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Random graphs in the real world

The internet; from Newman, SIAM Review 2003
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The diameter of a network

d(i, j) — the distance between vertex i and j

diam = maxi,j d(i, j) — the maximal distance or “diameter”

In[13]:= HighlightGraph@ð, FindDiameterPath@ðDD &@
RandomGraph@WattsStrogatzGraphDistribution@41, 0.5DDD

Out[13]=
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The small-world phenomenon

In[14]:= data :=

Table@GraphDiameter@RandomGraph@WattsStrogatzGraphDistribution@n, 0.5DDD, 8n, 1, 500<D

In[15]:=

Show@ListPlot@dataD, Plot@Log@2, xD, 8x, 1, 500<D, Plot@Log@2, xD, 8x, 1, 10<DD

Out[15]=
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The diameter grows logarithmically in the number of vertices: diam ∼ c logn

(in the above example c = 1/ log 2)
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Small-world networks: the Watts-Strogatz model

from: Watts & Strogatz, Nature 1998
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Diameters of random graph models: rigorous results

• Bollobas (TAMS 1981), random graphs à la Erdös-Rényi

• Bollobas & Fernandes de la Vega (Combinatorica 1982), k-regular random graphs

• Bollobas & Chung (SIAM Rev 1988), n-cycle plus random matching: almost
surely log2 n− 10 ≤ diam ≤ log2 n+ log2 logn+ 10

• Chung & Lu (Adv Appl Math 2001), sparse random graphs

• Bollobas & Riordan (Combinatorica 2004), scale-free random graphs (Barabasi-
Albert small-world model):
(1− ε) logn/ log logn ≤ diam ≤ (1 + ε) logn/ log logn

• Fernholz & Ramachandran (Rand Struct’s Algorith’s 2007), sparse random graphs

• Nachmias & Peres (Ann Prob 2008), critical Erdös-Rényi graphs, diam ≈ n1/3

• Riordan & Wormland (Comb Prob Comp 2010), sparse random graphs
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Circulant graphs

1. Fix integers 0 < a1 < . . . < ak ≤ n/2 with gcd(a1, . . . , ak, n) = 1;
2. Connect vertex i and j, if |i− j| ≡ ah mod n for some ah; assign length `h

to this edge.

The resulting graph Cn(`,a) is called a “circulant graph” (its adjacency matrix is
circulant), sometimes also “multiloop network”. It is of course the undirected Cay-
ley graph of the cyclic group of order n w.r.t. the generating set {±a1, . . . ,±ak}.

HighlightGraph@ð, FindDiameterPath@ðDD &@CirculantGraph@41, 81, 15, 20<DD
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Random circulant graphs

Theorem A (JM & AS arXiv 2011). Let k ≥ 2, D ⊂ Rk+1 bounded, non-
empty and boundary of Lebesgue measure zero. Pick (a, n) at random in
TD. Then

diamCn(`,a)

(n`1 · · · `k)1/k
d−→ ρ(P, L) as T →∞,

where ρ(P, L) is . . . the covering radius of a random lattice L in Rk with re-
spect to the polytope

P =
{
x ∈ Rk : |x1|+ . . .+ |xk| ≤ 1

}
.

(P is a square for k = 2 and an octahedron for k = 3.)
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. . . a random variable distributed according to the probability density

(numerics for k = 2, ` = (1,1), n = 1000)
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9



Random circulant graphs

Theorem A (JM & AS arXiv 2011). Let k ≥ 2, D ⊂ Rk+1 bounded, non-
empty and boundary of Lebesgue measure zero. Pick (a, n) at random in
TD. Then

diamCn(`,a)

(n`1 · · · `k)1/k
d−→ ρ(P, L) as T →∞,

where ρ(P, L) is . . . the covering radius of a random lattice L in Rk with re-
spect to the polytope

P =
{
x ∈ Rk : |x1|+ . . .+ |xk| ≤ 1

}
.

(P is a square for k = 2 and an octahedron for k = 3.)
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Random circulant graphs

Theorem A (JM & Strömbergsson, Combinatorica IP). Let k ≥ 2, D ⊂ Rk+1

bounded, non-empty and boundary of Lebesgue measure zero. Pick (a, n) at
random in TD. Then

diamCn(`,a)

(n`1 · · · `k)1/k
d−→ ρ(P, L) as T →∞,

where ρ(P, L) is . . . the covering radius of a random lattice L in Rk with re-
spect to the polytope

P =
{
x ∈ Rk : |x1|+ . . .+ |xk| ≤ 1

}
.

