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Random graphs in the real world
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The internet; from Newman, SIAM Review 2003



The diameter of a network
d(z, ) — the distance between vertex ¢ and j

diam = max; ; d(i, j) — the maximal distance or “diameter”
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The small-world phenomenon

4= data: =
Tabl e [GraphDi anet er [RandonGr aph[Wat t sStrogat zGraphDi stri bution[n, 0.5]1]], {n, 1, 500}]

In[15]:=

Show[Li st Pl ot [data], Pl ot [Log[2, x], {X, 1, 500}]1, Plot [Log[2, Xx], {X, 1, 10}1]
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out[15]=
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The diameter grows logarithmically in the number of vertices: diam ~ clogn
(in the above example ¢ = 1/10g 2)



Small-world networks: the Watts-Strogatz model

Collective dynamics of
‘small-world’ networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall,

Cornell University, Ithaca, New York 14853, USA

Networks of coupled dynamical systems have been used to model
biological oscillators'™, Josephson junction arrays™, excitable
media’, neural networks®'®, spatial games', genetic control
networks' and many other self-organizing systems. Ordinarily,
the connection topology is assumed to be either completely
regular or completely random. But many biological, technological
and social networks lie somewhere between these two extremes.
Here we explore simple models of networks that can be tuned
through this middle ground: regular networks ‘rewired’ to intro-
duce increasing amounts of disorder. We find that these systems
can be highly clustered, like regular lattices, yet have small
characteristic path lengths, like random graphs. We call them
‘small-world’ networks, by analogy with the small-world
phenomenon'*"* (popularly known as six degrees of separation’).
The neural network of the worm Caenorhabditis elegans, the
power grid of the western United States, and the collaboration
graph of film actors are shown to be small-world networks.
Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.

Regular Small-world Random

Increasing randomness

Figure 1 Random rewiring procedure for interpolating between a regular ring
lattice and a random netwark, without altering the number of vertices aredges in
the graph. We start with a ring of n vertices, each connected to its ¥ nearest
neighbours by undirected edges. (For clarity, 7 = 20 and ¥ = & in the schamatic
examples shown here, but much largern and & are used in the rest of this Letter.)
We choose a vertex and the edge that connects it 1o its nearest neighbour in a
clockwise sense. With probability o, we reconneact this edge to 8 verex chosen
uniformly at random over the entire ring, with duplicate edges forbidden; other-
wise we |eave the edge in place. We repeat this process by moving clockwise

from: Watts & Strogatz, Nature 1998



Diameters of random graph models: rigorous results

e Bollobas & Chung (SIAM Rev 1988), n-cycle plus random matching: almost
surely logon — 10 < diam < logon + logologn + 10

e Bollobas & Riordan (Combinatorica 2004), scale-free random graphs (Barabasi-
Albert small-world model):

(1 —€)logn/loglogn < diam < (1 4+ €)logn/loglogn



Circulant graphs

1. Fixintegers 0 < a1 < ... < ap <n/2withgcd(aq,...,ar,n) = 1;
2. Connect vertex ¢ and j, if |i — j| = a;, mod n for some ay,; assign length ¢,
to this edge.

The resulting graph Cy, (£, a) is called a “circulant graph” (its adjacency matrix is
circulant), sometimes also “multiloop network”. It is of course the undirected Cay-
ley graph of the cyclic group of order n w.r.t. the generating set {+a1, ..., +a;}.

H ghl i ght G aph[#, Fi ndD aneterPath[#]] &[C rcul ant G aph[41, {1, 15, 20}]1]
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Random circulant graphs

Theorem A (JM & AS arXiv 2011). Let &k > 2, D ¢ R¥*+1 bounded, non-
empty and boundary of Lebesgue measure zero. Pick (a,n) at random in
TD. Then

diamCp(¢,a) 4
(nly---)1/*
where p(B, L) is ...

> p(B, L) as T — oo,




...a random variable distributed according to the probability density

25| 7 (numerics for k = 2, £ = (1,1), n = 1000)
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For k = 2: Yo 03
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o NG
p2(R> — Y24/2R2-1 2R2 1— R R? 1
Wg( r |09 (232_1> +=x log (\1—32\» (B> 75).

For general k > 2:

Fu(R) = 0 (R < 3(kDY®),  Bu(R) ~ %R—“ﬁ“) (R — o0)



Random circulant graphs

Theorem A (JM & AS arXiv 2011). Let &k > 2, D ¢ R¥*+1 bounded, non-
empty and boundary of Lebesgue measure zero. Pick (a,n) at random in
TD. Then

diamCp(¢,a) 4
(nly---)1/*
where p(B, L) is ...

> p(B, L) as T — oo,
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Random circulant graphs

Theorem A (JM & Strdmbergsson, Combinatorica IP). Let & > 2, D ¢ RF+1
bounded, non-empty and boundary of Lebesgue measure zero. Pick (a,n) at
random in T"D. Then
diam Cr(£,a) (¢
(nly---)1/*
where p(3, L) is ...the covering radius of a random lattice L in R* with re-
spect to the polytope

> p(B, L) as T — oo,

P={xcR":|z1|+ ...+ |zp < 1}.

(°13 is a square for k = 2 and an octahedron for £k = 3.)
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What is ...a covering radius?

For a given closed bounded convex set K of nonzero volume in R* and a lattice
L C R¥, the covering radius of K with respect to L is

(K, L) = inf{r >0:rK+ L= Rk}.
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What is ...a random lattice?

e I, C RF—euclidean lattice of covolume one

e recall L = 7Z*M for some M € SL(k, R), therefore the homogeneous space
X, = SL(k,Z)\ SL(k,R) parametrizes the space of lattices of covolume
one

e Haar measure ug of SL(k, R) yields a (unique) right-SL (k, R) invariant prob
measure on X..
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To note:

e The limit distribution is independent of the choice of D and £.

e The proof shows that the lengths £ may even depend on n~la; the limit
distribution remains unchanged.

e Theorem A settles a conjecture of Amir & Gurel-Gurevich (Groups, Complex-
ity, Cryptol 2010).
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Key ideas in the proof of Theorem A:

1. Identify circulant graphs with lattice graphs on flat tori (“discrete tori”)

2. Approximate discrete tori by continuous flat tori

3. Show that the tori coming from circulant graphs are uniformly distributed in
the space of all tori of volume one (=the space of all lattices of covolume one)
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Step 1: Discrete tori

e Define metric on ZF: d(m,n) = (n —m)y - £
where z; = (|z1], ..., |2k|); an “¢-weighted £1-metric”

e Denote by LG, the corresponding lattice graph with vertex set Z*

1k ta

o N :=17F x nZ, An(a) := Apu(a), u(a) 1= (0 1

) cSL(k+1,7)

e Note that An(a)g := An(a) N (RF x {0}) is a sublattice of index n in Z*
(An(a)g is the kernel of the epimorphism Z¥ — Z/nZ, m +— m - a mod n)

Lemma 1. The metric graphs LG /A\n(a)g and C,, (£, a) are isomorphic.
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Step 2: Discrete tori — continuous flat tori

e L any euclidean lattice in R*

e diam(R*/L) :=maximal ¢1-distance of two points on the flat torus R* /L
o Dy(£) = diag(l‘l_l/’%l,...,I‘I_l/’%k>, MN:=nby-- 4.

e Then L = Ap(a)oDn(f) € X4, i.e., the torus R*/L has volume one

Lemma 2. For L = Ap(a)gDn(£),

nl/k diam(Rk/L) _ %E < diam(LGk//\n(a)o) < ﬂl/kdiam(Rk/L)

Lemma 3.

diam(R*/L) = p(%, L)
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Step 3: Equidistribution

Set L,y 4. ¢ = An(a@)oDn(£).

Theorem B (JM, Invent Math 2010). Let D ¢ R**+1 be bounded with bound-
ary of Lebesgue measure zero. Then for any bounded continuous function
f . Xk — R,

1 vol(D)

li L = L)dpg(L).
A, i (WZETDJ"( na) = et 1) Jpex, T dho()

That is, the random lattices L,, ,, » become equidistributed in the space of lattices
Xp.. This implies (modulo technicalities) that

d
p(B, Ly qpe) — p(B,L) as T — oo,
which proves Theorem A.

The proof of Theorem B exploits the dynamics of a certain homogeneous flow on
the space of lattices. The rate of convergence has been recently estimated by H.
Li (arXiv 2011) to be O(T—*) for D with smooth boundary.
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An improvement of Theorem B

No need to average overn ... !

