Θ HAND-OUT*

JENS MARKLOF

1. Schrödinger and Shale-Weil representation

1.1. Let ω be the standard symplectic form on $\mathbb{R}^{2 k}$, i.e.,

$$
\omega\left(\boldsymbol{\xi}, \boldsymbol{\xi}^{\prime}\right)=\boldsymbol{x} \cdot \boldsymbol{y}^{\prime}-\boldsymbol{y} \cdot \boldsymbol{x}^{\prime}
$$

where

$$
\boldsymbol{\xi}=\binom{\boldsymbol{x}}{\boldsymbol{y}}, \quad \boldsymbol{\xi}^{\prime}=\binom{\boldsymbol{x}^{\prime}}{\boldsymbol{y}^{\prime}}, \quad \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime} \in \mathbb{R}^{k}
$$

The Heisenberg group $\mathbb{H}\left(\mathbb{R}^{k}\right)$ is then defined as the set $\mathbb{R}^{2 k} \times \mathbb{R}$ with multiplication law [2]

$$
(\boldsymbol{\xi}, t)\left(\boldsymbol{\xi}^{\prime}, t^{\prime}\right)=\left(\boldsymbol{\xi}+\boldsymbol{\xi}^{\prime}, t+t^{\prime}+\frac{1}{2} \omega\left(\boldsymbol{\xi}, \boldsymbol{\xi}^{\prime}\right)\right) .
$$

Note that we have the decomposition

$$
\left(\binom{\boldsymbol{x}}{\boldsymbol{y}}, t\right)=\left(\binom{\boldsymbol{x}}{\mathbf{0}}, 0\right)\left(\binom{\mathbf{0}}{\boldsymbol{y}}, 0\right)\left(\mathbf{0}, t-\frac{1}{2} \boldsymbol{x} \cdot \boldsymbol{y}\right) .
$$

1.2. The Schrödinger representation of $\mathbb{H}\left(\mathbb{R}^{k}\right)$ on $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{k}\right)$ is given by (cf. [2], p. 15)

$$
\left[W\left(\binom{\boldsymbol{x}}{\mathbf{0}}, 0\right) f\right](\boldsymbol{w})=e(\boldsymbol{x} \cdot \boldsymbol{w}) f(\boldsymbol{w}), \quad \text { with } \boldsymbol{x}, \boldsymbol{w} \in \mathbb{R}^{k}
$$

$$
\left[W\left(\binom{\mathbf{0}}{\boldsymbol{y}}, 0\right) f\right](\boldsymbol{w})=f(\boldsymbol{w}-\boldsymbol{y}), \quad \text { with } \boldsymbol{y}, \boldsymbol{w} \in \mathbb{R}^{k}
$$

$$
W(\mathbf{0}, t)=e(t) \text { id, } \quad \text { with } t \in \mathbb{R}
$$

We have therefore for a general element $(\boldsymbol{\xi}, t)$ in $\mathbb{H}\left(\mathbb{R}^{k}\right)$

$$
\left[W\left(\binom{\boldsymbol{x}}{\boldsymbol{y}}, t\right) f\right](\boldsymbol{w})=e\left(t-\frac{1}{2} \boldsymbol{x} \cdot \boldsymbol{y}\right) e(\boldsymbol{x} \cdot \boldsymbol{w}) f(\boldsymbol{w}-\boldsymbol{y})
$$

1.3. For every element M in the symplectic $\operatorname{group} \operatorname{Sp}(k, \mathbb{R})$ of $\mathbb{R}^{2 k}$, we can define a new representation W_{M} of $\mathbb{H}\left(\mathbb{R}^{k}\right)$ by

$$
W_{M}(\boldsymbol{\xi}, t)=W(M \boldsymbol{\xi}, t) .
$$

All such representations are irreducible and, by the Stone-von Neumann Theorem, unitarily equivalent (see [2] for details). That is, for each $M \in \operatorname{Sp}(k, \mathbb{R})$ there exists a unitary operator $R(M)$ such that

$$
R(M) W(\boldsymbol{\xi}, t) R(M)^{-1}=W(M \boldsymbol{\xi}, t) .
$$

The $R(M)$ is determined up to a unitary phase factor and defines the projective Shale-Weil representation of the symplectic group. Projective means that

$$
R\left(M M^{\prime}\right)=c\left(M, M^{\prime}\right) R(M) R\left(M^{\prime}\right)
$$

with cocycle $c\left(M, M^{\prime}\right) \in \mathbb{C},\left|c\left(M, M^{\prime}\right)\right|=1$, but $c\left(M, M^{\prime}\right) \neq 1$ in general.

