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Abstract. We show how a special case of Wilkie’s conjecture would imply a

real version of the three exponentials conjecture.

1. Introduction

In their 2006 paper [PW06], Pila and Wilkie proved a far-reaching result concerning
the paucity of rational points in the transcendental parts of sets definable in o-
minimal structures. In the years since that result, numerous applications have been
found to the area of Diophantine geometry. In that same paper, Wilkie conjectured
an improvement to his and Pila’s result for those sets definable in a particular
o-minimal structure: the real exponential field. This conjectured improvement is
expected to have consequences in the area of transcendental number theory rather
than Diophantine geometry. In this note we show how a special case of Wilkie’s
conjecture for a set in R4 would establish a real version of an open problem in
transcendental number theory known as the three exponentials conjecture.

For the purposes of this note it suffices to know that Wilkie’s conjecture deals
with a class of subsets of Rn that can be written as a projection πm(V ) where
πm is the projection map onto the first m coordinates and V is the zero set of an
exponential polynomial, i.e.

V = {(x1, . . . , xn) ∈ Rn : P (x1, . . . , xn, e
x1 , . . . , exn) = 0}

where P ∈ R[t1, . . . , tn, y1, . . . , yn] is a real polynomial in 2n variables. Subsets of
the above form – that is projections of the zero sets of exponential polynomials –
will be referred to as definable in Rexp.

To state Wilkie’s conjecture we need a way of measuring the size of algebraic
numbers, and so we define the multiplicative height of an algebraic number α as
being H(α) = exp(h(α)) where h is the logarithmic height

h(α) =
1

[K : Q]

∑
v∈MK

Dv log max{1, |α|v},

where K is any number field containing α, MK is the set of places of K, and Dv

is the local degree at v ∈ MK . Although this is a rather complicated definition,
we only really need the fact that for n ∈ Z we have H(αn) = H(α)|n| (see, for
example, [Wal00]).

Given a set X ⊆ Rn and a number field F ⊂ R we set X(F ) = X ∩ Fn and
are interested in the density of points in X(F ) with respect to height, videlicet the
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cardinality of the set

X(F, T ) = {(x1, . . . , xn) ∈ X(F ) : H(xi) ≤ T, 1 ≤ i ≤ n}.

This cardinality we denote

N(X,F, T ) = card(X(F, T )).

Loosely speaking, then, Wilkie’s conjecture posits an upper bound forN(X,F, T )
whenX is definable in Rexp. There is a catch though. By taking the zero polynomial
we can see that the set Rn is definable in Rexp, and so if we work in full generality
then any upper bound for N(X,F, T ) will just be an upper bound on the number of
elements of Fn of bounded height. In fact it is not just Rn that is the problem: any
semi-algebraic subset contained in our set X may contain many algebraic points,
that is � T δ algebraic points of height less than T for some positive constant δ.
But while most of the algebraic points in a set X may be found in the semi-algebraic
subsets of X, these are – at least if one is studying transcendental number theory
– the least interesting algebraic points. To remedy this we define the algebraic
part of a set X to be union of all connected semi-algebraic subsets of X of positive
dimension (so not the points). We denote this union Xalg, and then ignore it and
concentrate on counting the density of points in Xtrans = X \Xalg.

Above we alluded to the fact that a set with � T δ algebraic points should be
considered to contain ‘many’ algebraic points. Thus it seems reasonable to consider
a set with � T ε algebraic points to contain ‘few’ algebraic points, where ε may be
any arbitrarily small positive number. Indeed, the Pila–Wilkie theorem says that
for a broad class of well behaved sets, one has, for any ε > 0,

N(Xtrans, F, T )�F,ε,X T ε.

This mooted class of well behaved sets includes those definable in Rexp and many
more besides. For some of these sets one does not seem to be able to do better
than an upper bound of T ε. But Wilkie conjectured otherwise for the case we are
interested in.

Conjecture 1.1 (Wilkie’s conjecture). Let X be a definable set in Rexp and F ⊂ R
be a number field of degree f . Then there are constants c1(X, f) and c2(X) such
that, for any T ≥ e,

N(Xtrans, F, T ) ≤ c1(X, f)(log T )c2(X).

At present proofs of this conjecture are only known when the dimension of X
is 1 or for surfaces in R3 that can be represented as the images of a particularly
well-behaved kind of function. In this note we will consider a set not covered by
this list. Let X3 ⊂ R4 be the set

X3 = {(x, y, z, t) ∈ R3
>0 × R× : (log x)(log y) = t log z}.

