
THE HILBERT SYMBOL

This lecture is based on the book A course in Arithmetic by Serre, all the omitted proofs
can be found there.

In the whole lecture, let k = Qv for some v ∈ V = {∞} ∪ {p prime}, where Q∞ = R.

Definition. For any a, b ∈ k∗, the Hilbert symbol of a and b relative to Qv is defined as

(a, b)v :=

{
+1 if z2 − ax− by2 = 0 has a nontrivial solution in k3,

−1 otherwise.

Remark. If a and b are multiplied by squares, (a, b)v doesn’t change, thus ( , )v defines
a map

k∗/k∗2 × k∗/k∗2 −→ {±1}.

Proposition 1. Let a, b ∈ k∗ and kb = k(
√
b). We have (a, b)v = 1 if and only if a ∈ N(k∗b ),

the group of norms of elements of k∗b .

Proof. Easy. �

Proposition 2. Let a, a′, b, c ∈ k. We have:

i) (a, b)v = (b, a)v and (a, c2)v = 1,
ii) (a,−a)v = (a, 1− a)v = 1,

iii) (a, b)v = 1⇒ (a, b)v = (aa′, b)v,
iv) (a, b)v = (a,−ab)v = (a, (1− a)b)v,

Proof. i) and ii) are trivial and iv) is implied by ii) and iii). To prove iii), apply Propo-
sition 1. �

Lemma 1. All quadratic forms in at least 3 variables over a finite fields have a nontrivial
zero.

Proof. See Serre’s book. �

Lemma 2. Let x be a zero of the reduction modulo p of a polynomial f ∈ Zp[X1, . . . , Xm].
Then, if x is simple (i.e. ∂f/∂Xi(x) 6= 0 for some i), it lifts to a zero of f with coefficients
in Zp.

Proof. See Serre’s book. Anyway, it’s nothing deep, it’s just a simple application of Taylor’s
formula. �

Lemma 3. Let v ∈ Z∗p a p-adic unit. If the equation z2 − px2 − wy2 = 0 has a nontrivial
solution in Qp, it has a solution (z, x, y) with z, y ∈ Z∗p and x ∈ Zp.

Proof. See Serre’s book. �
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Theorem 1. If k = R, we have

(a, b)∞ =

{
+1 if a or b > 0,

−1 otherwise.

If k = Qp and if we write a = pαu, b = pβw, with u,w ∈ Z∗p, we have

(a, b)p = (−1)αβ
(p−1)

2

(
u

p

)α(
w

p

)β
if p > 2,

(a, b)2 = (−1)
u−1

2
w−1

2
+αw2−1

8
+β u2−1

8

(
u

p

)α(
w

p

)β
.

Proof. If k=R the assertion is trivial. Let k = Qp with p > 2. We can split the problem in
three cases:

(1) α ≡ β ≡ 0 (mod 2). We must check that (u,w)p = 1. By lemma 1, the equation

z2 − ux2 − wy2 = 0

has a nontrivial zero mod p. By lemma 2, this lifts to Zp and so (u, v)p = 1.

(2) α ≡ 1, β ≡ 0 (mod 2). We must check that (pu, w)p =
(
w
p

)
and this, by 1) and

iii) of Proposition 2, is equivalent to (p, w)p =
(
w
p

)
. If w is a square, both sides

are clearly equal to 1, otherwise
(
w
p

)
= −1 and so is (p, w)p by Lemma 3.

(3) α ≡ β ≡ 1 (mod 2). We must check that

(pu, pw)p = (−1)(p−1)/2

(
u

p

)(
w

p

)
.

By iv) of Proposition 2, we have

(pu, pw)p = (pu,−p2uw)p = (pu,−uw)p

and, by 2), this is(
uw

p

)
=

(
−1

p

)(
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)
= (−1)(p−1)/2

(
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)(
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)
For the case p = 2, see Serre’s book. �

Theorem 2. The Hilbert symbol is a bilinear form on the F2-vector space k∗/k∗2. That is,

(aa′, b)v = (a, b)v(a
′, b)v,

for all a, a′, b ∈ k∗. Moreover the Hilbert symbol is nondegenerate, i.e. if b ∈ k∗ is such
that (a, b)v = 1 for all a ∈ k∗, then b ∈ k∗2.

Proof. The bilinearity is clear form Theorem 1. To prove the nondegeneracy, see Serre’s
book. �
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Theorem 3. If a, b ∈ Q∗, we have (a, b)p = 1 for almost all primes p and∏
v∈V

(a, b)p = 1.

Proof. Since the Hilbert symbols are bilinear, we just need to consider the case when a, b
are equal to a prime or to -1. Theorem 1 and the quadratic reciprocity law allow us to do
explicitly the computations and to prove the theorem. �

Theorem 4. Let (ai)i∈I a finite family of elements of Q∗ and let (εi,v)i∈I,v∈V a family of
numbers equal to ±1. Then, there exists an x ∈ Q∗ such that (ai, x)v = εi,v for all i ∈ I
and all v ∈ V if and only if

(1) εi,v = 1 for almost all v ∈ V .
(2)

∏
v εi,v = 1 for all i ∈ I.

(3) For all v ∈ V there exists xv ∈ Q∗v such that (ai, x)v = εi,v for all i ∈ I.

Proof. See Serre’s book (the proof uses Dirichlet theorem on the infinity of primes in any
arithmetic progression and the density of Q in

∏
v Qv). �


