THE HILBERT SYMBOL

This lecture is based on the book A course in Arithmetic by Serre, all the omitted proofs
can be found there.
In the whole lecture, let k = Q, for some v € V = {oo} U {p prime}, where Q,, = R.

Definition. For any a,b € k*, the Hilbert symbol of a and b relative to Q, is defined as

(a,b) +1 if 22 — az — by? = 0 has a nontrivial solution in &3,
a =
—1 otherwise.

Remark. If a and b are multiplied by squares, (a,b), doesn’t change, thus ( , ), defines
a map

E* )k x k* [k — {£1}.

Proposition 1. Let a,b € k* and ky = k(v/b). We have (a,b), = 1 if and only if a € N(k}),
the group of norms of elements of kj.

Proof. Easy. O

Proposition 2. Let a,d’,b,c € k. We have:
i) (a,b), = (b,a), and (a,c?), = 1,
i) (a,—a), = (a 1—a), =1,
m) (a,b), =1=(a,b), = (ad,b),,
) (a’ b) ( _ab>v = (a, (1 - a)b>v7
Proof. i) and ii) are trivial and iv) is implied by 4i) and iii). To prove iii), apply Propo-
sition 1. g

Lemma 1. All quadratic forms in at least 3 variables over a finite fields have a nontrivial
zero.

Proof. See Serre’s book. O

Lemma 2. Let x be a zero of the reduction modulo p of a polynomial f € Z,[ X1, ..., Xy
Then, if x is simple (i.e. Of/0X;(x) # 0 for some i), it lifts to a zero of f with coefficients
in Z,.

Proof. See Serre’s book. Anyway, it’s nothing deep, it’s just a simple application of Taylor’s
formula. O

Lemma 3. Let v € Z;, a p-adic unit. If the equation 22 — px? — wy? = 0 has a nontrivial
solution in Qy, it has a solution (z,x,y) with z,y € Z, and x € Z,.

Proof. See Serre’s book. O
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Theorem 1. If k =R, we have

1 if
(a,b)oo:{+ ifaorb >0,

—1 otherwise.

If k = Q, and if we write a = p*u, b = pPw, with u, w € L, we have

N o /—\ B
ab), = (1) <_) (ﬂ) ity 2
(a,b), = (—1) p 5 p

N /—\ B
a-1w-1, w2-1, qu-1 [ U w
(0.0 = (1) e (1) (1)
p p

Proof. If k=R the assertion is trivial. Let k = Q, with p > 2. We can split the problem in
three cases:

(1) = =0 (mod 2). We must check that (u,w), = 1. By lemma 1, the equation

22 —ux? —wy? =0

has a nontrivial zero mod p. By lemma 2, this lifts to Z, and so (u,v), = 1.

(2) o« =1, =0 (mod 2). We must check that (pu,w), = <%> and this, by 1) and
i11) of Proposition 2, is equivalent to (p,w), = <;). If w is a square, both sides
are clearly equal to 1, otherwise (%) = —1 and so is (p,w), by Lemma 3.

(3) = =1 (mod 2). We must check that

o= () )

By iv) of Proposition 2, we have

(pu, pw), = (pu, —p*uw), = (pu, —uw),
and, by 2), this is

(5)-G)E) G- () 6)

p p p p p p

For the case p = 2, see Serre’s book. U
Theorem 2. The Hilbert symbol is a bilinear form on the Fy-vector space k* /k**. That is,

(ad',b), = (a,b),(d,b).,,

for all a,a’,b € k*. Moreover the Hilbert symbol is nondegenerate, i.e. if b € k* is such
that (a,b), = 1 for all a € k*, then b € k*2.

Proof. The bilinearity is clear form Theorem 1. To prove the nondegeneracy, see Serre’s
book. U
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Theorem 3. If a,b € Q*, we have (a,b), =1 for almost all primes p and

[[(ab),=1.

veV

Proof. Since the Hilbert symbols are bilinear, we just need to consider the case when a,b
are equal to a prime or to -1. Theorem 1 and the quadratic reciprocity law allow us to do
explicitly the computations and to prove the theorem. Il

Theorem 4. Let (a;)ier a finite family of elements of Q* and let (;4)icrvev a family of
numbers equal to £1. Then, there exists an x € Q* such that (a;,x), = €;y for alli € I
and oll v € V if and only if

(1) €ip =1 for almost allv € V.
(2) 11,60 =1 foralliel.
(3) For allv € V there exists x, € Q} such that (a;,x), =€, for alli € 1.

Proof. See Serre’s book (the proof uses Dirichlet theorem on the infinity of primes in any
arithmetic progression and the density of Q in [, Q,). O



