ALGEBRAIC NUMBER THEORY — LECTURE 4

Sandro Bettin

“What the world needs is more geniuses with humility, there are
so few of us left.”

— Oscar Levant

1. DISCRIMINANTS

Definition 1. Let K be a number field and a = {ay,...,a,} be a basis for K.
The discriminant of « is

Ala] = (det(o(a;)))”
where o; are the embeddings K — C.

Remark. Ala] € Q since
0,(Ala]) = (det(o,0i(c)))?

= (£ det(0(a)))?
= Alal.
If @« C Ok then Ala] € Ox NQ =Z.
Theorem S1. There exists an integral basis « = {ay ..., a,} withn =[K : Q].

Sketch proof. Take a Q-basis a C Ok of K with Ala] minimal. Then suppose that
« is not an integral basis, so there exists w € Ok with, say,

w="0a+...+0,a,

where 01 ¢ Z, i.e. 01 = 0 + r for some 0 < r < 1. Then o = {w — 0oy, a9,..., a5}
is given by
0,—60 6y 605 --- 0

0 1 0 --- 0
w—| 0 0 1 0.
0 0 0 1
So
Ala'] = r*Ala] < Ala]
contradicting the minimality of Ala]. O

Corollary. All integral bases of a given number field have the same discriminant
up to sign, say |Al.

Corollary. If « is a Q-basis of K and o C Ok, and if Ala] is square free then o
is an integral basis.
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Proof. If ¢ is an integral basis then a = (¢; ;) for some matrix (¢; ;) € Z™". So
Ala] = (det(c;;))?A, whence det(c; ;) = +1 as Ala] is square free. So
(ci,j) € Gl (Z) and so o/ = (¢; ;) 'a, thus a is an integral basis as well. O

Theorem S2. If K = Q(0) is a number field of degree n, then
A[L6,....0" " = (=)= V2N (Dp(6))

where p is the minimal polynomial of @ and D is the formal derivative.

2. QUADRATIC FIELDS

K is a quadratic field if [K : Q] = 2. If K = Q(#) is a quadratic field then
—a++va®—4b
2 )

i.e. 6 is a root of t? + at +b. Writing va% — 4b = rv/d with d € Z square free, then
clearly K = Q(Vd).

Theorem S3. Let d € 7 be square free and K = Q(v/d). Then

9:

e ifd# 1 (mod 4) then Og = Z[Vd] and A = 4d;
e ifd=1 (mod 4) then Ox = Z[(1++/d)/2] and A = d.

Proof. Let o € K,s0 o =

only if
<t _¢ +cb‘/g> <t e _Cb‘/g> € Z[t].

with hef(a, b, ¢) = 1. Claim that o € Ok if and

a+bVd
c

So if and only if

9

(1) ?a € 7, and
a? — b%d

(2) —F €L

Let ¢ = hef(a,c). From (2), ¢ | a® — b%*d. But ¢° | a® and d is square free, so
q | b. But hef(a,b,c) =180 ¢ =1. From (1), then, ¢ = 1 or 2. If ¢ = 1 then
a € Ok anyway.

If ¢ = 2 then a? — b%d = 0 (mod 4) by (2). But a is odd as ¢ = 1 and so b must
be odd too, whence a? = b*> =1 (mod 4). Hence 1 —d =0 (mod 4). O



3. CYCLOTOMIC FIELDS

Cyclotomic fields are those of the form K = Q(¢) where { = e2™/™ ig a primitive,
complex mth root of unity. We’ll consider those of the form m = p > 2 with p
prime.

Theorem S4. [Q(¢) : Q] = p — 1. Equivalently, the polynomial
fA) =t L 4P 4t

is irreducible (and hence the minimal polynomial of ¢).

Proof. By the formula for a geometric sum,

f(t+1):7(t+1t)p*1 —i(f)t’",

r=1

which is irreducible by Eisenstein’s criterion. [

Theorem S5. If K = Q(¢) then Ok = Z[(].

Proof. See Stewart and Tall page 72 or Neukirch page 60. O

Corollary. The discriminant A of Q(¢) is (—1)P~1/2pp=2,

Proof. By theorems S2 and S5 we have
A=A, (P = (-)PTDEIEN(DF(Q).

We have
(t—D)ptP~t — (tP — 1)
(t—1)

Df(t) =

whence

_pp—1
Di(¢) =

and so

N(DF(E) = M
_ (=p !
p
=pP2.



4. FACTORISATION INTO IRREDUCIBLES

Definition 2. Given a ring R,

(1) we say x € R is irreducible if and only if = mn implies m or n is a unit;
(2) we say p € R is prime if and only if p is not a unit or zero, and p | mn
implies p | m or p | n.

Every prime is irreducible, but not necessarily vice versa. We often denote the units
of a ring R by U(R) or, if the ring is clear from the context, then just U.

Definition 3. An integral domain D is called noetherian if one of the following
holds:

(1) every ideal in D is finitely generated;

(2) (the ascending chain condition) if Iy C I; C I C ... are all ideals then
there exists N € N such that I,, = Iy for every n > N,

(3) (maximality condition) every nonempty set of ideals of D has a maximal
element by inclusion.

Theorem S6. If D is noetherian then every nonzero element can be written as a
product of irreducible elements.

Proof. Exercise. Hints: proceed by contradiction and let
X ={x € D\U | « cannot be expressed as a product of irreducible elements} C D.

Consider the ideals (z) with € X, and choose the maximal one — which we can
do since D is noetherian. Note that x is not irreducible since it is in X so write
x = yz for non-units y and z and consider the ideals (y) and (z). Show these aren’t
in X and hence derive a contradiction to z € X. O

Theorem S7. For any number field K the ring Ok is noetherian.

Proof. Let I C Ok be an ideal. As an additive group Ok is free abelian of rank
n = [K : Q], so the subgroup (I,+) is free abelian of rank s < n. If {z1,...,zs} is
a Z-basis for (I,+) then I = (z1,...,x5), so I is finitely generated and hence O
is noetherian. ([

Corollary. Factorisation into irreducibles is possible in Ok for any number field

K.