[^0]1.4. For our present purpose it suffices to consider the group $\operatorname{SL}(2, \mathbb{R})$ which is embedded in $\operatorname{Sp}(k, \mathbb{R})$ by
\[

\left($$
\begin{array}{ll}
a & b \\
c & d
\end{array}
$$\right) \mapsto\left($$
\begin{array}{ll}
a 1_{k} & b 1_{k} \\
c 1_{k} & d 1_{k}
\end{array}
$$\right)
\]

where 1_{k} is the $k \times k$ unit matrix.
The action of $M \in \mathrm{SL}(2, \mathbb{R})$ on $\boldsymbol{\xi} \in \mathbb{R}^{2 k}$ is then given by

$$
M \boldsymbol{\xi}=\binom{a \boldsymbol{x}+b \boldsymbol{y}}{c \boldsymbol{x}+d \boldsymbol{y}}, \quad \text { with } M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \boldsymbol{\xi}=\binom{\boldsymbol{x}}{\boldsymbol{y}} .
$$

1.5. For $M \in \operatorname{SL}(2, \mathbb{R}) \hookrightarrow \operatorname{Sp}(k, \mathbb{R})$ we have the explicit representations (see [2], p. 61f.)
$[R(M) f](\boldsymbol{w})= \begin{cases}|a|^{k / 2} & e\left(\frac{1}{2}\|\boldsymbol{w}\|^{2} a b\right) f(a \boldsymbol{w}) \\ & (c=0) \\ |c|^{-k / 2} & \int_{\mathbb{R}^{k}} e\left[\frac{\frac{1}{2}\left(a\|\boldsymbol{w}\|^{2}+d\left\|\boldsymbol{w}^{\prime}\right\|^{2}\right)-\boldsymbol{w} \cdot \boldsymbol{w}^{\prime}}{c}\right] f\left(\boldsymbol{w}^{\prime}\right) d \boldsymbol{w}^{\prime} \\ & (c \neq 0) .\end{cases}$
Here $\|\cdot\|$ denotes the euclidean norm in \mathbb{R}^{k},

$$
\|\boldsymbol{x}\|=\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}}
$$

1.6. If

$$
M_{1}=\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right), \quad M_{3}=\left(\begin{array}{cc}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right),
$$

$\in \mathrm{SL}(2, \mathbb{R})$ with $M_{1} M_{2}=M_{3}$, the corresponding cocycle is

$$
c\left(M_{1}, M_{2}\right)=\mathrm{e}^{-\mathrm{i} \pi k \operatorname{sign}\left(c_{1} c_{2} c_{3}\right) / 4}
$$

where

$$
\operatorname{sign}(x)= \begin{cases}-1 & (x<0) \\ 0 & (x=0) \\ 1 & (x>0)\end{cases}
$$

1.7. In the special case when

$$
M_{1}=\left(\begin{array}{cc}
\cos \phi_{1} & -\sin \phi_{1} \\
\sin \phi_{1} & \cos \phi_{1}
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
\cos \phi_{2} & -\sin \phi_{2} \\
\sin \phi_{2} & \cos \phi_{2}
\end{array}\right),
$$

we find

$$
c\left(M_{1}, M_{2}\right)=\mathrm{e}^{-\mathrm{i} \pi k\left(\sigma_{\phi_{1}}+\sigma_{\phi_{2}}-\sigma_{\phi_{1}+\phi_{2}}\right) / 4}
$$

where

$$
\sigma_{\phi}= \begin{cases}2 \nu & \text { if } \phi=\nu \pi \\ 2 \nu+1 & \text { if } \nu \pi<\phi<(\nu+1) \pi\end{cases}
$$

