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Abstract. This essay gives an elementary classification of the prime elements

of Z[i], the Gaussian integers.



2 LEE A. BUTLER

The history of our number system is a well documented one; there are a plethora
of books that describe that slow advancement we made as a species from using those
most intuitive and yet amazingly abstract objects, the natural numbers, up to the
19th century where complex numbers were finally given a rigorous footing and
a level of acceptance. The story has a neat pattern to it, with each new set of
numbers, be they rationals, irrationals, or negative numbers, being accepted slowly
and reluctantly. Their use was always introduced due to necessity, specifically for
the solution to certain equations. Perhaps the rational numbers were not explicitly
introduced because a Greek merchant wished to know the solution to 3x + 4 = 6,
but from a mathematician’s point of view most real world questions could be boiled
down to such a problem.

So with the rationals fell equations such as those above, negative numbers toppled
those such as x + 1 = 0 which defied natural numbers. Irrationals, the bane of
Pythagoras, dealt with those troublesome quadratics that refused to fit into rational
shoes. And finally, with the invention/discovery of the complex numbers, came the
payoff for two thousand years of development. Now all quadratics could be solved,
and even better, the Fundamental Theorem of Algebra assures us that now any
polynomial can be solved with any coefficients from the complex numbers. Having
gained this much, apparently everything we could ever need when it comes to
numbers, why move further? Introducing new numbers seems pointless since they
would only solve the very equations they themselves created. So moving forward
would be counterproductive, and surely moving back would be nothing more than
a history lesson. We moved slowly from natural numbers to rationals to negatives
to irrationals to complex numbers... no stages were skipped so nothing new is to
be gleaned from a step backwards. Is it?

German wunderkind Johann Carl Friedrich Gauss suggested the resolute answer:
yes. What he did was not strictly speaking a step backward, nor was it totally a
step forward. What Gauss did was to consider “integers” to be all complex numbers
a + bi where both a and b are real integers. The reasons for him doing this are not
hard to see.

Definition. The Gaussian integers are the elements of the set

Z[i] = {a + bi : a, b ∈ Z}

Both Z and Z[i]1 are commutative rings with identity (respectively 1 and 1+0i),
which a quick check of the ring axioms will confirm. Neither are division rings
though, owing to the lack of a multiplicative inverse for most of the elements of
each set. I say ‘most’ because both sets do have a finite set of units within them, that
is elements u for which there is an element v with the property that uv = vu = 1.
In Z the units are 1 and −1, since 1 · 1 = 1 and (−1) · (−1) = 1. In Z[i] there
are four units, again we have 1 and −1, but also we have i and −i, noting that
i · (−i) = 1 and (−i) · i = 1. So in Z[i], just like in Z, most elements have no inverse.
If we take 57− 11i then there is no Gaussian integer z such that (57− 11i) · z = 1.
But how can we be sure that this is true? The Gaussian Integers are a big set,
after all. In fact they are countably infinite, a fact derived directly from the fact
that |Z×Z| = ℵ0. So how can we be sure that only those four members mentioned
above have a multiplicative inverse?

1Denoted k(i) by some authorities[1].
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The proof that there are indeed just four units in the Gaussian Integers uses a
simple proof by contradiction. The first step is to define the norm of a Gaussian
Integer, although it is the same as for complex numbers in general.

Definition. The norm of a + bi ∈ Z[i] is N(a + bi) = a2 + b2.

So, for example, N(57−11i) = 3370. Some authorities prefer to define the norm
as the value

√
a2 + b2, that is the square root of our norm, and is just the modulus

of the number. While doing so provides the direct link between the norm of the
complex number a + bi and the length of the vector (a, b), it also requires us to
think of the norm-squared for most purposes. However, both definitions have the
simple property laid out in Lemma 1.

Lemma 1. For all Gaussian integers s and t, N(s)N(t) = N(st).

Proof. Let s = a + bi and t = c + di. First note that

st = (a + bi)(c + di) = (ac− bd) + i(ad + bc).

Then simple algebra gives the result:

N(st) = (ac− bd)2 + (ad + bc)2

= a2c2 − 2abcd + b2d2 + a2d2 + 2abcd + b2c2

= a2c2 + b2d2 + a2d2 + b2c2

= a2(c2 + d2) + b2(c2 + d2)

= (a2 + b2)(c2 + d2)

= N(s)N(t).

�

Now we can clear up the issue of units in Z[i]. First we assume that we have a
unit of the set, say u+ vi. That means there is another element, call it x+ yi, with
the property that

(u + vi)(x + yi) = 1.

Lemma 1 then assures us of the following:

N(u + vi)N(x + yi) = N((u + vi)(x + yi)) = N(1) = 1.

And so
(u2 + v2)(x2 + y2) = 1.

Recall that u,v,x, and y are all integers, and since the integers form a ring the
interior of each set of parentheses must also be an integer. As previously mentioned
the only units in Z are 1 and −1. But each bracketed term is positive so we must
have that

u2 + v2 = 1.

The only integer solutions to this equation are (u, v) = (1, 0), (0, 1), (−1, 0), and
(0,−1). Putting these back into the original number we get that the only units of
Z[i] are 1, i,−1, and −i.

A second result that will come in useful later is Lemma 2 below, the proof of
which is more algebraic manipulation similar to Lemma 1, and so the proof is not
included here.
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Lemma 2. For all Gaussian integers s and t with t 6= 0,

N
(s

t

)
=

N(s)
N(t)

.

The above lemma may look innocuous enough but it side-steps an important
issue. I mentioned earlier that Z[i] is not a division ring, so can we divide at all?
That is, given Gaussian Integers s and t, is s/t a Gaussian Integer too? The answer
is a straightforward: sometimes. Not all such divisions yield a Gaussian Integer,
and as always division by zero is forbidden. Taking our Gaussian Integer 57− 11i
we can easily find a second number that doesn’t divide to give a third element of
the set. For instance, 57−11i

14+3i = 3.731 − 1.585i to three decimal places, which is
clearly not in Z[i]. Rather more challenging, but apparently sometimes possible, is
finding a Gaussian Integer that does divide 57 − 11i. “Divides” here is the same
definition as in the integers, that is:

Definition. We say that the Gaussian integer a + bi divides the Gaussian integer
c + di if and only if we can find a Gaussian integer e + fi such that

c + di = (a + bi)(e + fi).

We write this as a + bi | c + di.

So 14 + 3i - 57 − 11i since 3.731 − 1.585i 6∈ Z[i]. But if we try some other
random Gaussian Integer, say 7 − 25i, then we find that 57−11i

7−25i = 1 + 2i. And so
7− 25i | 57− 11i, and clearly we also have that 1 + 2i | 57− 11i.

The next obvious step after finding that these numbers can sometimes be divided
by one another is to ask about factorisations. The regular integers have those
remarkable numbers the primes as their building blocks, and the Fundamental
Theorem of Arithmetic (with a few tweaks to incorporate the negative integers as
well as the positive naturals) tells us that every integer can be factorised uniquely
into a product of primes. “Unique” here only takes into account the primes used.
So if someone wanted to disprove the FTA by pointing out that −28 factorises
as both (−1) · 22 · 7 and 2 · 1 · 7 · (−1) · 2 then they would be wrong. For these
two are clearly the same, and the FTA ignores the order that the multiplication is
performed in as well as repeated multiplication by the units. And quite rightly too.

By drawing parallels with the integers we should expect the units of Z[i] to
trivially divide any given Gaussian Integer, and indeed they all do. Below is the
case for the unit −i.

a + bi

−i
=

(a + bi)i
(−i)i

= −b + ai.

So in our attempts to factorise Gaussian Integers we should avoid repeated fac-
tors of any of the four units. We should also try to draw another parallel between
Gaussian and normal integers. Normal (natural) primes have several definitions,
the most concise probably being p is prime ⇔ φ(p) = p − 112. However in the
integers the most useful definition for us is: p is a prime if and only if the only
divisors of p are 1,−1, p, and −p. This leads us directly to a definition for primes
in the ring of Gaussian Integers:

2φ(p) being Euler’s phi-function, defined not quite concisely as “the number of positive integers

not exceeding p which are relatively prime to p.”[6]
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Definition. A Gaussian integer γ is called a Gaussian prime if and only if the only
Gaussian integers that divide γ are:

1,−1, i,−i, γ,−γ, γi, and − γi.