Theorem B’ (Einsiedler, Mozes, Shah & Shapira, preprint 2013). Let D C R¥
be bounded with boundary of Lebesgue measure zero. Then for any bounded
continuous function f : X; — R,

e Y (e =2 [ pL) duo(r).

aenD C(k) JLeX;
gcd(a,n)=1

Again, the random lattices L,, ,, o (now with n. fixed) become equidistributed in the
space of lattices X;.. Thus

d
P(‘Ba Ln,a,,f) — P(‘Ba L) as T' — o0,
which proves a variant of Theorem A where n is no longer random.

The proof of Theorem B’ uses ...of course... Ratner's measure classification
theorem as one of the ingredients.
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Frobenius numbers

primitive lattice points:

Zdz{az (al,...,ad) EZd:ng(al,...,ad) = 1}

given a € Z<,, consider all positive linear combinations

N =m-a, mEZ%O

Frobenius: What is the largest integer F'(a) that does not have a represen-

tation of this type?

F(a):maxZ\{m-a>O:m€Z%O}

“Frobenius problem”. .. “coin exchange problem”. .. “postage stamp problem’

20



Frobenius numbers

Sylvester (d = 2):
F(a) =a1a> — a1 — as

—no such explicit fromulas for d > 3

Classic papers for d > 3: Brauer & Shockley 1962, Selmer 1977, Radseth
1978, Selmer & Beyer 1978

Numerical experiments & conjectures on the value distribution of F'(a) by
V.1. Arnold (1999, 2007)

Sharp lower bound: Aliev & Gruber 2007; upper bound: Fukshansky &
Robins 2007

J.L. Ramirez Alfonsin, The Diophantine Frobenius problem. Oxford University
Press (2005)

21



Asymptotic distribution

Theorem C (JM, Invent Math 2010). Let d > 3, D C R4 bounded, non-empty
and boundary of Lebesgue measure zero. Pick a € Z‘iQ at random in TD.
Then -
F'(a)
(aq---ag)t/(d=1)
where p(A, L) is the covering radius of a random lattice L in R* with respect
to the simplex

d>p(A,L) as T — oo,

A:{meRg—Ol:m-egl}, e:=(1,1,...,1).

e The normalization factor is consistent with numerics (Beihoffer et al., 2005)

e For d = 3 the theorem is due to Bourgain & Sinai (2007) and Shur, Sinai &
Ustinov (2008)
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Numerical experiments (Strombergsson 2011)
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The limit density is for d = 3 (Ustinov, Izv Math 2010):

(

0 (0<t<V3)
pz(R)=<%<%—v4—t2) (V3 <t<2)
12(tv/3arccos (HE2=8) + 3117 — 410g (522)) (2<0)

and for general d = k + 1 > 3 (StrOmbergsson, Acta Arith 2012):

pr(R) =0 (R < (k)P

Bkt 1) ho(ht1)
2¢ (k)

H. Li (arXiv 2011) previously established an upper bound of the same order.

prp(R) ~

(R — o0)
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Reduction mod a; (after Brauer & Shockley)

Forr € Z/ayZ set
Fr(a) = max(r + agZ) \{m-a>0:m € Z%y, m-a=r mod ay}
Then

F(a) = max Fr(a).
r mod ay

The smallest positive integer that has a representation in » mod ay:
Nr(a) = min{m-a >0 mEZ%O, m-a =r mod ay}.
Then F.(a) = Nr(a) — ay and

a (7“ = 0 mod ad)
Nr(a) = min{m’-a’ :m’ € z¢', m'-a’ =r mod a
a . >0 > A = af (r#0moday)
with a’ = (a1,...,a4_1). We conclude
F(a) = max Ng(a)—ay.

r£0 mod ay
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Frobenius humbers and circulant digraphs

diam = 2 3

Setd =k+ 1,4 =a = (ay,...,a4_1), n = ayg. Then the above formula
yields a connection between the Frobenius number and directed circulant graphs
(Nijenhius, Amer Math Monthly 1979):

F(a) = diam C’;LI'(a,’, a’) —n.

The analogue of Theorem A holds for such random circulant digraphs, with the
polytope ‘B replaced by A. This shows that the asymptotic distribution of Frobe-
nius numbers and circulant digraphs coincide!
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Diameters of random circulant graphs

directed undirected

25

Numerical computation for k =2, £ = (1,1), n = 1000.
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