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1. SCHRODINGER AND SHALE-WEIL REPRESENTATION

1.1. Let w be the standard symplectic form on R?*, i.e.,

W(S,&./) :$,y/7y,w’7

/
£ = <§> ; El = (;1) ) :B,y,$,,y, € Rk

The Heisenberg group H(RF) is then defined as the set R?* x R
with multiplication law [2]

(&) )=+ t+1 + 30 8)).

Note that we have the decomposition

(3)0=(3)-0(3) 000 129,

1.2. The Schrédinger representation of H(R¥) on f € L?(R¥) is
given by (cf. [2], p. 15)

w((§) - 0w) = cle - w) flw)

where

with z, w € R¥,

w((}) 01w) = Flw - u),  with y,w e B
W(0,t) = e(t)id, withteR.
We have therefore for a general element (&,¢) in H(R)

w((5) 01w =t~ o

y ‘y) e(z - w) flw—y).

1.3. For every element M in the symplectic group Sp(k,R) of
R?* we can define a new representation Wy, of H(R¥) by

WM(£? t) = W(M€7 t)'

All such representations are irreducible and, by the Stone-von
Neumann Theorem, unitarily equivalent (see [2] for details). That
is, for each M € Sp(k,R) there exists a unitary operator R(M)
such that

R(M) W(&,t) R(M)™" = W(ME,t).

The R(M) is determined up to a unitary phase factor and defines
the projective Shale- Weil representation of the symplectic group.
Projective means that

R(MM') = c(M,M"YR(M)R(M")

with cocycle ¢(M, M) € C, |e(M,M")| =1, but ¢(M,M’) # 1 in
general.
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1.4. For our present purpose it suffices to consider the group
SL(2,R) which is embedded in Sp(k, R) by

a b alg b1y
<C d>H<Clk d1k>

where 1; is the k x k& unit matrix.
The action of M € SL(2,R) on & € R?* is then given by

_ (ax +by . _fa b e
we= (St o= (20), €= (3),
1.5. For M € SL(2,R) — Sp(k,R) we have the explicit repre-
sentations (see [2], p. 61f.)

jal*? e(3]|w][*ab) f (aw)
(c=0)
[R(M) f](w) = L ateol? <dlleo’ 12—’
52 [ [2<aw| ) ww} Flaw') duw’
(c #0).
Here || - | denotes the euclidean norm in R¥,
x| = /a2 + - +a2.
1.6. If

[ by ) bo (a3 b3
M1_<01 d1>’ M2_<Cz dz>7 M3_(03 ds )’

€ SL(2,R) with M; My = Mj, the corresponding cocycle is
c(My, M) = g~ imhsign(cicacs)/4

where

-1 (x<0)

sign(x) =< 0 =
(x> 0)
1.7. In the special case when
__(cos¢r —singy __ (cos¢py —singa
My = (sin ¢1  cosd ) » Mp = (sin ¢y cospy |’
we find
c(My, My) = e iTk(00,+04, =04 +45)/4

where

2v if ¢ = v,
a4 =
¢ v+1 fvr <o < (v+1)m.
1.8. Every M € SL(2,R) admits the unique Iwasawa decompo-
sition

(1w [0/ 0 cos ¢
M= <0 1) < 0 v—1/2) <sin¢

where 7 =u+1iv € 9, ¢ € [0,27). This parametrization leads to
the well known action of SL(2,R) on $ x [0, 27),

cos ¢

) = (o)

b
(CCL Z) (1,0) = (j;id,qb—&- arg(er + d) mod 27).

We will sometimes use the convenient notation (MT,dns) :=
M (7, ¢) and up := Re(M7), v :=Im(MT).
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1.9. The (projective) Shale-Weil representation of SL(2, R) reads
in these coordinates

[R(7, ¢) fl(w) = [R(7,0) R(i, ¢) f](w)
= v"e(g|lw]*u)[R(i, 6) (0" w)
and
[R(, ¢) f](w)
f(w) (¢ = 0 mod 2r)
f(-w) (¢ = 7 mod 2)

sin ¢
f(w") dw' (¢ # 0 mod 7).

= F is the Fourier transform.

. [;<|w|2+|w’|2>cos¢w~w'

| sin (b\*k/Q/
Rk

Note that R(i,n/2)

2. THETA SUMS
2.1.  The Jacobi group is defined as the semidirect product
Sp(k,R) x H(R)
with multiplication law
(M;&,t) (M€, t') = (MM'; & + ME t +1' + jw(€, ME)).
This definition is motivated by the fact that, since
R(M)W(&',t') = W(ME',t")R(M),

(recall 1.3) we have

W(E t)R(M) W(E' t)R(M') = W (&, )W (ME',t)
=c(M,M")"" W(&+ME t+t + tw(€, ME')) RIMM').
Hence
R(M;&,t) = W(E,t)R(M)

defines a projective representation of the Jacobi group, with co-
cycle ¢(M, M') as above, the so-called Schréodinger-Weil repre-
sentation.

Let us also put

R(r, ¢:€.t) = W(, ) R(7. 9).
2.2. Jacobi’s theta sum. We define Jacobi’s theta sum for f €
S(RF) by
Of(1,¢:&,t) = Y [R(r,¢:& 1) f](m).

mezZk

More explicitly, for 7 = u +iv, £ = <;)’

O5(7, ¢ &,1) = v/ te(t — 2 - y)
> follm—y)o'Pe(3]lm — y|[Pu+m - a),
mezZF
where
fo = R(5, ).
It is easily seen that if f € S(R¥) then f, € S(R¥) for ¢ fixed,
and thus also R(7,¢;&,t)f € S(R¥) for fixed (7,¢;&,t). This

guarantees rapid convergence of the above series. We have the
following uniform bound.

