
Algebraic Number Theory – Lecture 3

Jobin Lavasani

“Verbum sapienti satis est.”

1. Conjugates

If K = Q(θ) is a number field there will be, in general, several distinct monomor-
phisms σ : K → C.

Example. Take K = Q(i) where i =
√
−1. Then we have

σ1(x+ iy) = x+ iy

σ2(x+ iy) = x− iy
where x, y ∈ Q.

Theorem 1. Let K = Q(θ) be a number field of degree n over Q. Then:

• there are exactly n distinct monomorphisms σi : K → C (1 6 i 6 n), called
the embeddings of K into C;
• the elements θi := σi(θ) are the distinct zeros in C of the minimal polyno-

mial of θ over Q.

Proof. See Stewart & Tall page 42. �

Example. For K = Q(i), the minimal polynomial of i is x2 + 1, and K has a basis
{1, i} over Q. So

σ1(i) = i

σ2(i) = −i.

2. The Field Polynomial

Definition. For each α ∈ K = Q(θ) we define the field polynomial of α to be

fα(t) =
n∏
i=1

(t− σi(α))

where the elements σi(α) are called the K-conjugates of α. Note that fα depends
on the field K.

Theorem 2. • The field polynomial fα is a power of the minimal polynomial
pα of α.

1



2

• The K-conjugates of α are the zeros of pα in C, each repeated n/m times
where m is the degree of pα.
• The element α is in Q if and only if all of its K-conjugates are equal.
• Q(α) = Q(θ) if and only if all K-conjugates of α are distinct.

Proof. See Stewart & Tall page 43. �

Definition. Let K = Q(θ) be of degree n and let {α1, . . . , αn} be an integral basis.
We define the discriminant of this basis to be

∆[α1, . . . , αn] = (det(σi(αj))16i,j6n)2 .

Example. Let K = Q(i). Then,

σ1(1) = 1 σ1(i) = i

σ2(1) = 1 σ2(i) = −i.
So

∆[1, i] =
∣∣∣∣1 i
1 −i

∣∣∣∣2 = −4.

Gauss’ lemma. Let p ∈ Z[t] and suppose p = gh where g, h ∈ Q[t]. Then there
exists λ ∈ Q× such that λg, λ−1h ∈ Z[t].

Lemma 1. An algebraic number α is an algebraic integer if and only if its minimal
polynomial over Q has coefficients in Z.

Proof. Let p be the minimal polynomial of α over Q, so p is monic and irreducible
in Q[t].

(⇐): If p ∈ Z[t] then α is an algebraic integer by definition.
(⇒): If α is an algebraic integer then q(α) = 0 for some monic polynomial
q ∈ Z[t], and p | q, so q = ph for some h ∈ Q[t]. By Gauss’ lemma there
is some λ ∈ Q× such that λp ∈ Z[t] and λp | q. But p and q are monic so
necessarily λ = 1.

�

Let K = Q(θ) be a number field of degree n and let σ1, . . . , σn be the monomor-
phisms K → C. By theorem 1, the field polynomial of α ∈ Q(θ) is a power of the
minimal polynomial of α. So by lemma 1 and Gauss’ lemma it follows that α ∈ K
is an algebraic integer if and only if the field polynomial is in Z[t].

3. Norm and Trace

Definition. For α ∈ K we define the norm of α as

N(α) =
n∏
i=1

σi(α)
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and the trace as

T (α) =
n∑
i=1

σi(α).

Note that they both depend on the field K.

Since the σi are monomorphisms it’s clear that N(αβ) = N(α)N(β) and if α 6= 0
then N(α) 6= 0. If p, q ∈ Q then we have T (pα+ qβ) = pT (α) + qT (β).

Example. If K = Q(
√

7) then the integers of K are given by OK = Z[
√

7]. The
monomorphisms are

σ1(p+ q
√

7) = p+ q
√

7

σ2(p+ q
√

7) = p− q
√

7.

So

N(p+ q
√

7) = p2 − 7q2

T (p+ q
√

7) = 2p,

and

∆[1,
√

7] =
∣∣∣∣1 √

7
1 −

√
7

∣∣∣∣2 = 28.

Note that N(α) and T (α) are coefficients of fα, and so are rational numbers in
general, and rational integers if α is an algebraic integer.


