”

The linear functional

f 7→ νN [f ] :=
1

N

N∑
n=1

f(nα)

defines a Borel probability measure on T. Since T is compact, the sequence
(νN)N is relatively compact, i.e., every subsequence contains a convergent∗

subsequence (νNj)j. Suppose

νNj → ν.

What do we now about the probability measure ν?

∗in the weak*-topology

6



Define the map

Tα : T→ T, x 7→ x+ α.

For each f ∈ C(T) we have

νN [f ◦ Tα] =
1

N

N∑
n=1

f((n+ 1)α)

=
1

N

N∑
n=1

f(nα) +
1

N
f((N + 1)α)−

1

N
f(α)

and so νNj[f ]→ ν[f ] implies

νNj[f ◦ Tα]→ ν[f ].

Since f ◦ Tα ∈ C(T) we also have

νNj[f ◦ Tα]→ ν[f ◦ Tα]

and so

ν[f ◦ Tα] = ν[f ] for all f ∈ C(T)
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Conclusion: ν is Tα-invariant, and hence also invariant under the closure of the
group

〈Tα〉 = {Tnα : n ∈ Z}.

If α /∈ Q, it is well known that given any y ∈ T there is a subsequence of integers
ni such that

niα→ y mod 1.

This implies that the closure of 〈Tα〉 is in fact the group of all translations of T,

〈Tα〉 = {Ty : y ∈ T}.

The only probability measure invariant under this group is Lebesgue measure,
i.e. ν[f ] =

∫
f(x)dx. Thus the limit measure ν is unique, and therefore the full

sequence must converge:

νN [f ] =
1

N

N∑
n=1

f(nα)→
∫
T
f(x) dx.
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Why measure rigidity?

In the above example there is only one measure ν that is invariant under the
transformation T . We call this phenomenon unique ergodicity. This is a spe-
cial case of measure rigidity = invariant ergodic measures are not abundant but
appear as a countable family.
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What is a homogeneous flow?

Consider a homogeneous space of the form

X = Γ\G = {Γg : g ∈ G}

where

• G a Lie group
• Γ a lattice in G

A lattice Γ in G is a discrete subgroup such that there is a fundamental domain
FΓ of the (left) Γ-action on G with finite left Haar measure. This in turn implies
that G is unimodular, i.e. left Haar measure=right Haar measure.

A homogeneous flow is the action of a one-parameter subgroup {Φt}t∈R of G by
right multiplication:

X → X, x 7→ xΦt
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The modular group

Our main example is

• G = SL(n,R)

(real n× n matrices with determinant one)
• Γ = SL(n,Z)

(the modular group)

The volume of X = Γ\G (with respect to Haar)
was first computed for general n by Minkowski. Hermann Minkowski

(1864-1909)

Examples of one-parameter subgroups:{
diag(eλ1t, . . . , eλnt)

}
t∈R

(λ1 + . . .+ λn = 0)

or {(
1 At
0 1

)}
t∈R

(A a fixed matrix)
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The space of Euclidean lattices

Every Euclidean lattice L ⊂ Rn of covolume one can be written as

L = ZnM

for some M . The bijection

Γ\G ∼−→ {lattices of covolume one}
ΓM 7→ ZdM.

allows us to identify the space of lattices with Γ\G.

To find the inverse map, note that, for any basis b1, . . . , bd of L, the matrix M =

( tb1, . . . ,
tbd) is in SL(n,R); the substitution M 7→ γM , γ ∈ Γ corresponds to

a base change of L.
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Margulis’ proof of the Oppenheim conjecture

. . . was the first application of the theory of homogenous flows to a long-standing
problem which had resisted attacks from analytic number theory. As we shall
see, quantitative versions of the Oppenheim conjecture can be proved by means
of measure rigidity.

Alexander Oppenheim (1903-1997) Gregory Margulis (*1946)
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Let

Q(x1, . . . , xn) =
n∑

i,j=1

qijxixj

with qij = qji ∈ R. We say Q is indefinite if the matrix (qij) has both positive
and negative eigenvalues, and no zero eigenvalues. If there are p positive and
q = n − p negative eigenvalues, we say Q has signature (p, q). We say Q is
irrational if (qij) is not proportional to a rational matrix.