1.8. Every $M \in \operatorname{SL}(2, \mathbb{R})$ admits the unique Iwasawa decomposition

$$
M=\left(\begin{array}{ll}
1 & u \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
v^{1 / 2} & 0 \\
0 & v^{-1 / 2}
\end{array}\right)\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)=(\tau, \phi),
$$

where $\tau=u+\mathrm{i} v \in \mathfrak{H}, \phi \in[0,2 \pi)$. This parametrization leads to the well known action of $\operatorname{SL}(2, \mathbb{R})$ on $\mathfrak{H} \times[0,2 \pi)$,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(\tau, \phi)=\left(\frac{a \tau+b}{c \tau+d}, \phi+\arg (c \tau+d) \bmod 2 \pi\right) .
$$

We will sometimes use the convenient notation $\left(M \tau, \phi_{M}\right):=$ $M(\tau, \phi)$ and $u_{M}:=\operatorname{Re}(M \tau), v_{M}:=\operatorname{Im}(M \tau)$.
1.9. The (projective) Shale-Weil representation of $\operatorname{SL}(2, \mathbb{R})$ reads in these coordinates

$$
\begin{aligned}
& {[R(\tau, \phi) f](\boldsymbol{w})=[R(\tau, 0) R(\mathrm{i}, \phi) f](\boldsymbol{w})} \\
& \quad=v^{k / 4} e\left(\frac{1}{2}\|\boldsymbol{w}\|^{2} u\right)[R(\mathrm{i}, \phi) f]\left(v^{1 / 2} \boldsymbol{w}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& {[R(\mathrm{i}, \phi) f](\boldsymbol{w})} \\
& \quad= \begin{cases}f(\boldsymbol{w}) & (\phi=0 \bmod 2 \pi) \\
f(-\boldsymbol{w}) & (\phi=\pi \bmod 2 \pi) \\
|\sin \phi|^{-k / 2} \int_{\mathbb{R}^{k}} & e\left[\frac{\frac{1}{2}\left(\|\boldsymbol{w}\|^{2}+\left\|\boldsymbol{w}^{\prime}\right\|^{2}\right) \cos \phi-\boldsymbol{w} \cdot \boldsymbol{w}^{\prime}}{\sin \phi}\right] \\
& f\left(\boldsymbol{w}^{\prime}\right) d \boldsymbol{w}^{\prime}(\phi \neq 0 \bmod \pi) .\end{cases}
\end{aligned}
$$

Note that $R(\mathrm{i}, \pi / 2)=\mathcal{F}$ is the Fourier transform.

2. Theta sums

2.1. The Jacobi group is defined as the semidirect product

$$
\operatorname{Sp}(k, \mathbb{R}) \ltimes \mathbb{H}\left(\mathbb{R}^{k}\right)
$$

with multiplication law

$$
(M ; \boldsymbol{\xi}, t)\left(M^{\prime} ; \boldsymbol{\xi}^{\prime}, t^{\prime}\right)=\left(M M^{\prime} ; \boldsymbol{\xi}+M \boldsymbol{\xi}^{\prime}, t+t^{\prime}+\frac{1}{2} \omega\left(\boldsymbol{\xi}, M \boldsymbol{\xi}^{\prime}\right)\right) .
$$

This definition is motivated by the fact that, since

$$
R(M) W\left(\boldsymbol{\xi}^{\prime}, t^{\prime}\right)=W\left(M \boldsymbol{\xi}^{\prime}, t^{\prime}\right) R(M)
$$

(recall 1.3) we have

$$
\begin{aligned}
& W(\boldsymbol{\xi}, t) R(M) W\left(\boldsymbol{\xi}^{\prime}, t^{\prime}\right) R\left(M^{\prime}\right)=W(\boldsymbol{\xi}, t) W\left(M \boldsymbol{\xi}^{\prime}, t^{\prime}\right) R(M) R\left(M^{\prime}\right) \\
& \quad=c\left(M, M^{\prime}\right)^{-1} W\left(\boldsymbol{\xi}+M \boldsymbol{\xi}^{\prime}, t+t^{\prime}+\frac{1}{2} \omega\left(\boldsymbol{\xi}, M \boldsymbol{\xi}^{\prime}\right)\right) R\left(M M^{\prime}\right)
\end{aligned}
$$

Hence

$$
R(M ; \boldsymbol{\xi}, t)=W(\boldsymbol{\xi}, t) R(M)
$$

defines a projective representation of the Jacobi group, with cocycle $c\left(M, M^{\prime}\right)$ as above, the so-called Schrödinger-Weil representation.