In this paper we will show that a proof of Wilkie’s conjecture for X3 with a par-
ticularly low exponent would prove the real case of a conjecture in transcendental
number theory known as the three exponentials conjecture. Following that we
show that the same correlation holds if we can prove Wilkie’s conjecture with an
even lower exponent for all the fibres of X3 if it is viewed as a definable family
parametrised by t.
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2. The algebraic part

Wilkie’s conjecture concerns itself only with the transcendental parts of sets. To
apply it, then, one must know the algebraic part of the set in question, otherwise
one is apt to draw mistaken conclusions about the transcendental part of the set.

The set X3 is a three-fold in R4 and so to find all of Xalg
3 we should look for semi-

algebraic curves, surfaces, and three-folds. In practice we need only look for the
curves: by fixing one of the coordinates in any algebraic surface contained in X3 we
get an algebraic curve contained in X3, thus by finding all the algebraic curves we

will have found every point in Xalg
3 . Recall after all that we are not that interested

in interesting representations of Xalg
3 in terms of a few high dimensional objects,

merely knowing which points in X3 are in Xalg
3 will suffice.

Lemma 2.1. For p, q ∈ R let

Γ1,p,q = {(eq, sp, s, pq) : s > 0},
and

Γ2,p,q = {(sp, eq, s, pq) : s > 0}
and for any algebraic function f let

Γ3,f = {(1, f(s), 1, s) : s ∈ f−1(R>0) \ {0}}
and

Γ4,f = {(f(s), 1, 1, s) : s ∈ f−1(R>0) \ {0}}.
Then

Xalg
3 =

⋃
p∈Q
q∈R
pq 6=0

Γ1,p,q ∪ Γ2,p,q

⋃
algebraic f

Γ3,f ∪ Γ4,f .

Proof. Let Γ be an arc of an algebraic curve contained in X3. If t is constant on
Γ then we should consider four cases: either x is constant on Γ, y is constant on
Γ, z is constant on Γ, or none of the other three variables is constant on Γ. In the
first couple of cases, if x (respectively y) is constant on Γ then Γ is part of Γ1,p,q

(respectively Γ2,p,q) for some p and q. If z is constant then (log x)(log y) is constant
on Γ, say equal to c. This would mean that

exp

(
c

log y

)
was an algebraic function of x, which it clearly is not. The final case is when x, y,
and z all vary. Here we may take y and z to be algebraic functions of x on some
domain, and then by analytic continuation extend this relation to all sufficiently
large, possibly complex, x. We can take these functions y(x) and z(x) to be given
by Puiseux series in x, say

z(x) = a0x
α + . . .

and

y(x) = b0x
β + . . . .

Then

x = exp

(
τ log a+ τα log x+ τ log(1 + . . .)

log b+ β log x+ log(1 + . . .)

)
which tends to τα/β as |x| → ∞, a contradiction.
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That deals with the case that t is constant. So now suppose that t varies on Γ.
If z is identically equal to 1 on Γ then we are in the situation of Γ3,f or Γ4,f for
some algebraic function f . Otherwise x, y, and z will be algebraic functions of t
that we can analytically continue to |t| → ∞. As before, these functions can be
given by Puiseux series, say

x(t) = atα + . . . ,

y(t) = btβ + . . . ,

and
z(t) = ctγ + . . . .

Then, since

t =
log x(t) log y(t)

log z(t)

will hold for all t we should have

t =
log(atα + . . .) log(btβ + . . .)

log(ctγ + . . .)

→ αβ

γ
log t

as |t| → ∞, a contradiction. �

3. The real three exponentials conjecture

In the 1960s, Lang and Ramachandra independently proved a result that es-
tablished the transcendence of at least one of six values of the exponential func-
tion, given the right conditions on the exponents.[Lan66][Ram68] Their result became
known as the six exponentials theorem. They also conjectured an improved version:
one should be able to eschew two of the exponentials and still guarantee the tran-
scendence of at least one of the remaining four. This four exponentials conjecture
remains an open problem. Variations on these two statements abound. Most of
these variations fit into a neat system of implications, but sitting by itself in the
corner is the three exponentials conjecture.

Conjecture 3.1 (Three exponentials conjecture). Let λ1, λ2, λ3 be three complex
numbers such that eλ1 , eλ2 , and eλ3 are algebraic, and let γ 6= 0 be an algebraic
number. If λ1λ2 = γλ3 then in fact λ1λ2 = γλ3 = 0.

An equivalent formulation that looks more related to the aforementioned version
of the six exponentials theorem is the following.