R(M)R(M')

2.3. Lemma. Let f, = R(i,¢)f, with f € S(R¥). Then, for any
R > 1, there is a constant cg such that for all w € R¥, ¢ € R,
we have

|[fo(w)| < er(1+ [|lwl)~"

2.4. The following transformation formulas are crucial for our
further investigations:

Jacobi 1.
1 (v _ _—irk/4 (T
@f(—7,¢+arg7-,<m)ﬂt)_e (_)f(T?(b? y 7t)

Proof. The Poisson summation formula states that for any f €

S(R*) we have
Y FfAm)= > f(m

meZk meZk

where F is the Fourier transform. Because
F = R(i,7/2) = R(S), S = (‘f ‘01) ,

and secondly R(7, ¢; &,t)f € S(RF) for fixed (1, ¢; €, t), the Pois-

son summation formula yields

S IRS)R(r. 6 €0 1(m) = 3 [R(r,6:6,0)fl(m).

mezZk meZk
We have
R(S)R(T, ¢;&,t) = R(S)W (&,1)R(7,0)R(i, §)
= W(S& t)R(S)R(r,0)R(i, ¢);
furthermore
R(S)R(r,0) = R(—%, arg ) = R(—%,O)R(i, arg 7),

since (7,0) and (f%, 0) are upper triangular matrices, and hence
the corresponding cocycles are trivial, i.e., equal to 1 (recall 1.6).
Finally, since 0 < argT < 7 for 7 € §,

R(i, arg T)R(i, @) = ei”k/‘llfi(i7 arg 7)1:2(1, @) = ei”k/‘lﬁ(i, p+argT).
Collecting all terms, we find

and hence

. -1
™ AR(—=, ¢+ arg T; SE, 1),
T

S [R(~1. 6+ argTs 86,1))(m)

meZk
= e TN [R(T, 65 €,0) f](m).
mezZk
which proves the claim. O
Jacobi 2.

(s 1 1\ (= 1 _ K
ortr (2) () (2)-os 20w = (2) o
with

s=1'3,4,....9) e R*.
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Proof. Clearly for any f € S(R¥)

> G+ 1,0: () 0)flm) =

meZk
and hence also (replace f with R(7, ¢;&,t)f)

S [R(i+1,0: (0) O)R(r,6:£,0)f](m) =

meZzk

> fim

meZLk

mezk
We conclude by noticing

R(i+1,0; (8) L0)R(, ; (Z’) 1)

:R(T—i—l,qb; 8) + <(1) 1) (;) ,t+%8.y)7

where we have used that ¢((i,0), (7, ¢)) = 1 since (i, 0) is an upper
triangular matrix, cf. 1.6. O

Jacobi 3.

o(r.ai () +&rt e+ 3o} .€)

for any k,1 € ZF, r € Z.

(—D*r Oyt ¢:€,1)

Proof. By virtue of 1.2 we have for all f

—1k-1) ) f(m

mezZk

and therefore, replacing f with W (&,t)R(r, ¢)f,
> w(§) e o o) m)

=e(—3k-1) Y W(ER(T,¢)f](m),

mezZk

meZk
which gives the desired result. O
2.5. In what follows, we shall only need to consider products of
theta sums of the form
®f(T7 ¢7 57 t>®g(7a ¢7 £a t)7

where f,g € S(R¥). Clearly such combinations do not depend
on the t-variable. Let us therefore define the semi-direct product

group

G* = SL(2,R) x R?*
with multiplication law

(M;€)(M';€') = (MM'; € + ME),
and put
O5(1,6:€) =" 3" fo((m —y)'?)e(§]lm —y|*u+m - ).
mezZk

By virtue of Lemma 2.3 and the Iwasawa parametrization 1.8,
070, is a continuous C-valued function on G*.

2.6. A short calculation yields that the set

() om ¢ s mer)

with s = t(%, %, cee %) € R*, is closed under multiplication and
inversion, and therefore forms a subgroup of G*. Note also that
the subgroup

N = {1} x 2%

is normal in T'%.

> [R(r.¢:&0)f)(m). gr o,

2.7. Lemma. I'* is generated by the elements
0 -1\ 1 1\ (s 10 "
(3 ) 5 1)s(ope (o O)m mez

Proof. The map

k a b abs Qk:
Bt ()= ()G
defines a group isomorphism. The matrices (1) ) and (1)
generate SL(2,7Z), hence the lemma. O

2.8. Proposition. The left action of the group T* on G¥ is prop-
erly discontinuous. A fundamental domain of T* in G* is given
by

Frr = Fsnz X {9 € [0,m)} x {€ €[5, %)%}-
where Fgi 2,2y is the fundamental domam in 9 of the modular
group SL(2,Z), given by {r € H:u € [-1,3),|7] > 1}.

Proof. As mentioned before, the matrices ({ ') and (1) gen-
erate SL(2,Z), which explains Fgy,2,7). Note furthermore that

(o oL %) generates the shift ¢ +— ¢ + 7. O

2.9. Proposition. For f,g € S(RF), ©(t,¢;€)0,(1, $; €) is in-

variant under the left action of T'*.

Proof. This follows directly from Jacobi 1-3, since the left action
of the generators from 2.7 is

(1, ¢; (';)) - (-;dﬂrargﬂ (;y>)7
(7, ¢:8) = (T + 1, ¢ <S) + ((1) D (';))

(1, ¢:8) = (1,¢:€ + m),
respectively. O

and

We find the following uniform estimate.

2.10. Proposition. Let f,g € S(R¥). For any R > 1, we have

o(r.6: (F))0yr01 (3 )

— /2 Z Fol(m — y)vl/Q)gd)((m _ y)’Ul/2> + OR(U—R)

meZk
uniformly for all (1, ¢;€&) € G* with v > %
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