That seems like a lot initially. Primes, after all, are supposed to be those numbers
with the least possible number of factors, and yet here they are with no less than
eight of them. And yet this is right, for aside from the units, every Gaussian Integer
has at least eight divisors, and so the ones with only eight deserve to be called our
primes.

Now that we have identified the requirements a Gaussian prime needs to fulfil,
the questions suddenly pour forth. Are there any Gaussian Primes? Are there
infinitely many? Does every Gaussian Integer factor uniquely into a product of
Gaussian primes? Are all the primes from Z also primes in Z[i]? And so on and so
forth.

I will address some of these questions in this essay, starting of course with the
last one. The simple and possibly unsurprising answer is no. Take, for the easiest
example, the smallest prime, 2. This factors as (1 + i)(1− i), and so is not prime.
Why not kill two hedgehogs with one stone, you may say, and answer another of
the questions while we’re here. For surely 2 also factorises as (−1 + i)(−1 − i),
so prime factorisations are not unique! But hold on. First are we sure that all
these ±1± i’s are primes? Well let’s see. They are all rather small numbers, each
having a norm of two, so any number that divides them must have a norm of either
one or two, a fact provided by lemma 1 or 2, take your pick. But now we’re in
troublesome territory, for if we factor one of them, say σ, as σ = α · β then one
of the two factors must have a norm of one, and hence it will be a unit. But this
means the only divisors of our number are 1,−1, i, and −i, because they always
are, and σ,−σ, iσ, and −iσ. Hence σ will be a prime, and so we have found our
first primes. This also means that 2 does factor into Gaussian primes and so is not
one itself. Moreover we can note that (1 + i)(1 − i) = (−i)(−1 + i)i(−1 − i), and
so we can consider the factorisation unique, for each of our two representations is
the same, just with multiples of units included. Two factorisations of a Gaussian
Integer that are intrinsically the same, that is the only difference is the multiples
of units, will be called equivalent.

Back to factorising our numbers. We know now that 2 is not a Gaussian prime,
but it is a special case being even, so let us look at an odd prime, 3. There aren’t
many Gaussian integers small enough to multiply up to three, so it is possible to
check all possible combinations and see whether any give 3 as a result. But none
do as can be shown a bit more succinctly.

By Lemma 1 we know that if α and β are two non-unit factors of 3 then they
will satisfy

N(α)N(β) = N(αβ) = N(3).

Taking α = a + bi and β = c + di this converts to

(a2 + b2)(c2 + d2) = 9.

Recall that neither of our factors are units, so neither expression in the brackets
can be equal to 1. Since 9 = 32 this gives us

a2 + b2 = 3 and c2 + d2 = 3.
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A moment’s thought will assure us that these have no integer solutions, and
hence 3 has no factors in Gaussian integers except for the units and the units
multiplied by 3 itself. So 3 is a Gaussian prime. What does 3 have that 2 doesn’t
to allow it to retain its status as prime? The clue is in the above working. If we
try the same approach to factor 2 we get the two equations below

a2 + b2 = 2 and c2 + d2 = 2.

These do have solutions, namely any combination of (a, b) = (±1,±1), and the
corresponding values for (c, d) to ensure that (a+bi)(c+di) does indeed equal 2. So
if we wish to factorise an integer n into Gaussian integers then we first factorise its
norm as N(n) = XY with neither X nor Y equal to 1. We can always do this since
N(n) = n2 so it will have at least two (not necessarily distinct) non-unit factors.
Then we just have to solve the equations

a2 + b2 = X and c2 + d2 = Y

while bearing in mind that we also need (a + bi)(c + di) = n. For integers we can
use the fact that =(n) = 0 to get a nice formula for the factors, but rather than do
that we shall instead extend the idea to all Gaussian integers.