Conjecture 3.2 (Three exponentials conjecture – exponential formulation). Let
x1, x2, and y be non-zero complex numbers and γ be a non-zero algebraic number.
Then at least one of the following three numbers is transcendental:

ex1y, ex2y, eγx1/x2 .

A currently unknown consequence of this conjecture would be the transcendence

of eπ
2

, a number that at present isn’t even known to be irrational. To prove its
transcendence from the conjecture one takes, in the logarithm version, λ1 = iπ,

λ2 = −iπ, and γ = 1. If eπ
2

is algebraic we can take λ3 = π2 and contradict the
conjecture.

The results in this paper relate to a weaker version of the conjecture that only
deals with real numbers.
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Conjecture 3.3 (Real three exponentials conjecture). Let λ1, λ2, λ3 be three real
numbers such that eλ1 , eλ2 , and eλ3 are algebraic, and let γ 6= 0 be a real algebraic
number. If λ1λ2 = γλ3 then in fact λ1λ2 = γλ3 = 0.

This can also be reformulated in terms of the transcendence of one of three expo-
nentials by making the obvious changes to conjecture 3.2. This result implies real
versions of classical results in transcendence theory such as the Gelfond–Schneider
theorem and Hermite’s theorem.

All this is very well, but what does it have to do with Wilkie’s conjecture? The
answer is as follows.

Theorem 3.4. Suppose that for any number field F ⊂ R of degree [F : Q] = f we
have

N(Xtrans
3 , F, T )�f (log T )2.

Then conjecture 3.3 is true. Conversely, if conjecture 3.3 is true then Xtrans
3 (F ) =

∅.

This suggests a nice little repulsion result. Wilkie’s conjecture doesn’t forbid
X3 from containing lots of algebraic points, as long as their height grows slowly
enough. But combined with transcendence properties of the exponential function,
if Xtrans

3 (Ralg) isn’t empty then there is a lower bound on the density of its algebraic
points.

Proof. First suppose that conjecture 3.3 is false, so we have three real numbers
λ1, λ2, λ3 ∈ R× such that eλ1 , eλ2 , eλ3 ∈ Ralg, and a real algebraic number γ 6= 0
such that λ1λ2 = γλ3. Let x1 = eλ1 , y1 = eλ2 , z1 = eλ3 , and t1 = γ. Let F be the
number field obtained by adjoining these numbers to Q, so F = Q(x1, y1, z1, t1).
Then we have that

(log x1)(log y1) = λ1λ2 = γλ3 = t1 log z1.

And so (x1, y1, z1, t1) ∈ X3(F ). We can raise each of these numbers to integer
powers without expelling them from F , and so for any integers a, b, c ∈ Z we also
have

(xa1 , y
b
1, z

c
1, abt1/c) ∈ X3(F ).

We now need to check two things: that by varying a, b, and c we get enough
algebraic points to confound the (log T )2 upper bound, and that the points we get

aren’t contained in Xalg
3 . The second of these issues is easy to deal with.

Recall that Xalg
3 consists of the four families Γ1,p,q, Γ2,p,q for p ∈ Q, q ∈ R, and

pq 6= 0, and Γ3,f and Γ4,f for algebraic functions f . In the first two families two of
the coordinates are of the form (eq, pq) for our nonzero rational parameter p and
real parameter q. But by Hermite’s theorem at least one of these two numbers is
transcendental, and so either x1, y1, or z1 can’t be of this form, and nor can any
of their powers. In the latter two families of curves either the x or y coordinate is
fixed at 1, but this would correspond to either λ1 or λ2 being zero, which we ruled

out by hypothesis. So our points and the derived points cannot lie in Xalg
3 .

We now show that varying a, b, c gives � (log T )3 points in Xtrans
3 (F, T ). As

just stated, neither x1, y1, nor z1 can be 1, so, since we are in R>0, raising them
to different powers always results in different numbers. Now we check how many
different values of a, b, and c we can use without exceeding height T . First let
η1 = h(x1), η2 = h(y1), η3 = h(z1), and η4 = H(t1), where h is the logarithmic
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height defined in the introduction and H = eh is the multiplicative height. Recall
that H(αn) ≤ |n|H(α) for algebraic α and integral n, and so if we want H(xa1) ≤ T
then it suffices to have |a| ≤ log T/ logH(x1), and similarly for yb1 and zc1. And so
we can take

|a| ≤ log T

η1
, |b| ≤ log T

η2
, |c| ≤ log T

η3
.

