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Boltzmann’s statistical mechanics

Boltzmann proposed to explain the motion of a
gas cloud by using the dynamics of microscopic
particles—atoms and molecules, whose exis-
tence was highly disputed during Boltzmann’s
lifetime.

In his 1872 paper, Boltzmann derived the famous
nonlinear Boltzmann equation in the limit of low
particle densities, assuming that the dynamics of
the colliding gas molecules is chaotic.

Ludwig Boltzmann (1844-1906)

2



The Boltzmann gas: Sensitive dependence in two-molecule collision.

The first rigorous justification of the Boltzmann equation was given by Oscar Lan-
ford in 1975 for the dynamics over very short time intervals (a fraction of the mean
collision time). The problem for longer time scales is still wide open.
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The Lorentz gas

In an attempt to describe the evolution of a di-
lute electron gas in a metal, Lorentz proposed
in 1905 a model, where the heavier atoms are
assumed to be fixed, whereas the electrons are
interacting with the atoms but not with each
other. For simplicity, Lorentz assumed like Boltz-
mann that the atoms can be modeled by elastic
spheres.

The Lorentz gas is still one of the iconic models
for chaotic diffusion, both in a random and peri-
odic configuration of scatterers.

Hendrik Lorentz (1853-1928)
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The Lorentz gas with randomly positioned scatterers.
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The periodic Lorentz gas
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The periodic Lorentz gas
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The Boltzmann-Grad limit

• consider dynamics of macroscopic particle cloud in the limit of small scatterer
radius ρ

• (q(t),v(t)) = “microscopic” phase space coordinate at time t

• the mean free path length and the time between collisions scales like ρ−(d−1)

• rescale position and time to the “macroscopic” coordinates

(Q(t),V (t)) = (ρd−1q(ρ−(d−1)t), v(ρ−(d−1)t))

• define macroscopic Billiard flow Φtρ by

(Q(t),V (t)) = Φtρ(Q0,V 0)
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The linear Boltzmann equation

• Time evolution of initial data (Q,V ):

(Q(t),V (t)) = Φtρ(Q,V )

• Time evolution of a particle cloud with initial density f ∈ L1:

ft = Ltρ f, [Ltρf ](Q,V ) := f
(
Φ−tρ (Q,V )

)

In his 1905 paper Lorentz suggested that ft is governed, as ρ→ 0, by the linear
Boltzmann equation:

[
∂

∂t
+ V · ∇Q

]
ft(Q,V ) =

∫
Sd−1

1

[
ft(Q,V 0)− ft(Q,V )

]
σ(V 0,V )dV 0

where the collision kernel σ(V 0,V ) is the cross section of the individual scat-
terer. E.g.: σ(V 0,V ) = 1

4‖V 0−V ‖3−d for specular reflection at a hard sphere

9



The linear Boltzmann equation—rigorous proofs

• Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterers

• Spohn (Comm Math Phys 1978): extension to more general random scatterer
configurations and potentials

• Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for
almost every scatterer configuration
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Failure of the Boltzmann equation: The periodic Lorentz gas

A cloud of particles with initial density f(Q,V ) evolves in time t to

ft(Q,V ) = [Ltρf ](Q,V ) = f
(
Φ−tρ (Q,V )

)
.

Theorem A (JM & Strömbergsson, Annals Math 2011)
For every t > 0 there exists a linear operator

Lt : L1(T1(Rd))→ L1(T1(Rd)),

such that for every f ∈ L1(T1(Rd)) and any setA ⊂ T1(Rd) with boundary
of Lebesgue measure zero,

lim
ρ→0

∫
A

[Ltρf ](Q,V ) dQ dV =
∫
A

[Ltf ](Q,V ) dQ dV .

The operator Lt thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit ρ→ 0.