The same reasoning still holds true for Gaussian integers. We first factor the
norm of the number, say N(γ) = UV , then solve the equations

a2 + b2 = U and c2 + d2 = V.

So, for instance, N(57− 11i) = 3370 = 10 · 337, so we want to solve a2 + b2 = 10
and c2 + d2 = 337. These have many solutions, among them (a, b) = (3, 1) which
then gives (c, d) = (16,−9); and hence 57− 11i = (3 + i)(16− 9i).

This approach gives us our first fact about Gaussian Primes: if the norm of
a Gaussian Integer is prime, then the Gaussian Integer is prime. This is simply
because if N(γ) = p = 1 · p then we will always have one factor being a unit.

The problem seems to have boiled down to finding out which integers can be
written as the sum of two squares3. This is not really an easy question either, but
it is approachable with the Number Theory technique of experimentation.

Numbers that can be written 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26,
as the sum of two squares 29, 32, 34, 36, 37, 40, 41, 45, 49, 50

Numbers that can’t be written 3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28,
as the sum of two squares 30, 31, 33, 35, 38, 39, 42, 43, 44, 46, 47, 48

This table is not particularly telling unless one really knows one’s numbers. The
one below may be more instructive.

Numbers that can be written as the 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 2, 1,
sum of two squares (modulo 4) 0, 2, 0, 1, 0, 1, 1, 1, 2

Numbers that can’t be written as the 3, 2, 3, 3, 0, 2, 3, 3, 1, 2, 3, 0, 3, 0, 2,
sum of two squares (modulo 4) 3, 1, 3, 2, 3, 2, 3, 0, 2, 3, 0

Now a pattern emerges, although unfortunately not a very encompassing one.
It does appear that if n ≡ 3 (mod 4) then it cannot be written as a sum of two
squares. But aside from that the table reveals little. The one below looks at just
the primes.

3A problem that dates back at least two thousand years to the time of Diophantus[2].
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Primes that can be written as the 2, 1, 1, 1, 1, 1, 1
sum of two squares (modulo 4)

Primes that can’t be written as the 3, 3, 3, 3, 3, 3, 3, 3
sum of two squares (modulo 4)

Admittedly the table is looking somewhat low on entries now to be convincing,
but that is no reason not to blindly surmise that if p ≡ 1 (mod 4) then it can be
written as the sum of two squares, and if p ≡ 3 (mod 4) then it cannot. Longer
tables would support this claim, but enough tables, now for proofs.

What we would like to show is that for all odd primes p, p can be written as the
sum of two squares if and only if p ≡ 1 (mod 4). We can ignore 2 as an anomaly.
The contrapositive of this proposition then gives us the corresponding result for
when p ≡ 3 (mod 4).

We can prove the result in one direction immediately.

Theorem 3(i). For all odd primes p, if p can be written as the sum of two squares
then p ≡ 1 (mod 4).

Proof. Suppose that p = a2 + b2. Since p is odd exactly one of a and b must be
odd, otherwise the sum of their squares would be even. So wlog take a as the odd
one, and set a = 2m + 1 and b = 2n. Then we have:

p = a2 + b2

= (2m + 1)2 + (2n)2

= 4m2 + 4m + 1 + 4n2

≡ 1 (mod 4).

And so we are done. �

The proof in the opposite direction is unfortunately much more challenging.
Girard is tenuously given credit by some authorities4 for coming up with the first
proof, though some prefer Fermat who claimed to have a proof several years later
in his letters to Huygens, and who claimed to know a proof based on his Method
of Descent, but who of course never wrote it down. His claim is offered support
by Euler who wins the prize for the first published proof which does indeed use
Fermat’s Method of Descent5.

This is the approach I will use here6. Given our prime p ≡ 1 (mod 4) we try
to write some multiple of p as a sum of two squares. Legendre’s and Euler’s Law
of Quadratic Reciprocity, which I won’t prove here, assures us that we can do this
and find a multiple less than the prime itself. Thus we have integers A1, B1, and
M1 such that A2

1 + B2
1 = M1p and M1 < p. If M1 = 1 then we are done, so assume

also that M1 ≥ 2. Fermat’s Method of Descent requires us to then use this fact to
find three new integers, A2, B2, and M2, such that A2

2 + B2
2 = M2p, and M2 < M1.