Theorem (Margulis 1987). If Q is irrational* and indefinite with n ≥ 3 then

inf |Q(Zn \ {0})| = 0.

Oppenheim’s original conjecture (PNAS 1929) was more cautious—it assumed
n ≥ 5. The assumption n ≥ 3 in the above is however necessary; consider e.g.
Q(x1, x2) = x2

1 − (1 +
√

3)2 x2
2.

*only required when n = 3 or 4
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Values of quadratic forms vs. orbits of homogeneous flows

The key first step in Margulis’ proof is to translate the problem to a question in
homogeneous flows. This observation goes back to a paper by Cassels and
Swinnerton-Dyer (1955) and was rediscovered by Raghunatan in the mid-1970s,
leading him to formulate to influential conjectures on orbit closures of unipotent
flows.

It is instructive to explain this first step in the case n = 2.
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• Observation 1: Basic linear algebra shows that there is M ∈ SL(2,R) and
λ 6= 0 so that

Q(x) = λQ0(xM), Q0(x1, x2) := x1x2.

(x = (x1, x2) is viewed as a row vector)
• Observation 2:

Q0(xΦt) = Q0(x), for all Φt =

(
et 0
0 e−t

)
, t ∈ R

• Need to show: Given any ε > 0 find t > 0 so that the lattice Z2MΦt

contains a non-zero vector y such that

|Q0(y)| < ε.

• Observation 3: The above holds if the orbit

{Z2MΦt}t∈R ' {ΓMΦt}t∈R
is dense in Γ\G . . . and this is where things go wrong for n = 2 (but works

out for n ≥ 3 since then the action orthogonal group ofQ0 produces a dense
orbit in Γ\G).
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Quantitative versions of the Oppenheim conjecture

Margulis in fact proved the stronger statement that for any irrational indefinite
form Q in n ≥ 3 variables Q(Zn) = R. Apart from being dense, can we say
more about the distribution of the values of Q? The following theorems gives the
answer for forms of signature (p, q) with n ≥ 4 and p ≥ 3.

Theorem (Eskin, Margulis & Mozes, Annals of Math 1998). If Q is irrational
and indefinite with p ≥ 3 then for any a < b

lim
T→∞

#{m ∈ Zn : ‖m‖ < T, a < Q(m) < b}
vol{x ∈ Rn : ‖x‖ < T, a < Q(x) < b}

= 1.

For signature (2,2) the statement only holds if Q is not too well approximable by
rational forms (Eskin, Margulis, Mozes 2005) (which is true for almost all forms).
The problem is open for signature (2,1).
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Ratner’s theorem (Annals of Math, 1991)

The key ingredient in the previous theorem is
Ratner’s celebrated classification of measures
that are invariant and ergodic under unipotent
flows. Ratner proves that any such measure ν

is supported on the orbit

Γ\ΓH ⊂ Γ\G

for some (unique) closed connected subgroup
H of G such that ΓH := Γ ∩H is a lattice in H
and thus

Γ\ΓH ' ΓH\H

is an embedded homogeneous space with finite
H-invariant measure ν = νH (the Haar measure
of H).

Marina Ratner (*1938)

Examples:{(
1 t
0 1

)}
t∈R

unipotent{(
et 0
0 e−t

)}
t∈R

not
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Quantum chaos
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Quantum ergodicity vs. scars

−∆ϕj = λjϕj, ϕj
∣∣∣
∂D

= 0, 0 < λ1 < λ2 ≤ λ3 ≤ . . .→∞

Numerics: A. Bäcker, TU Dresden
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Random matrix conjecture (Bohigas, Giannoni & Schmit 1984)
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Berry-Tabor conjecture (Berry & Tabor 1977)
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Quantum (unique) ergodicity

Let ∆ be the Laplacian on a compact
surface of constant negative curvature

−∆ϕj = λjϕj, ‖ϕi‖2 = 1

0 < λ1 < λ2 ≤ λ3 ≤ . . .→∞

What are possible limits of the sequence
of probability measures |ϕj(z)|2dµ(z)?
We know (by microlocal analysis): Any
(microlocal lift) of a limit measure must
be invariant under the geodesic flow.
(Doesn’t help much—many measures
have this property!)