(P is a square for k = 2 and an octahedron for k = 3.)
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What is . . . a covering radius?

For a given closed bounded convex set K of nonzero volume in Rk and a lattice
L ⊂ Rk, the covering radius of K with respect to L is

ρ(K,L) = inf
{
r > 0 : rK + L = Rk

}
.
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What is . . . a random lattice?

• L ⊂ Rk—euclidean lattice of covolume one

• recall L = ZkM for someM ∈ SL(k,R), therefore the homogeneous space
Xk = SL(k,Z)\SL(k,R) parametrizes the space of lattices of covolume
one

• Haar measure µ0 of SL(k,R) yields a (unique) right-SL(k,R) invariant prob
measure on Xk.
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To note:

• The limit distribution is independent of the choice of D and `.

• The proof shows that the lengths ` may even depend on n−1a; the limit
distribution remains unchanged.

• Theorem A settles a conjecture of Amir & Gurel-Gurevich (Groups, Complex-
ity, Cryptol 2010).
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Key ideas in the proof of Theorem A:

1. Identify circulant graphs with lattice graphs on flat tori (“discrete tori”)

2. Approximate discrete tori by continuous flat tori

3. Show that the tori coming from circulant graphs are uniformly distributed in
the space of all tori of volume one (=the space of all lattices of covolume one)
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Step 1: Discrete tori

• Define metric on Zk: d(m,n) = (n−m)+ · `
where z+ := (|z1|, . . . , |zk|); an “`-weighted `1-metric”

• Denote by LGk the corresponding lattice graph with vertex set Zk

• Λn := Zk × nZ, Λn(a) := Λnu(a), u(a) :=

(
1k

ta
0 1

)
∈ SL(k + 1,Z)

• Note that Λn(a)0 := Λn(a) ∩ (Rk × {0}) is a sublattice of index n in Zk

(Λn(a)0 is the kernel of the epimorphism Zk → Z/nZ, m 7→m · a mod n)

Lemma 1. The metric graphs LGk/Λn(a)0 and Cn(`,a) are isomorphic.
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Step 2: Discrete tori→ continuous flat tori

• L any euclidean lattice in Rk

• diam(Rk/L) :=maximal `1-distance of two points on the flat torus Rk/L
• Dn(`) := diag

(
Π−1/k`1, . . . ,Π

−1/k`k
)
, Π := n`1 · · · `k.

• Then L = Λn(a)0Dn(`) ∈ Xk, i.e., the torus Rk/L has volume one

Lemma 2. For L = Λn(a)0Dn(`),

Π1/k diam
(
Rk/L

)
−

e · `
2
≤ diam

(
LGk/Λn(a)0

)
≤ Π1/k diam

(
Rk/L

)

Lemma 3.

diam(Rk/L) = ρ(P, L)
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Step 3: Equidistribution

Set Ln,a,` = Λn(a)0Dn(`).

Theorem B (JM, Invent Math 2010). Let D ⊂ Rk+1 be bounded with bound-
ary of Lebesgue measure zero. Then for any bounded continuous function
f : Xk → R,

lim
T→∞

1

T k+1

∑
(a,n)∈TD

f
(
Ln,a,`

)
=

vol(D)

ζ(k + 1)

∫
L∈Xk

f(L) dµ0(L).

That is, the random lattices Ln,a,` become equidistributed in the space of lattices
Xk. This implies (modulo technicalities) that

ρ(P, Ln,a,`)
d−→ ρ(P, L) as T →∞,

which proves Theorem A.

The proof of Theorem B exploits the dynamics of a certain homogeneous flow on
the space of lattices. The rate of convergence has been recently estimated by H.
Li (arXiv 2011) to be O(T−κ) for D with smooth boundary.
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An improvement of Theorem B

No need to average over n . . . !

Theorem B’ (Einsiedler, Mozes, Shah & Shapira, preprint 2013). Let D ⊂ Rk

be bounded with boundary of Lebesgue measure zero. Then for any bounded
continuous function f : Xk → R,

lim
n→∞

1

nk

∑
a∈nD

gcd(a,n)=1

f
(
Ln,a,`

)
=

vol(D)

ζ(k)

∫
L∈Xk

f(L) dµ0(L).

Again, the random lattices Ln,a,` (now with n fixed) become equidistributed in the
space of lattices Xk. Thus

ρ(P, Ln,a,`)
d−→ ρ(P, L) as T →∞,

which proves a variant of Theorem A where n is no longer random.