We can then apply this procedure repeatedly to find Ai, Bi, and Mi for i = 3, 4, . . .

4Including the renowned H. Davenport[2].
5Despite all this the result is known as Thue’s Lemma after the Norwegian mathematician

Axel Thue.
6Parts of proof taken from Silverman, pp. 176-181 [3]
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until Mi = 1. Then we will have proved the second part of our sum of two squares
theorem. So let us do just that.

Theorem 3(ii). For all odd primes p, if p ≡ 1 (mod 4) then p can be written as
the sum of two squares.

Proof. As just mentioned, the Legendre-Euler-Gauss Law of Quadratic Reciprocity
assures us that we can find integers A1 and B1 such that A2

1 + B2
1 divides p,

specifically we will have
A2

1 + B2
1 = M1p

with M1 < p. Now choose two more integers u and v with u ≡ A1 (mod M1)
and v ≡ B1 (mod M1), both satisfying − 1

2M1 ≤ u, v ≤ 1
2M1. By the elementary

properties of congruences we will have

u2 + v2 ≡ A2
1 + B2

1 (mod M1)

≡ 0 (mod M1).

Which implies that
u2 + v2 = M1r.

Here I assert that the number r satisfies 1 ≤ r < M1. Clearly r must be non-
negative since it is the sum of real squares. So to prove that r ≥ 1 we only need to
show that r 6= 0. We can show this by contradiction, so assume that r = 0. From
the previous line this means that u2 + v2 = 0, and so u = v = 0. But remember
that u ≡ A1 (mod M1) and v ≡ B1 (mod M1), so if r = 0 then A1 ≡ B1 ≡ 0
(mod M1), that is A1 and B1 are divisible by M1. It follows that A2

1 + B2
1 is

divisible by M2
1 , but we already know that A2

1 + B2
1 = M1p, so this implies that

M1 divides p. But we also know that M1 < p, so by the fact that p is prime we
must have M1 = 1. But then we have that A2

1 + B2
1 = p, and so we will be done.

We are assuming it does not work straight away, and so we have arrived at our
contradiction, thus r 6= 0, and so r ≥ 1.

I also asserted that r < M1, which we can see directly using the fact that u and
v are between − 1

2M1 and 1
2M1. So:

r =
u2 + v2

M1
≤ (M1/2)2 + (M1/2)2

M1
=

M1

2
< M1

as required.

So we now have that u2 + v2 = M1r and A2
1 + B2

1 = M1p, we can multiply these
expressions together to get

(u2 + v2)(A2
1 + B2

1) = M2
1 rp.

At this point we need a useful identity which apparently stems from nowhere, but
does in fact come from the very world we are investigating, the complex numbers.
The identity is the following.

Lemma 4. (u2 + v2)(A2
1 + B2

1) = (uA1 + vB1)2 + (vA1 − uB1)2.

The obvious proof is to just multiply out the brackets and show equality. How
does this identity7 relate to the complex numbers, you may wonder. Well consider

7Discovered by Fibonacci, known to some as Leonardo de Pisa, and published in 1202 [4].
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the two complex numbers u + vi and A1 + B1i. Now look back at the proof of
Lemma 1.

You should notice that the above is exactly the result that N(u + vi)N(A1 +
B1i) = N((u + vi)(A1 + B1i)). So we have already proved this lemma, as well as
shown where it comes from.

Back to our proof of Theorem 3(ii), and we had that (u2+v2)(A2
1+B2

1) = M2
1 rp.

Using the identity of Lemma 4 gives us

(uA1 + vB1)2 + (vA1 − uB1)2 = M2
1 rp.