Note: The family {Lt}t≥0 does not form a semigroup.
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A generalization of the linear Boltzmann equation

In the case of the periodic Lorentz gas Lt does not form a semigroup, and hence
in particular the linear Boltzmann equation does not hold. This problem is re-
solved by considering extended phase space coordinates (Q,V , ξ,V +) where

(Q,V ) ∈ T1(Rd) — usual position and momentum
ξ ∈ R+ — flight time until the next scatterer
V + ∈ Sd−1

1 — velocity after the next hit

We prove the following generalization of the linear Boltzmann equation in the
extended phase space:

[
∂

∂t
+ V · ∇Q −

∂

∂ξ

]
ft(Q,V , ξ,V +)

=
∫

Sd−1
1

ft(Q,V 0,0,V )p0(V 0,V , ξ,V +)dV 0

with a new collision kernel p0(V 0,V , ξ,V +), which can be expressed as a pro-
duct of the scattering cross section of an individual scatterer and a certain transi-
tion probability for hitting a given point the next scatterer after time ξ.
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Why “a generalization” of the linear Boltzmann equation?

[
∂

∂t
+ V · ∇Q −

∂

∂ξ

]
ft(Q,V , ξ,V +)

=
∫

Sd−1
1

ft(Q,V 0,0,V )p0(V 0,V , ξ,V +)dV 0

Substituting in the above the transition density for the random (rather than peri-
odic) scatterer configuration

ft(Q,V , ξ,V +) = gt(Q,V )σ(V ,V +)e−σξ, σ = vol(Bd−1
1 ),

p0(V 0,V , ξ,V +) = σ(V ,V +)e−σξ

yields the classical linear Boltzmann equation for gt(Q,V ).
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The key theorem:
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Joint distribution of path segments
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Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes
the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem B (JM & Strömbergsson, Annals of Math 2011). Fix an a.c. Borel
probability measure Λ on T1(Rd). Then, for each n ∈ N there exists a prob-
ability density Ψn,Λ on Rnd such that, for any set A ⊂ Rnd with boundary of
Lebesgue measure zero,

lim
ρ→0

Λ
({

(Q0,V 0) ∈ T1(Rd) : (S1, . . . ,Sn) ∈ A
})

=
∫
A

Ψn,Λ(S′1, . . . ,S
′
n) dS′1 · · · dS

′
n,

and, for n ≥ 3,

Ψn,Λ(S1, . . . ,Sn) = Ψ2,Λ(S1,S2)
n∏

j=3

Ψ(Sj−2,Sj−1,Sj),

where Ψ is a continuous probability density independent of Λ (and the lattice).

Theorem A follows from Theorem B by technical probabilistic arguments.
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First step: The distribution of free path lengths
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Polya’s forest
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The distribution of free path lengths in any dimension

• τ1 = τ1(q, v) — free path length for initial condition (q, v)

Theorem C (JM & Strömbergsson, Annals Math 2010)
Fix a lattice L and the initial position q. Let λ be any a.c. Borel probability
measure on Sd−1

1 . Then, for every ξ > 0, the limit

lim
ρ→0

λ({v ∈ Sd−1
1 : ρd−1τ1 ≥ ξ})

exists, is continuous in ξ, independent of λ.

If q ∈ L, it is given by the probability F0(ξ) that a random lattice L̃ avoids the
cylinder Z(ξ) =

{
(x1, . . . , xd) ∈ Rd : 0 < x1 < ξ, ‖(x2, . . . , xd)‖ < 1

}
.

If q /∈ QL, it is given by the probability F (ξ) that a random affine lattice L̃α
avoids the cylinder Z(ξ).
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Limiting densities for d = 3

Φ(ξ) = − d
dξF (ξ) Φ0(ξ) = − d

dξF0(ξ)

For random scatterer configuarions:
Φ(ξ) = σe−σξ, Φ0(ξ) = σe−σξ with σ = vol(Bd−1

1 )
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Tail asymptotics (JM & Strömbergsson, GAFA 2011).