The proof of Theorem B’ uses . . . of course. . . Ratner’s measure classification
theorem as one of the ingredients.
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Frobenius numbers

• primitive lattice points:

Ẑd = {a = (a1, . . . , ad) ∈ Zd : gcd(a1, . . . , ad) = 1}

• given a ∈ Ẑd≥2, consider all positive linear combinations

N = m · a, m ∈ Zd≥0

• Frobenius: What is the largest integer F (a) that does not have a represen-
tation of this type?

F (a) = maxZ \ {m · a > 0 : m ∈ Zd≥0}

• “Frobenius problem”. . . “coin exchange problem”. . . “postage stamp problem”
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Frobenius numbers

• Sylvester (d = 2):

F (a) = a1a2 − a1 − a2

—no such explicit fromulas for d ≥ 3

• Classic papers for d ≥ 3: Brauer & Shockley 1962, Selmer 1977, Rødseth
1978, Selmer & Beyer 1978

• Numerical experiments & conjectures on the value distribution of F (a) by
V.I. Arnold (1999, 2007)

• Sharp lower bound: Aliev & Gruber 2007; upper bound: Fukshansky &
Robins 2007

• J.L. Ramirez Alfonsin, The Diophantine Frobenius problem. Oxford University
Press (2005)
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Asymptotic distribution

Theorem C (JM, Invent Math 2010). Let d ≥ 3, D ⊂ Rd bounded, non-empty
and boundary of Lebesgue measure zero. Pick a ∈ Ẑd≥2 at random in TD.
Then

F (a)

(a1 · · · ad)1/(d−1)
d−→ ρ(∆, L) as T →∞,

where ρ(∆, L) is the covering radius of a random lattice L in Rk with respect
to the simplex

∆ =
{
x ∈ Rd−1

≥0 : x · e ≤ 1
}
, e := (1,1, . . . ,1).

• The normalization factor is consistent with numerics (Beihoffer et al., 2005)

• For d = 3 the theorem is due to Bourgain & Sinai (2007) and Shur, Sinai &
Ustinov (2008)
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Numerical experiments (Strömbergsson 2011)

d=3 d=4

d=5 d=6

23



The limit density is for d = 3 (Ustinov, Izv Math 2010):

p2(R) =


0 (0 ≤ t ≤

√
3)

12
π

(
t√
3
−
√

4− t2
)

(
√

3 ≤ t ≤ 2)

12
π2

(
t
√

3 arccos
(
t+3
√
t2−4

4
√
t2−3

)
+ 3

2

√
t2 − 4 log

(
t2−4
t2−3

))
(2 ≤ t)

and for general d = k + 1 ≥ 3 (Strömbergsson, Acta Arith 2012):

pk(R) = 0 (R ≤ (k!)1/k)

pk(R) ∼
k(k + 1)

2ζ(k)
R−(k+1) (R→∞)

H. Li (arXiv 2011) previously established an upper bound of the same order.
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Reduction mod ad (after Brauer & Shockley)

For r ∈ Z/adZ set

Fr(a) = max(r + adZ) \ {m · a > 0 : m ∈ Zd≥0, m · a ≡ r mod ad}
Then

F (a) = max
r mod ad

Fr(a).

The smallest positive integer that has a representation in r mod ad:

Nr(a) = min{m · a > 0 : m ∈ Zd≥0, m · a ≡ r mod ad}.
Then Fr(a) = Nr(a)− ad and

Nr(a) =

ad (r ≡ 0 mod ad)

min{m′ · a′ : m′ ∈ Zd−1
≥0 , m′ · a′ ≡ r mod ad} (r 6≡ 0 mod ad)

with a′ = (a1, . . . , ad−1). We conclude

F (a) = max
r 6≡0 mod ad

Nr(a)− ad.
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Frobenius numbers and circulant digraphs

diam = 2
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Set d = k + 1, ` = a′ = (a1, . . . , ad−1), n = ad. Then the above formula
yields a connection between the Frobenius number and directed circulant graphs
(Nijenhius, Amer Math Monthly 1979):

F (a) = diamC+
n (a′,a′)− n.

The analogue of Theorem A holds for such random circulant digraphs, with the
polytope P replaced by ∆. This shows that the asymptotic distribution of Frobe-
nius numbers and circulant digraphs coincide!
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Diameters of random circulant graphs

directed undirected
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Numerical computation for k = 2, ` = (1,1), n = 1000.
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