If we could divide by M2
1 at this point then we would gain an expression of the

form A2
2 + B2

2 = M2p, with A2 = uA1+vB1
M1

, B2 = vA1−uB1
M1

, and M2 = r < M1. In
this case we would have achieved what we set out to do, and by repeating all of
this enough times Mi would shrink to one and as we saw above we would have
A2

i + B2
i = p. All that we need to do, then is to show that we can indeed divide

(uA1+vB1)2+(vA1−uB1)2 by M2
1 , or equivalently that uA1+vB1 ≡ vA1−uB1 ≡ 0

(mod M1). This is reassuringly straightforward.
First we have

uA1 + vB1 ≡ A1A1 + B1B1 ≡ M1p ≡ 0 (mod M1).

And next
vA1 − uB1 ≡ B1A1 −A1B1 ≡ M1p ≡ 0 (mod M1).

And thus we are done, and Theorem 3 is complete. �

We now know which primes can be written as the sum of two squares, those
congruent to 1 modulo 4, and the special case of 2. But our original desire was
to find which natural numbers could be written as the sum of two squares. As is
often the case, we can use the fact that prime numbers are the building blocks of
the natural numbers in order to build up a proof for all natural numbers using the
fact we know the result for the primes. The key to our attack is Lemma 4.

Suppose we have a number n = p1p2 · · · pr, with the pi being distinct primes.
Also suppose that each pi ≡ 1 (mod 4) or is equal to 2. Then by Theorem 3 we
can write each pi as the sum of two squares, say pi = α2

i + β2
i , so we now have

n = (α2
1 + β2

1)(α2
2 + β2

2) · · · (α2
r + β2

r ).

But by Lemma 4 the product of the sums of two squares is equal to a single sum
of two squares, so that (α2

1 + β2
1)(α2

2 + β2
2) = (α1α2 + β1β2)2 + (β1α2 − α1β2)2 =

A2
1+A2

2, where the Ai are chosen for equality. But we can then apply this procedure
repeatedly to transform our expression for n into a single sum of two squares.
Formally, a simple proof by induction will show this. So we now know that if all
the prime factors of a given number n are either congruent to 1 modulo 4 or equal
to 2 then n can be written as a sum of two squares.

That is not quite the whole story, though, since this implication is one way, the
fact that n can be written as the sum of two squares does not imply that all its
prime factors are 1 modulo 4 or 2. Take, for example, 98 = 72 +72 which factors as
2·7·7. Not all of its prime factors are congruent to 1 modulo 4 nor equal to 2, yet 98
has just been written as the sum of two squares. Or how about 490 = 72 +212, that
factors as 2 · 5 · 7 · 7. Notice that in both cases the two numbers being squared are
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divisible by seven, and (clearly) the result of their sum is divisible by seven squared.
Dividing through by 72 we get that these two results are simply 2 = 12 + 12 and
10 = 12 + 32 masquerading as something more poignant.

More generally, for any number n which can be written as the sum of two squares,
say

n = a2 + b2,

we can simply multiply through by any square number s2 to get the new case

s2n = (sa)2 + (sb)2.

Thus s2n can be written as the sum of two squares. And conversely if s2 divides
the number n then it must divide the two squares, thus we can divide through to
get

n

s2
=

(a

s

)2

+
(

b

s

)2

,

so that n/s2 can also be written as the sum of two squares. What this tells us is
that if n can be written as s2ñ then we can ignore the s2 since it will only cloud
the issue. What we need to really look at is the prime factorisation of ñ where
µ(ñ) 6= 0 8. Then the same result applies as we noticed earlier in the page.

Theorem 5. If n is a positive integer of the form n = p1p2 · · · prS
2 where the pi

are distinct primes, then n can be written as the sum of two squares if and only if
every pi satisfies one of pi = 2 and pi ≡ 1 (mod 4).

This theorem has given us almost everything we need in order to classify the
Gaussian primes, which is done in the following theorem.

Theorem 6(i) (Classification of Gaussian primes Part 1). Let u be a unit of Z[i],
then the following are all Gaussian primes.

(i) u(1 + i),
(ii) u(a + bi) where a2 + b2 = p for some prime number p ≡ 1 (mod 4),
(iii) uq where q is a prime in Z satisfying q ≡ 3 (mod 4).