Let us also put

$$
\tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t)=W(\boldsymbol{\xi}, t) \tilde{R}(\tau, \phi)
$$

2.2. Jacobi's theta sum. We define Jacobi's theta sum for $f \in$ $\mathcal{S}\left(\mathbb{R}^{k}\right)$ by

$$
\Theta_{f}(\tau, \phi ; \boldsymbol{\xi}, t)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}[\tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t) f](\boldsymbol{m})
$$

More explicitly, for $\tau=u+\mathrm{i} v, \boldsymbol{\xi}=\binom{\boldsymbol{x}}{\boldsymbol{y}}$,

$$
\begin{aligned}
\Theta_{f}(\tau, \phi ; \boldsymbol{\xi}, t)= & v^{k / 4} e\left(t-\frac{1}{2} \boldsymbol{x} \cdot \boldsymbol{y}\right) \\
& \sum_{\boldsymbol{m} \in \mathbb{Z}^{k}} f_{\phi}\left((\boldsymbol{m}-\boldsymbol{y}) v^{1 / 2}\right) e\left(\frac{1}{2}\|\boldsymbol{m}-\boldsymbol{y}\|^{2} u+\boldsymbol{m} \cdot \boldsymbol{x}\right),
\end{aligned}
$$

where

$$
f_{\phi}=\tilde{R}(\mathrm{i}, \phi) f
$$

It is easily seen that if $f \in \mathcal{S}\left(\mathbb{R}^{k}\right)$ then $f_{\phi} \in \mathcal{S}\left(\mathbb{R}^{k}\right)$ for ϕ fixed, and thus also $\tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t) f \in \mathcal{S}\left(\mathbb{R}^{k}\right)$ for fixed $(\tau, \phi ; \boldsymbol{\xi}, t)$. This guarantees rapid convergence of the above series. We have the following uniform bound.
2.3. Lemma. Let $f_{\phi}=\tilde{R}(\mathrm{i}, \phi) f$, with $f \in \mathcal{S}\left(\mathbb{R}^{k}\right)$. Then, for any $R>1$, there is a constant c_{R} such that for all $\boldsymbol{w} \in \mathbb{R}^{k}, \phi \in \mathbb{R}$, we have

$$
\left|f_{\phi}(\boldsymbol{w})\right| \leq c_{R}(1+\|\boldsymbol{w}\|)^{-R}
$$

2.4. The following transformation formulas are crucial for our further investigations:

Jacobi 1.

$$
\Theta_{f}\left(-\frac{1}{\tau}, \phi+\arg \tau ;\binom{-\boldsymbol{y}}{\boldsymbol{x}}, t\right)=\mathrm{e}^{-\mathrm{i} \pi k / 4} \Theta_{f}\left(\tau, \phi ;\binom{\boldsymbol{x}}{\boldsymbol{y}}, t\right)
$$

Proof. The Poisson summation formula states that for any $f \in$ $\mathcal{S}\left(\mathbb{R}^{k}\right)$ we have

$$
\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}[\mathcal{F} f](\boldsymbol{m})=\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}} f(\boldsymbol{m})
$$

where \mathcal{F} is the Fourier transform. Because

$$
\mathcal{F}=R(\mathrm{i}, \pi / 2)=R(S), \quad S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and secondly $\tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t) f \in \mathcal{S}\left(\mathbb{R}^{k}\right)$ for fixed $(\tau, \phi ; \boldsymbol{\xi}, t)$, the Poisson summation formula yields

$$
\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}[R(S) \tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t) f](\boldsymbol{m})=\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}[\tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t) f](\boldsymbol{m})
$$