Φ(ξ) =
π
d−1

2

2ddΓ(d+3
2 ) ζ(d)

ξ−2 +O
(
ξ−2−2

d

)
as ξ →∞

Φ0(ξ) = 0 for ξ sufficiently large

Φ(ξ) = σ −
σ2

ζ(d)
ξ +O

(
ξ2
)

as ξ → 0

Φ0(ξ) =
σ

ζ(d)
+O(ξ) as ξ → 0.

with σ = vol(Bd−1
1 ) = π(d−1)/2

Γ((d+1)/2).

1/ζ(d) is the relative density of primitive lattice points (i.e., the lattice points visi-
ble from the origin).
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The distribution of free path lengths

Theorem C (JM & Strömbergsson, Annals Math 2010)
Fix a lattice L and the initial position q. Let λ be any a.c. Borel probability
measure on Sd−1

1 . Then, for every ξ > 0, the limit

lim
ρ→0

λ({v ∈ Sd−1
1 : ρd−1τ1 ≥ ξ})

exists, is continuous in ξ, independent of λ.

If q ∈ L, it is given by the probability F0(ξ) that a random lattice L̃ avoids the
cylinder Z(ξ) =

{
(x1, . . . , xd) ∈ Rd : 0 < x1 < ξ, ‖(x2, . . . , xd)‖ < 1

}
.

If q /∈ QL, it is given by the probability F (ξ) that a random affine lattice L̃α
avoids the cylinder Z(ξ).
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The distribution of free path lengths

Theorem C (JM & Strömbergsson, Annals Math 2010)
Fix a lattice L and the initial position q. Let λ be any a.c. Borel probability
measure on Sd−1

1 . Then, for every ξ > 0, the limit

lim
ρ→0

λ({v ∈ Sd−1
1 : ρd−1τ1 ≥ ξ})

exists, is continuous in ξ, independent of λ.

If q ∈ L, it is given by the probability F0(ξ) that a random lattice L̃ avoids the
cylinder Z(ξ) =

{
(x1, . . . , xd) ∈ Rd : 0 < x1 < ξ, ‖(x2, . . . , xd)‖ < 1

}
.

If q /∈ QL, it is given by the probability F (ξ) that a random affine lattice L̃α
avoids the cylinder Z(ξ).
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What is a random lattice?

• L ⊂ Rd—euclidean lattice of covolume one

• recall L = ZdM for someM ∈ SL(d,R), therefore the homogeneous space
X1 = SL(d,Z)\SL(d,R) parametrizes the space of lattices of covolume
one

• µ1—right-SL(d,R) invariant prob measure on X1 (Haar)

• F0(ξ) := µ1({M ∈ X1 : ZdM ∩ Z(ξ) = ∅})
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What is a random affine lattice?

• ASL(d,R) = SL(d,R) n Rd—the semidirect product group with multiplica-
tion law

(M,x)(M ′,x′) = (MM ′,xM ′+ x′).

An action of ASL(d,R) on Rd can be defined as

y 7→ y(M,x) := yM + x.

• the space of affine lattices is then represented byX = ASL(d,Z)\ASL(d,R)

where ASL(d,Z) = SL(d,Z) n Zd, i.e., Lα := (Zd +α)M

• µ—right-ASL(d,R) invariant prob measure on X

• F (ξ) := µ({(M,x) ∈ X : (ZdM + x) ∩ Z(ξ) = ∅})
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Outline of proof of Theorem C
(in the case q ∈ L and L = Zd)
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ρ−(d−1)ξ

λ
({
v ∈ Sd−1

1 : ρd−1τ1 ≥ ξ
})

= . . .
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ρ−(d−1)ξ

= λ
({
v ∈ Sd−1

1 : no scatterer intersects ray(v, ρ−(d−1)ξ)
})
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2ρ

ρ−(d−1)ξ

≈ λ
({
v ∈ Sd−1

1 : Zd ∩ Z(v, ρ−(d−1)ξ, ρ) = ∅
})
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2ρ