Proof. We observed just before embarking on our look at which numbers can be
written as the sum of two squares that if N(α) is an ordinary prime then α is a
Gaussian prime. Since N(1 + i) = 2 is prime and by hypothesis N(a + bi) is prime
then we have that (i) and (ii) are indeed Gaussian primes. Finally for (iii) we take
an ordinary prime p such that p ≡ 3 (mod 4) and assume it can be factorised as
(a + bi)(c + di). We can then use Lemma 1 to see that N(p) = N(a + bi)N(c + di),
or that

p2 = (a2 + b2)(c2 + d2).
Since p is prime the only ways to factor p2 are as p · p or as 1 · p2. But we don’t

want either of the factors to be a unit so we require

a2 + b2 = p and c2 + d2 = p.

But p ≡ 3 (mod 4) so by Theorem 3 the above two equations have no solutions,
and so p cannot be factorised, thus it is a Gaussian prime. �

8Möbius’ mu-function is defined using the prime factorisation of the number in question. If

n = pe1
1 pe2

2 · · · pet
t then µ(n) =

{
t if e1 = e2 = . . . = et = 1

0 if ei > 1 for some i.
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This is not the whole classification. We have shown that the above Gaussian
Integers (hereon referred to as Category (i), (ii), and (iii) primes) are indeed primes,
but we have not shown that all Gaussian Primes are one of the above Gaussian
Integers. We only need one more result to do that.

Lemma 7. For any Gaussian integer γ = a + bi:
(1) If 2 divides N(γ) then 1 + i divides γ;
(2) If q is a category (iii) prime and q divides N(γ) in Z then q divides γ in

Z[i];
(3) If π = s + ti is a category (ii) prime and N(π) = p divides N(γ) in Z then

one or both of π and π divide γ in Z[i].

Proof. (1) By hypothesis, 2 divides N(γ) = a2 + b2, so clearly a and b are
either both odd or both even. Either way 2 must divide a + b and −a + b,
so a+bi

1+i = (a+b)+(−a+b)i
2 is itself a Gaussian integer, and so by definition,

1 + i divides a + bi.
(2) We know that q ≡ 3 (mod 4) and that q divides a2 + b2. That means that

a2+b2 ≡ 0 (mod q)), or equivalently that a2 ≡ −b2 (mod q). Here we need
to use Legendre’s symbols to complete the result. For an odd prime p and
an integer m(6≡ 0 (mod p)) the Legendre symbol (m | p) is defined in terms
of “quadratic residues”. Essentially, if there exists an integer x such that
m ≡ x2 (mod p) then (m | p) = 1. If no such x exists then (m | p) = −1.
One of the many useful facts about Legendre symbols is that they multiply
quite nicely, that is: (m | p) · (n | p) = (mn | p). Using this fact9 we can
see that a2 ≡ −b2 (mod q) implies that (a2 | q) = (−b2 | q). But also that
(a2 | q) = (a | q)2 and that (−b2 | q) = (−1|q)(b2 | q) = (−1|q)(b|q)2. We
now once again use the Law of Quadratic Reciprocity (see Theorem 3(ii))
which tells us that since p ≡ 3 (mod 4), (−1 | q) = −1. Thus we now have:

(a | q)2 = −(b | q)2.
But this is surely a contradiction since Legendre symbols equal ±1, and
so this seems to say that 1 = −1. The contradiction arises because of the
proviso that we defined (m | p) for m 6≡ 0 (mod p). The only way out it
seems is to suppose that a ≡ b ≡ 0 (mod q). Thus a = qα and b = qβ, and
γ = a + bi = qα + qβi = q(α + βi), thus γ is divisible by q as required.

(3) By hypothesis p divides N(γ), or equivalently N(γ) = a2 + b2 = pR for
some natural number R. We just need to show that one of
γ

π
=

(as + bt) + (−at + bs)i
p

and
γ

π
=

(as− bt) + (at + bs)i
p

is a Gaussian integer.
Remember that p = N(π) = s2 + t2. Note first the following,

(as + bt)(as− bt) = a2s2 − b2t2

= a2s2 − b2(p2 − s2)

= (a2 + b2)s2 − pb2

= pRs2 − pb2.