Numerics: R. Aurich, U Ulm
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Quantum (unique) ergodicity

• Rudnick & Sarnak (Comm Math Phys 1994) : conjecture

|ϕj(z)|2dµ(z)→ dµ(z)

along full sequence (“quantum unique ergodicity” or QUE).

• Shnirelman-Zelditch-Colin de Verdiere Theorem:

|ϕji(z)|2dµ(z)→ dµ(z)

along a density-one subsequence ji (“quantum ergodicity”); holds in much
greater generality and only requires ergodicity of geodesic flow.

• E. Lindenstrauss (Annals Math 2006): If surface is arithmetic (of congruence
type) then we have QUE. Proof uses measure rigidity of action of Hecke cor-
respondences and geodesic flow.

• Anantharaman (Annals Math 2008) & with Nonnenmacher (Annals Fourier
2007): Kolmogorov-Sinai entropy of any limit is at least half the entropy of
dµ(z). This means no strong scars.
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Berry-Tabor conjecture: eigenvalue statistics for flat tori

Let ∆ be the Laplacian on the flat torus Rd/L (L =lattice of covolume 1)

−∆ϕj = λjϕj, ‖ϕi‖2 = 1

with eigenfunctions

{ϕj(x)} = {e2πix·y : y ∈ L∗}

and eigenvalues (counted with multiplicity)

{λj} = {‖m‖2 : m ∈ L∗}

Note

#{λj < λ} ∼ Vd λd/2 (λ→∞), Vd :=
πd/2

Γ(d2 + 1)

To compare the statistics with a Poisson process of intensity one, rescale the
spectrum by setting

ξj = Vd λ
d/2
j so that #{ξj < ξ} ∼ ξ (ξ →∞)
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Gap distribution

Assume the lattice L is “generic”. Is it true that for any interval [a, b]

lim
N→∞

#{j ≤ N : a < ξj+1 − ξj < b}
N

=
∫ b
a

e−sds ?

(which is the answer for a Poisson process)

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

gap distribution for the recaled {λj} = {m2 +
√

2 n2 : m,n ∈ N}, N = 2,643,599

WE DON’T KNOW HOW TO PROVE THIS!
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Simpler but still not easy: Two-point statistics

Is it true that for any interval [a, b]

lim
N→∞

#{(i, j) : i 6= j ≤ N, a < ξi − ξj < b}
N

= b− a ?

• Eskin, Margulis & Mozes (Annals Math 2005): YES for d = 2 and under
diophantine conditions on L—this reduces to quantitative Oppenheim for
quadratic forms of signature (2,2)

• VanderKam (Duke Math J 1999, CMP 2000): YES for any d and almost all L
(in measure); follows idea by Sarnak for d = 2

• JM (Duke Math J 2002, Annals Math 2003): YES for

{ξj} = {Vd‖m−α‖d : m ∈ Zd}
and any d ≥ 2, provided α ∈ Rd is diophantine of type (d − 1)/(d − 2).

The proof is different from EMM’s approach. It uses theta series and Ratner’s
measure classification theorem.

27



Randomness mod 1
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Gap and two-point statistics

Let
ξ11
ξ21 ξ22... ... . . .
ξN1 ξN2 . . . ξNN... ... . . .

be a triangular array numbers ξj = ξNj in [0,1] which is ordered (ξj ≤ ξj+1)
and uniformly distributed, i.e. for any interval [a, b] ⊂ [0,1]

lim
N→∞

#{j ≤ N : a < ξj < b}
N

= b− a.

Do these have a Poisson limit? That is, for the gaps

lim
N→∞

#{j ≤ N : a
N < ξj+1 − ξj < b

N}
N

=
∫ b
a

e−sds ?