We have

$$
\begin{aligned}
R(S) \tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t)=R(S) W(\boldsymbol{\xi} & , t) \tilde{R}(\tau, 0) \tilde{R}(\mathrm{i}, \phi) \\
& =W(S \boldsymbol{\xi}, t) R(S) R(\tau, 0) \tilde{R}(\mathrm{i}, \phi)
\end{aligned}
$$

furthermore

$$
R(S) R(\tau, 0)=R\left(-\frac{1}{\tau}, \arg \tau\right)=R\left(-\frac{1}{\tau}, 0\right) R(\mathrm{i}, \arg \tau)
$$

since $(\tau, 0)$ and $\left(-\frac{1}{\tau}, 0\right)$ are upper triangular matrices, and hence the corresponding cocycles are trivial, i.e., equal to 1 (recall 1.6). Finally, since $0<\arg \tau<\pi$ for $\tau \in \mathfrak{H}$,
$R(\mathrm{i}, \arg \tau) \tilde{R}(\mathrm{i}, \phi)=\mathrm{e}^{\mathrm{i} \pi k / 4} \tilde{R}(\mathrm{i}, \arg \tau) \tilde{R}(\mathrm{i}, \phi)=\mathrm{e}^{\mathrm{i} \pi k / 4} \tilde{R}(\mathrm{i}, \phi+\arg \tau)$.
Collecting all terms, we find

$$
R(S) \tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t)=\mathrm{e}^{\mathrm{i} \pi k / 4} \tilde{R}\left(-\frac{1}{\tau}, \phi+\arg \tau ; S \boldsymbol{\xi}, t\right)
$$

and hence

$$
\begin{aligned}
& \sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}\left[\tilde{R}\left(-\frac{1}{\tau}, \phi+\arg \tau ; S \boldsymbol{\xi}, t\right) f\right](\boldsymbol{m}) \\
&=\mathrm{e}^{-\mathrm{i} \pi k / 4} \sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}[\tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t) f](\boldsymbol{m})
\end{aligned}
$$

which proves the claim.

Jacobi 2.

$\Theta_{f}\left(\tau+1, \phi ;\binom{s}{\mathbf{0}}+\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\binom{\boldsymbol{x}}{\boldsymbol{y}}, t+\frac{1}{2} s \cdot \boldsymbol{y}\right)=\Theta_{f}\left(\tau, \phi ;\binom{\boldsymbol{x}}{\boldsymbol{y}}, t\right)$, with

$$
\boldsymbol{s}={ }^{\mathrm{t}}\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \in \mathbb{R}^{k}
$$

Proof. Clearly for any $f \in \mathcal{S}\left(\mathbb{R}^{k}\right)$

$$
\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}\left[\tilde{R}\left(\mathrm{i}+1,0 ;\binom{\boldsymbol{s}}{\mathbf{0}}, 0\right) f\right](\boldsymbol{m})=\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}} f(\boldsymbol{m})
$$

and hence also (replace f with $\tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t) f$)

$$
\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}\left[\tilde{R}\left(\mathrm{i}+1,0 ;\binom{\boldsymbol{s}}{\mathbf{0}}, 0\right) \tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t) f\right](\boldsymbol{m})=\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}[\tilde{R}(\tau, \phi ; \boldsymbol{\xi}, t) f](\boldsymbol{m})
$$

Proof. The map

We conclude by noticing

$$
\begin{aligned}
& \tilde{R}\left(\mathrm{i}+1,0 ;\binom{\boldsymbol{s}}{\mathbf{0}}, 0\right) \tilde{R}\left(\tau, \phi ;\binom{\boldsymbol{x}}{\boldsymbol{y}}, t\right) \\
& \quad=\tilde{R}\left(\tau+1, \phi ;\binom{\boldsymbol{s}}{\mathbf{0}}+\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{\boldsymbol{x}}{\boldsymbol{y}}, t+\frac{1}{2} \boldsymbol{s} \cdot \boldsymbol{y}\right),
\end{aligned}
$$

where we have used that $c((\mathrm{i}, 0),(\tau, \phi))=1$ since $(\mathrm{i}, 0)$ is an upper triangular matrix, cf. 1.6.