ρ−(d−1)ξ

(
Rotate by K(v) ∈ SO(d) such that v 7→ e1

)
31



2ρ

ρ−(d−1)ξ

λ
({
v ∈ Sd−1

1 : ZdK(v) ∩ Z(e1, ρ
−(d−1)ξ, ρ) = ∅

})
32



(
Apply Dρ = diag(ρd−1, ρ−1, . . . , ρ−1) ∈ SL(d,R)

)
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2

ξ

λ
({
v ∈ Sd−1

1 : ZdK(v)Dρ ∩ Z(e1, ξ,1) = ∅
})
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The following Theorem shows that in the limit ρ→ 0 the lattice

ZdK(v)

(
ρd−1 0

t0 ρ−11

)
behaves like a random lattice with respect to Haar measure µ1.

Define a flow on X1 = SL(d,Z)\SL(d,R) via right translation by

Φt =

(
e−(d−1)t 0

t0 et1

)
.

Theorem D. Fix any M0 ∈ SL(d,R). Let λ be an a.c. Borel probability
measure on Sd−1

1 . Then, for every bounded continuous function f : X1 → R,

lim
t→∞

∫
Sd−1

1

f(M0K(v)Φt)dλ(v) =
∫
X1

f(M)dµ1(M).

35



Theorem D is a direct consequence of the mixing property for the flow Φt.

This concludes the proof of Theorem C when q ∈ L = ZdM0.

The generalization of Theorem D required for the full proof of Theorem C uses
Ratner’s classification of ergodic measures invariant under a unipotent flow (mea-
sure rigidity). We exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad.
Sci. 1996) on the uniform distribution of translates of unipotent orbits.
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Other scatterer scatterer configurations: unions of lattices

• Consider now scatterer locations at the point set

P0 =
N⋃
i=1

Lj, Li = n
−1/d
i (Zd + ωi)Mi

with ωi ∈ Rd, Mi ∈ SL(d,R) and ni > 0 such that n1 + . . .+ nN = 1

• Let S be the commensurator of SL(d,Z) in SL(d,R):

S = {(detT )−1/dT : T ∈ GL(d,Q), detT > 0}.

• We say that the matrices M1, . . . ,MN ∈ SL(d,R) are pairwise incommen-
surable if MiM

−1
j /∈ S for all i 6= j. A simple example is

Mi = ζ−i/d
(
ζi 0
0 1d−1

)
, i = 1, . . . , N,

where ζ is any positive number such that ζ, ζ2, . . . , ζN−1 /∈ Q.
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Free path lengths for unions of lattices

Theorem E (JM & Strömbergsson, 2013). Let P0 as on the previous slide with
Mi ∈ SL(d,R) pairwise incommensurable. Let λ be any a.c. Borel probability
measure on Sd−1

1 . Then, for every ξ > 0, the limit

FP0,q(ξ) := lim
ρ→0

λ({v ∈ Sd−1
1 : ρd−1τ1 ≥ ξ})

exists. If for instance ωi − n
1/d
i qM−1

i /∈ Qd for all i, then

FP0,q(ξ) =
N∏
i=1

F (niξ)

where F (ξ) is the distribution of free path length corresponding to a single
lattice and generic initial point (as in Theorem C).

Recall F (ξ) ∼ Cξ−1 for ξ →∞. Thus

FP0,q(ξ) ∼ CNξ−N .
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Key step in the proof: equidistribution in products

. . . is as before an equidistribution theorem that follows from Ratner’s measure
classification (again via Shah’s theorem):

Theorem F (JM & Strömbergsson, 2013). Assume that M1, . . . ,MN ∈
SL(d,R) are pairwise incommensurable, and α1, . . . ,αN /∈ Qd (for simplic-
ity). Let λ be an a.c. Borel probability measure on Sd−1

1 . Then

lim
t→∞

∫
Sd−1

1

f
(
(1d,α1)(M1K(v)Φt, 0), . . . ,

. . . , (1d,αN)(MNK(v)Φt, 0)
)
dλ(v)

=
∫
XN

f(g1, . . . , gN) dµ(g1) · · · dµ(gN).

39


