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1. Schrödinger and Shale-Weil representation

1.1. Let ω be the standard symplectic form on R2k, i.e.,

ω(ξ, ξ′) = x · y′ − y · x′,

where

ξ =
(

x
y

)
, ξ′ =

(
x′

y′

)
, x,y,x′,y′ ∈ Rk.

The Heisenberg group H(Rk) is then defined as the set R2k×R
with multiplication law [2]

(ξ, t)(ξ′, t′) = (ξ + ξ′, t + t′ + 1
2ω(ξ, ξ′)).

Note that we have the decomposition

(
(

x
y

)
, t) = (

(
x
0

)
, 0)(

(
0
y

)
, 0)(0, t− 1

2x · y).

1.2. The Schrödinger representation of H(Rk) on f ∈ L2(Rk) is
given by (cf. [2], p. 15)

[W (
(

x
0

)
, 0)f ](w) = e(x ·w) f(w), with x,w ∈ Rk,

[W (
(
0
y

)
, 0)f ](w) = f(w − y), with y,w ∈ Rk,

W (0, t) = e(t) id, with t ∈ R.

We have therefore for a general element (ξ, t) in H(Rk)

[W (
(

x
y

)
, t)f ](w) = e(t− 1

2x · y) e(x ·w) f(w − y).

1.3. For every element M in the symplectic group Sp(k, R) of
R2k, we can define a new representation WM of H(Rk) by

WM (ξ, t) = W (Mξ, t).

All such representations are irreducible and, by the Stone-von
Neumann Theorem, unitarily equivalent (see [2] for details). That
is, for each M ∈ Sp(k, R) there exists a unitary operator R(M)
such that

R(M) W (ξ, t) R(M)−1 = W (Mξ, t).

The R(M) is determined up to a unitary phase factor and defines
the projective Shale-Weil representation of the symplectic group.
Projective means that

R(MM ′) = c(M,M ′)R(M)R(M ′)

with cocycle c(M,M ′) ∈ C, |c(M,M ′)| = 1, but c(M,M ′) 6= 1 in
general.
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1.4. For our present purpose it suffices to consider the group
SL(2, R) which is embedded in Sp(k, R) by(

a b
c d

)
7→

(
a 1k b 1k

c 1k d 1k

)
where 1k is the k × k unit matrix.

The action of M ∈ SL(2, R) on ξ ∈ R2k is then given by

Mξ =
(

ax + by
cx + dy

)
, with M =

(
a b
c d

)
, ξ =

(
x
y

)
.

1.5. For M ∈ SL(2, R) ↪→ Sp(k, R) we have the explicit repre-
sentations (see [2], p. 61f.)

[R(M)f ](w) =



|a|k/2 e( 1
2‖w‖2ab)f(aw)

(c = 0)

|c|−k/2
∫

Rk e

[
1
2 (a‖w‖2+d‖w′‖2)−w·w′

c

]
f(w′) dw′

(c 6= 0).

Here ‖ · ‖ denotes the euclidean norm in Rk,

‖x‖ =
√

x2
1 + · · ·+ x2

k.

1.6. If

M1 =
(

a1 b1

c1 d1

)
, M2 =

(
a2 b2

c2 d2

)
, M3 =

(
a3 b3

c3 d3

)
,

∈ SL(2, R) with M1M2 = M3, the corresponding cocycle is

c(M1,M2) = e−iπk sign(c1c2c3)/4,

where

sign(x) =


−1 (x < 0)
0 (x = 0)
1 (x > 0).

1.7. In the special case when

M1 =
(

cos φ1 − sinφ1

sinφ1 cos φ1

)
, M2 =

(
cos φ2 − sinφ2

sinφ2 cos φ2

)
,

we find
c(M1,M2) = e−iπk(σφ1+σφ2−σφ1+φ2 )/4

where

σφ =

{
2ν if φ = νπ,
2ν + 1 if νπ < φ < (ν + 1)π.

1.8. Every M ∈ SL(2, R) admits the unique Iwasawa decompo-
sition

M =
(

1 u
0 1

) (
v1/2 0
0 v−1/2

) (
cos φ − sinφ
sinφ cos φ

)
= (τ, φ),

where τ = u + iv ∈ H, φ ∈ [0, 2π). This parametrization leads to
the well known action of SL(2, R) on H× [0, 2π),(

a b
c d

)
(τ, φ) = (

aτ + b

cτ + d
, φ + arg(cτ + d) mod 2π).

We will sometimes use the convenient notation (Mτ, φM ) :=
M(τ, φ) and uM := Re(Mτ), vM := Im(Mτ).
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1.9. The (projective) Shale-Weil representation of SL(2, R) reads
in these coordinates

[R(τ, φ)f ](w) = [R(τ, 0)R(i, φ)f ](w)

= vk/4e( 1
2‖w‖2u)[R(i, φ)f ](v1/2w)

and

[R(i, φ)f ](w)

=



f(w) (φ = 0 mod 2π)

f(−w) (φ = π mod 2π)

| sinφ|−k/2

∫
Rk

e

[
1
2 (‖w‖2+‖w′‖2) cos φ−w·w′

sin φ

]
f(w′) dw′(φ 6= 0 mod π).