Jacobi 3.

$$
\Theta_{f}\left(\tau, \phi ;\binom{\boldsymbol{k}}{\boldsymbol{l}}+\boldsymbol{\xi}, r+t+\frac{1}{2} \omega\left(\binom{\boldsymbol{k}}{\boldsymbol{l}}, \boldsymbol{\xi}\right)\right)=(-1)^{\boldsymbol{k} \cdot \boldsymbol{l}} \Theta_{f}(\tau, \phi ; \boldsymbol{\xi}, t)
$$

for any $\boldsymbol{k}, \boldsymbol{l} \in \mathbb{Z}^{k}, r \in \mathbb{Z}$.
Proof. By virtue of 1.2 we have for all f

$$
\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}\left[W\left(\binom{\boldsymbol{k}}{\boldsymbol{l}}, r\right) f\right](\boldsymbol{m})=e\left(-\frac{1}{2} \boldsymbol{k} \cdot \boldsymbol{l}\right) \sum_{\boldsymbol{m} \in \mathbb{Z}^{k}} f(\boldsymbol{m})
$$

and therefore, replacing f with $W(\boldsymbol{\xi}, t) \tilde{R}(\tau, \phi) f$,

$$
\begin{aligned}
\sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}\left[W\left(\binom{\boldsymbol{k}}{\boldsymbol{l}}, r\right) W\right. & (\boldsymbol{\xi}, t) \tilde{R}(\tau, \phi) f](\boldsymbol{m}) \\
& =e\left(-\frac{1}{2} \boldsymbol{k} \cdot \boldsymbol{l}\right) \sum_{\boldsymbol{m} \in \mathbb{Z}^{k}}[W(\boldsymbol{\xi}, t) \tilde{R}(\tau, \phi) f](\boldsymbol{m}),
\end{aligned}
$$

which gives the desired result.
2.5. In what follows, we shall only need to consider products of theta sums of the form

$$
\Theta_{f}(\tau, \phi ; \boldsymbol{\xi}, t) \overline{\Theta_{g}(\tau, \phi ; \boldsymbol{\xi}, t)}
$$

where $f, g \in \mathcal{S}\left(\mathbb{R}^{k}\right)$. Clearly such combinations do not depend on the t-variable. Let us therefore define the semi-direct product group

$$
G^{k}=\mathrm{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2 k}
$$

with multiplication law

$$
(M ; \boldsymbol{\xi})\left(M^{\prime} ; \boldsymbol{\xi}^{\prime}\right)=\left(M M^{\prime} ; \boldsymbol{\xi}+M \boldsymbol{\xi}^{\prime}\right),
$$

and put
$\Theta_{f}(\tau, \phi ; \boldsymbol{\xi})=v^{k / 4} \sum_{\boldsymbol{m} \in \mathbb{Z}^{k}} f_{\phi}\left((\boldsymbol{m}-\boldsymbol{y}) v^{1 / 2}\right) e\left(\frac{1}{2}\|\boldsymbol{m}-\boldsymbol{y}\|^{2} u+\boldsymbol{m} \cdot \boldsymbol{x}\right)$.
By virtue of Lemma 2.3 and the Iwasawa parametrization 1.8, $\Theta_{f} \overline{\Theta_{g}}$ is a continuous \mathbb{C}-valued function on G^{k}.
2.6. A short calculation yields that the set
$\Gamma^{k}=\left\{\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) ;\binom{a b \boldsymbol{s}}{c d \boldsymbol{s}}+\boldsymbol{m}\right):\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}), \boldsymbol{m} \in \mathbb{Z}^{2 k}\right\}$, with $s={ }^{\mathrm{t}}\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \in \mathbb{R}^{k}$, is closed under multiplication and inversion, and therefore forms a subgroup of G^{k}. Note also that the subgroup

$$
N=\{1\} \ltimes \mathbb{Z}^{2 k}
$$

2.7. Lemma. Γ^{k} is generated by the elements

$$
\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) ; \mathbf{0}\right), \quad\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) ;\binom{\boldsymbol{s}}{\mathbf{0}}\right), \quad\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) ; \boldsymbol{m}\right), \quad \boldsymbol{m} \in \mathbb{Z}^{2 k}
$$