9Proved by Gauss, among others, in Theorem 98 of Disquisitiones Arithmeticae[5].
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Since p divides pRs2−pb2 it must also divide (as+bt)(as−bt). But one of
the most important facts in number theory is that if p|xy then p|x or p|y, so
we know that p divides at least one of (as+bt) and (as−bt). Using exactly
the same techniques shows that p divides at least one of (−at + bs) and
(at + bs). So p definitely divides at least one real part and one imaginary
part in the above two numerators. The worst case scenario is that p divides
just one real part and one imaginary part, and that these parts are not
from the same number. If p divides (as + bt) and (−at + bs) then we are
done and γ/π is a Gaussian Integer. Similarly if p divides (as − bt) and
(at + bs) then we are done and γ/π is a Gaussian Integer. So suppose that
neither of these are true, and that p divides (−at + bs) and (as− bt). So p
also divides any linear combination of these two, specifically, p divides

(−at + bs)a− (as− bt)b = −a2t + abs− abs + b2t = (b2 − a2)t.

Recall that p = s2 + t2 so p cannot divide t, thus p must divide b2 − a2,
as well as a2 + b2 by hypothesis. So we can combine these to see that p
divides both 2a2 and 2b2 since

2a2 = (a2 + b2)− (b2 − a2) and 2b2 = (a2 + b2) + (b2 − a2).

Since p 6= 2 we must have p dividing a and b, so let a = pa′ and b = pb′.
Then

γ = a + bi = p(a′ + b′i) = (s2 + t2)(a′ + b′i) = ππ(a′ + b′i).

So in fact in this case γ is divisible by π and π.

Exactly the same argument shows that in the case of the other bad
scenario exactly the same thing happens. Thus (3) is proved and the Lemma
complete. We are now ready to complete the classification.

�

Theorem 6(ii) (Classification of Gaussian Primes Part 2). Every Gaussian Prime
is of one of the forms (i), (ii), and (iii) from Theorem 6(i).

Proof. Suppose that ρ = a + bi is a Gaussian prime. By definition N(ρ) ≥ 2, so
there is at least one prime q (in the integers) that divides N(ρ).

First suppose that q = 2. Part (1) of Lemma 7 tells us that 1 + i divides ρ, but
ρ is a prime so it must be of the form u(1 + i) for some unit u, i.e. in category (i).

Now suppose that q ≡ 3 (mod 4). Part (2) of Lemma 7 tells us that q divides
ρ, but again, ρ is a prime so this can only happen if ρ = uq for some unit u, that
is if ρ is of category (iii).

Finally assume that q ≡ 1 (mod 4). Theorem 3 tells us that q can be written
as the sum of two squares, say q = α2 + β2, while part (3) of Lemma 7 tells us
that ρis divisible either by α + βi or α − βi. Thus ρ is equal to either u(α + βi)
or u(α − βi). In particular N(ρ) = a2 + b2 = α2 + β2 = q, so ρ is from category
(ii). Since all primes are either 2 or odd they are all either 2, congruent to 1 mod
4, or congruent to 3 mod 4. Thus we have covered all primes and completed our
classification of the Gaussian Primes. �
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When plotted on the complex plane the Gaussian Primes appear as in the dia-
gram below. The rotational symmetry is a side effect of the fact that if a + bi is a
Gaussian prime then so is b + ai, and so are u(a + bi) and u(b + ai) for any unit
u, which acts as a rotation. Just as with the normal integers, the Gaussian Primes
form a foundation for the Gaussian Integers, and every Gaussian integer can be
expressed uniquely (up to multiplication by units and the order of the factors) as
a product of Gaussian Primes. This can be proved using results from Algebra II,
by showing that Z[i] forms a Euclidean domain, and that every Euclidean Domain
is a Unique Factorisation Domain. The results in this essay are more number the-
oretical and less algebraic, and hopefully highlight some of the underlying beauty
of the numbers Gauss considered to be the true integers.
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