For the two point statistics

lim
N→∞

#{(i, j) : i 6= j ≤ N, a
N < ξi − ξj < b

N}
N

= b− a ?
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Some results for fractional parts

• For almost all α, ξj = {2jα} is Poisson for gaps and all n-point statis-
tics (Rudnick & Zaharescu, Forum Math 2002); applies to other lacunary
sequences in place of 2n

• For almost all α, ξj = {j2α} has Poisson pair correlation (Rudnick & Sarnak,
CMP 1998); applies also to other polynomials such as ξj = {j3α} etc

for certain well approximable α, there are subsequences of N such that the
gap statistics of ξj = {j2α} both converges to Poisson and at the same time
to a singular limit (Rudnick, Sarnak & Zaharescu, Inventiones 2001);

algorithmic characterization of those α for which the two-point statistics is
Poisson is given by Heath-Brown (Math Proc Camb Phil Soc 2010).

WE DON’T KNOW WHETHER EVEN THE TWO-POINT STATISTICS ARE
POISSON FOR α =

√
2
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Fractional parts of small powers

• For fixed 0 < β < 1, β 6= 1
2, the gap and

two-point statistics of {nβ} look Poisson
numerically—-NO PROOFS! β = 1

3 →

• For β = 1
2, Elkies & McMullen (Duke Math J

2004) have shown that the gap distribution
exists, and derived an explicit formula which
is clearly different from the exponential.
Their proof uses Ratner’s measure classifi-
cation theorem!

At the same time, the two-point function con-
verges to the Poisson answer (with El Baz
& Vinogradov, preprint 2013). The proof re-
quires upper bounds for the equidistribution
of certain unipotent flows with respect to un-
bounded test functions.
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A great student project—gaps between logs

• Study the distribution of gaps between the fractional parts of logn:

0.5 1.0 1.5 2.0 2.5 3.0

0.2
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0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

gaps for natural base e —– gaps for base e1/5 vs. exponential distribution

The proof is elementary and exploits Weyl equidistribution.

For details see JM & Strömbergsson, Bull LMS 2013
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The Lorentz gas (→ Lecture II)

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)
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The Boltzmann-Grad limit

• Consider the dynamics in the limit of small scatterer radius ρ

•
(
q(t), v(t)

)
= “microscopic” phase space coordinate at time t

• A dimensional argument shows that, in the limit ρ → 0, the mean free
path length (i.e., the average time between consecutive collisions) scales
like ρ−(d−1) (= 1/total scattering cross section)

• We thus re-define position and time and use the “macroscopic” coordinates(
Q(t),V (t)

)
=
(
ρd−1q(ρ−(d−1)t),v(ρ−(d−1)t)

)
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The linear Boltzmann equation

• Time evolution of initial data (Q,V ):

(Q(t),V (t)) = Φtρ(Q,V )

• Time evolution of a particle cloud with initial density f ∈ L1:

f
(ρ)
t (Q,V ) := f

(
Φ−tρ (Q,V )

)

In his 1905 paper Lorentz suggested that f(ρ)
t is governed, as ρ → 0, by the

linear Boltzmann equation:

[
∂

∂t
+ V · ∇Q

]
ft(Q,V ) =

∫
Sd−1

1

[
ft(Q,V 0)− ft(Q,V )

]
σ(V 0,V )dV 0

where the collision kernel σ(V 0,V ) is the cross section of the individual scat-
terer. E.g.: σ(V 0,V ) = 1

4‖V 0−V ‖3−d for specular reflection at a hard sphere
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The linear Boltzmann equation—rigorous proofs

• Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterers

• Spohn (Comm Math Phys 1978): extension to more general random scatterer
configurations and potentials

• Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for
almost every scatterer configuration
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The periodic Lorentz gas

Here the linear Boltzmann equation breaks down and a new transport equation
will govern the Boltzmann-Grad limit (with Strömbergsson, Annals of Math 2010
& 2011, GAFA 2011).

The key ingredient in the proofs are equidistribution results for flows of homoge-
neous spaces. I will explain this tomorrow.
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Frobenius numbers and circulant graphs (→ Lecture III)

In[5]:= CirculantGraph@100, 82, 17, 35<, VertexSize ® SmallD

Out[5]=
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