Note that R(i, π/2) = F is the Fourier transform.

2. Theta sums

2.1. The Jacobi group is defined as the semidirect product

Sp(k, R) n H(Rk)

with multiplication law

(M ; ξ, t)(M ′; ξ′, t′) = (MM ′; ξ + Mξ′, t + t′ + 1
2ω(ξ,Mξ′)).

This definition is motivated by the fact that, since

R(M)W (ξ′, t′) = W (Mξ′, t′)R(M),

(recall 1.3) we have

W (ξ, t)R(M) W (ξ′, t′)R(M ′) = W (ξ, t)W (Mξ′, t′) R(M)R(M ′)

= c(M,M ′)−1 W (ξ + Mξ′, t + t′ + 1
2ω(ξ,Mξ′)) R(MM ′).

Hence
R(M ; ξ, t) = W (ξ, t)R(M)

defines a projective representation of the Jacobi group, with co-
cycle c(M,M ′) as above, the so-called Schrödinger-Weil repre-
sentation.

Let us also put

R̃(τ, φ; ξ, t) = W (ξ, t)R̃(τ, φ).

2.2. Jacobi’s theta sum. We define Jacobi’s theta sum for f ∈
S(Rk) by

Θf (τ, φ; ξ, t) =
∑

m∈Zk

[R̃(τ, φ; ξ, t)f ](m).

More explicitly, for τ = u + iv, ξ =
(

x
y

)
,

Θf (τ, φ; ξ, t) = vk/4e(t− 1
2x · y)∑

m∈Zk

fφ((m− y)v1/2)e( 1
2‖m− y‖2u + m · x),

where
fφ = R̃(i, φ)f.

It is easily seen that if f ∈ S(Rk) then fφ ∈ S(Rk) for φ fixed,
and thus also R̃(τ, φ; ξ, t)f ∈ S(Rk) for fixed (τ, φ; ξ, t). This
guarantees rapid convergence of the above series. We have the
following uniform bound.

2.3. Lemma. Let fφ = R̃(i, φ)f , with f ∈ S(Rk). Then, for any
R > 1, there is a constant cR such that for all w ∈ Rk, φ ∈ R,
we have

|fφ(w)| ≤ cR(1 + ‖w‖)−R.

2.4. The following transformation formulas are crucial for our
further investigations:

Jacobi 1.

Θf (−1
τ

, φ + arg τ ;
(
−y
x

)
, t) = e−iπk/4Θf (τ, φ;

(
x
y

)
, t).

Proof. The Poisson summation formula states that for any f ∈
S(Rk) we have ∑

m∈Zk

[Ff ](m) =
∑

m∈Zk

f(m)

where F is the Fourier transform. Because

F = R(i, π/2) = R(S), S =
(

0 −1
1 0

)
,

and secondly R̃(τ, φ; ξ, t)f ∈ S(Rk) for fixed (τ, φ; ξ, t), the Pois-
son summation formula yields∑

m∈Zk

[R(S)R̃(τ, φ; ξ, t)f ](m) =
∑

m∈Zk

[R̃(τ, φ; ξ, t)f ](m).

We have

R(S)R̃(τ, φ; ξ, t) = R(S)W (ξ, t)R̃(τ, 0)R̃(i, φ)

= W (Sξ, t)R(S)R(τ, 0)R̃(i, φ);

furthermore

R(S)R(τ, 0) = R(−1
τ

, arg τ) = R(−1
τ

, 0)R(i, arg τ),

since (τ, 0) and (− 1
τ , 0) are upper triangular matrices, and hence

the corresponding cocycles are trivial, i.e., equal to 1 (recall 1.6).
Finally, since 0 < arg τ < π for τ ∈ H,

R(i, arg τ)R̃(i, φ) = eiπk/4R̃(i, arg τ)R̃(i, φ) = eiπk/4R̃(i, φ+arg τ).

Collecting all terms, we find

R(S)R̃(τ, φ; ξ, t) = eiπk/4R̃(−1
τ

, φ + arg τ ;Sξ, t),

and hence∑
m∈Zk

[R̃(−1
τ

, φ + arg τ ;Sξ, t)f ](m)

= e−iπk/4
∑

m∈Zk

[R̃(τ, φ; ξ, t)f ](m).

which proves the claim. �

Jacobi 2.

Θf (τ + 1, φ;
(

s
0

)
+

(
1 1
0 1

) (
x
y

)
, t + 1

2s · y) = Θf (τ, φ;
(

x
y

)
, t),

with
s = t( 1

2 , 1
2 , . . . , 1

2 ) ∈ Rk.



Θ HAND-OUT? 3

Proof. Clearly for any f ∈ S(Rk)∑
m∈Zk

[R̃(i + 1, 0;
(

s
0

)
, 0)f ](m) =

∑
m∈Zk

f(m),

and hence also (replace f with R̃(τ, φ; ξ, t)f)∑
m∈Zk

[R̃(i+1, 0;
(

s
0

)
, 0)R̃(τ, φ; ξ, t)f ](m) =

∑
m∈Zk

[R̃(τ, φ; ξ, t)f ](m).