$$
\mathrm{SL}(2, \mathbb{Z}) \rightarrow N \backslash \Gamma^{k}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ;\binom{a b s}{c d s}+\mathbb{Z}^{2 k}\right)
$$

defines a group isomorphism. The matrices $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ generate $\mathrm{SL}(2, \mathbb{Z})$, hence the lemma.
2.8. Proposition. The left action of the group Γ^{k} on G^{k} is properly discontinuous. A fundamental domain of Γ^{k} in G^{k} is given by

$$
\mathcal{F}_{\Gamma^{k}}=\mathcal{F}_{\mathrm{SL}(2, \mathbb{Z})} \times\{\phi \in[0, \pi)\} \times\left\{\boldsymbol{\xi} \in\left[-\frac{1}{2}, \frac{1}{2}\right)^{2 k}\right\}
$$

where $\mathcal{F}_{\mathrm{SL}(2, \mathbb{Z})}$ is the fundamental domain in \mathfrak{H} of the modular group $\mathrm{SL}(2, \mathbb{Z})$, given by $\left\{\tau \in \mathfrak{H}: u \in\left[-\frac{1}{2}, \frac{1}{2}\right),|\tau|>1\right\}$.
Proof. As mentioned before, the matrices $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ generate $\operatorname{SL}(2, \mathbb{Z})$, which explains $\mathcal{F}_{\mathrm{SL}(2, \mathbb{Z})}$. Note furthermore that $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ generates the shift $\phi \mapsto \phi+\pi$.
2.9. Proposition. For $f, g \in \mathcal{S}\left(\mathbb{R}^{k}\right), \Theta_{f}(\tau, \phi ; \boldsymbol{\xi}) \overline{\Theta_{g}(\tau, \phi ; \boldsymbol{\xi})}$ is invariant under the left action of Γ^{k}.

Proof. This follows directly from Jacobi 1-3, since the left action of the generators from 2.7 is

$$
\begin{aligned}
&\left(\tau, \phi ;\binom{\boldsymbol{x}}{\boldsymbol{y}}\right) \mapsto\left(-\frac{1}{\tau}, \phi+\arg \tau ;\binom{-\boldsymbol{y}}{\boldsymbol{x}}\right) \\
&(\tau, \phi ; \boldsymbol{\xi}) \mapsto\left(\tau+1, \phi ;\binom{\boldsymbol{s}}{\mathbf{0}}+\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)\binom{\boldsymbol{x}}{\boldsymbol{y}}\right),
\end{aligned}
$$

and

$$
(\tau, \phi ; \boldsymbol{\xi}) \mapsto(\tau, \phi ; \boldsymbol{\xi}+\boldsymbol{m})
$$

respectively.
We find the following uniform estimate.
2.10. Proposition. Let $f, g \in \mathcal{S}\left(\mathbb{R}^{k}\right)$. For any $R>1$, we have

$$
\begin{aligned}
& \Theta_{f}\left(\tau, \phi ;\binom{\boldsymbol{x}}{\boldsymbol{y}} \overline{\Theta_{g}\left(\tau, \phi ;\binom{\boldsymbol{x}}{\boldsymbol{y}}\right)}\right. \\
& \quad=v^{k / 2} \sum_{\boldsymbol{m} \in \mathbb{Z}^{k}} f_{\phi}\left((\boldsymbol{m}-\boldsymbol{y}) v^{1 / 2}\right) \overline{g_{\phi}\left((\boldsymbol{m}-\boldsymbol{y}) v^{1 / 2}\right)}+O_{R}\left(v^{-R}\right)
\end{aligned}
$$

uniformly for all $(\tau, \phi ; \boldsymbol{\xi}) \in G^{k}$ with $v>\frac{1}{2}$.

References

[1] J. Marklof, Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math. (2) 158 (2003) 419-471.
[2] G. Lion and M. Vergne, The Weil Representation, Maslov Index and Theta Series, Progr. in Math. 6 (Birkhäuser, 1980).

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
j.marklof@bristol.ac.uk
is normal in Γ^{k}.

[^0]: Date: July 25, 2005.
 *This hand-out is an extract from [1] secs 3,4.