But we still need to check that the height in the t-coordinate doesn’t grow too
quickly. The multiplicative height H is sub-multiplicative, so we have

H

(
ab

c
t1

)
≤ H

(
ab

c

)
H(t1) = max{|ab|, |c|}η4.

In particular, if a, b, c range over the domains specified above then the above height
is � (log T )2 which is definitely less than T after some small, fixed value of T
depending on the ηis. So if we let η = maxi ηi then we can let |a|, |b|, |c| vary
between 1 and b(log T )/ηc and keep all our points of height at most T . Hence we
have

N(Xtrans
3 , F, T )� (log T )3.

We now prove the converse implication. So suppose we have a point (x, y, z, t) ∈
Xtrans

3 . We show this gives a counterexample to conjecture 3.3. By definition
this point gives λ1 = log x, λ2 = log y, λ3 = log z, and γ = t that satisfy the
hypotheses of conjecture 3.3 but such that λ1λ2 = γλ3. And so we are done unless
λ1λ2 = γλ3 = 0. Since t = γ 6= 0 this only leaves the possibility that λ3 = 0 so that
z1 = 1 and λ1 = 0 or λ2 = 0 so that x or y is 0. But these two possibilities both

lie in Xalg
3 , specifically the families referred to as Γ3,f and Γ4,f . This contradicts

(x, y, z, t) ∈ Xtrans
3 , and so we are done. �

The set X3 tackles the three exponentials conjecture all at once, as it were. An
alternative approach would be to try to prove the conjecture individually for each
value of γ. This corresponds to proving Wilkie’s conjecture for the algebraic fibres
of X3 if we view it as a definable family parametrised by t. So we define

X3,γ = {(x, y, z) ∈ R3
>0 : (log x)(log y) = γ log z}.

The case γ = 1 is the surface considered in [Pil10], where it is shown that

N(Xtrans
3,1 , F, T )� (log T )44+ε.

We show below how proving N(Xtrans
3,γ , F, T )� log T for all algebraic γ 6= 0 would

prove conjecture 3.3.

Theorem 3.5. Let γ 6= 0 be real and algebraic. If for any number field F ⊂ R of
degree f we have

N(Xtrans
3,γ , F, T )�f log T

then if λ1, λ2, and λ3 are nonzero logarithms of positive, real algebraic numbers
then λ1λ2 6= γλ3.

Proof. This is essentially the same as the previous proof. Xalg
3,γ is comprised of the

sections of Xalg
3 under t = γ. In particular, for any (x, y, z) ∈ Xalg

3,γ either x = 1 or
y = 1 or x is transcendental or y is transcendental. So if we have nonzero logarithms
of algebraic numbers λ1, λ2, λ3 such that λ1λ2 = γλ3 then letting x1 = eλ1 , y1 =
eλ2 , z1 = eλ3 gives us a point in Xtrans

3,γ (F ) for F = Q(x1, y1, z1). As above we can
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then take integral powers of the exponents, this time parametrised by two integers,
so we get

(xa1 , y
b
1, z

ab
1 ) ∈ Xtrans

3,γ (F )

for any integers a and b. This time we can’t simply vary a and b between −blog T c
and blog T c since then the height of the third coordinate, zab would grow about
as quickly as T log T , faster than the T permitted. So we need |a|, |b| � log T and
|ab| � log T . If we take the lattice points (a, b) ∈ Z2 below the curve xy = log T
then our conditions are met. The number of such points is bounded by∫ log T

1

log T

x
dx = log T log log T.

And so taking all such a and b gives us

N(Xtrans
3,γ , F, T )� log T log log T.

�

Wilkie’s conjecture has already been established for these sets in [JT12], but
unfortunately the exponent is somewhat larger than 1.

4. Further work

Just as the set X3 provides a tangible link between Wilkie’s conjecture and the
three exponentials conjecture, so too can one find sets X4 ⊂ R4 and X#4 ⊂ R8 that
link Wilkie’s conjecture to the four exponentials conjecture and the sharp four ex-
ponentials conjecture respectively. Unfortunately these sets are somewhat unwieldy
to work with, making even finding their algebraic parts difficult. Moreover proving
a logarithmic bound for their algebraic points doesn’t currently seem possible. Fi-
nally, the sets corresponding to these conjectures don’t have a group structure, so as
with X3 one will presumably have to prove a logarithmic bound with exceedingly
small exponent to prove the conjectures, whereas a group structure would likely
lead to any exponent being sufficient to bound the number of counterexamples to
these conjectures.
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