We conclude by noticing

R̃(i + 1, 0;
(

s
0

)
, 0)R̃(τ, φ;

(
x
y

)
, t)

= R̃(τ + 1, φ;
(

s
0

)
+

(
1 1
0 1

) (
x
y

)
, t + 1

2s · y),

where we have used that c((i, 0), (τ, φ)) = 1 since (i, 0) is an upper
triangular matrix, cf. 1.6. �

Jacobi 3.

Θf (τ, φ;
(

k
l

)
+ ξ, r + t + 1

2ω(
(

k
l

)
, ξ)) = (−1)k·l Θf (τ, φ; ξ, t)

for any k, l ∈ Zk, r ∈ Z.

Proof. By virtue of 1.2 we have for all f∑
m∈Zk

[W (
(

k
l

)
, r)f ](m) = e(− 1

2k · l)
∑

m∈Zk

f(m),

and therefore, replacing f with W (ξ, t)R̃(τ, φ)f ,∑
m∈Zk

[W (
(

k
l

)
, r)W (ξ, t)R̃(τ, φ)f ](m)

= e(− 1
2k · l)

∑
m∈Zk

[W (ξ, t)R̃(τ, φ)f ](m),

which gives the desired result. �

2.5. In what follows, we shall only need to consider products of
theta sums of the form

Θf (τ, φ; ξ, t)Θg(τ, φ; ξ, t),

where f, g ∈ S(Rk). Clearly such combinations do not depend
on the t-variable. Let us therefore define the semi-direct product
group

Gk = SL(2, R) n R2k

with multiplication law

(M ; ξ)(M ′; ξ′) = (MM ′; ξ + Mξ′),

and put

Θf (τ, φ; ξ) = vk/4
∑

m∈Zk

fφ((m− y)v1/2)e( 1
2‖m− y‖2u + m · x).

By virtue of Lemma 2.3 and the Iwasawa parametrization 1.8,
ΘfΘg is a continuous C-valued function on Gk.

2.6. A short calculation yields that the set

Γk =
{

(
(

a b
c d

)
;
(

abs
cds

)
+ m) :

(
a b
c d

)
∈ SL(2, Z), m ∈ Z2k

}
,

with s = t( 1
2 , 1

2 , . . . , 1
2 ) ∈ Rk, is closed under multiplication and

inversion, and therefore forms a subgroup of Gk. Note also that
the subgroup

N = {1}n Z2k

is normal in Γk.

2.7. Lemma. Γk is generated by the elements

(
(

0 −1
1 0

)
;0), (

(
1 1
0 1

)
;
(

s
0

)
), (

(
1 0
0 1

)
;m), m ∈ Z2k.

Proof. The map

SL(2, Z) → N\Γk,

(
a b
c d

)
7→ (

(
a b
c d

)
;
(

abs
cds

)
+ Z2k)

defines a group isomorphism. The matrices ( 0 −1
1 0 ) and ( 1 1

0 1 )
generate SL(2, Z), hence the lemma. �

2.8. Proposition. The left action of the group Γk on Gk is prop-
erly discontinuous. A fundamental domain of Γk in Gk is given
by

FΓk = FSL(2,Z) × {φ ∈ [0, π)} × {ξ ∈ [− 1
2 , 1

2 )2k}.
where FSL(2,Z) is the fundamental domain in H of the modular
group SL(2, Z), given by {τ ∈ H : u ∈ [− 1

2 , 1
2 ), |τ | > 1}.

Proof. As mentioned before, the matrices ( 0 −1
1 0 ) and ( 1 1

0 1 ) gen-
erate SL(2, Z), which explains FSL(2,Z). Note furthermore that
(−1 0

0 −1 ) generates the shift φ 7→ φ + π. �

2.9. Proposition. For f, g ∈ S(Rk), Θf (τ, φ; ξ)Θg(τ, φ; ξ) is in-
variant under the left action of Γk.

Proof. This follows directly from Jacobi 1–3, since the left action
of the generators from 2.7 is

(τ, φ;
(

x
y

)
) 7→ (−1

τ
, φ + arg τ ;

(
−y
x

)
),

(τ, φ; ξ) 7→ (τ + 1, φ;
(

s
0

)
+

(
1 1
0 1

) (
x
y

)
),

and
(τ, φ; ξ) 7→ (τ, φ; ξ + m),

respectively. �

We find the following uniform estimate.

2.10. Proposition. Let f, g ∈ S(Rk). For any R > 1, we have

Θf (τ, φ;
(

x
y

)
)Θg(τ, φ;

(
x
y

)
)

= vk/2
∑

m∈Zk

fφ((m− y)v1/2)gφ((m− y)v1/2) + OR(v−R)

uniformly for all (τ, φ; ξ) ∈ Gk with v > 1
2 .
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